Answer:
369/10
Step-by-step explanation:
10 1/4=41/4
3 3/5=18/5
----------------
(41/4)(18/5)=738/20
simplify
369/10
Answer:
36 9/10
How to Solve:
First you must convert 10 1/4 into an improper fraction. To do that you must multiply ten by four and add one. The total of that will become the new numerator and the denominator will stay the same.
10 1/4 → 41/4
Next you should also convert 3 3/5 into an improper fraction. To do that you must multiply three by five and add three. The total of the will become the new numerator and the denominator will stay the same.
3 3/5 → 18/5
Now multiply the numerators.
41 × 18= 738
Now multiply the denominators.
4 × 5 = 20
Apply the new numerator and denominator into a fraction.
738/20
Now you simplify the fraction by dividing both the numerator and denominator by two.
738/20 ÷ 2/2 = 369/10
Finally, the improper fraction must be converted into a mixed fraction.
369/10 → 36 9/10
Therefore, 10 1/4 times 3 3/5 equals 36 9/10
What is the following product? (Square root 14 - square root 3) (square root 12 + square root 7)
Answer:
Step-by-step explanation:
The product of this expression is option (A) (2√42 + 7√2 - 6 - √21) is the correct answer.
What is simplification of an expression?Simplification of an expression is the process of writing an expression in the most efficient and compact form without affecting the value of the original expression. It involves, multiply out the brackets and then simplify the resulting expression by collecting the like terms.
For the given situation,
The expression is [tex](\sqrt{14} -\sqrt{3})( \sqrt{12} +\sqrt{7} )[/tex]
⇒ [tex]\sqrt{14}\sqrt{12} +\sqrt{14} \sqrt{7} -\sqrt{3} \sqrt{12} -\sqrt{3} \sqrt{7}[/tex]
⇒ [tex]\sqrt{168}+\sqrt{98}-\sqrt{36}-\sqrt{21}[/tex]
⇒ [tex]\sqrt{2^{2}(42) } +\sqrt{7^{2}(2) } -\sqrt{6^{2} }-\sqrt{21}[/tex]
⇒ [tex]2\sqrt{42 } +7\sqrt{2 } -6-\sqrt{21}[/tex]
Hence we conclude that the product of this expression is option (A) (2√42 + 7√2 - 6 - √21) is the correct answer.
Learn more about simplification of an expression here
https://brainly.com/question/13730519
#SPJ2
Given the two similar triangles, find y.
A= y = 4
B= y = 5
C= y = 6
D= y = 8
giving brainlist to whoever answers with work.
Answer:
The correct answer is B. y = 5
Step-by-step explanation:
Let's recall that two are triangles are similar when its side lengths are proportional. That is in our case, if Δ ABC is similar to Δ DEF , then the following equation holds:
EF/BC = DF/AC
Replacing with the real values:
6/12 = y/10
Cross multiplication:
12 * y = 10 * 6
12y = 60
y = 60/12
y = 5
The correct answer is B. y = 5
Need help with number 6
Answer:
Step-by-step explanation:
What is the largest source of water on earth?
Answer:
Seawater
Step-by-step explanation:
I just took a quiz on this and it said the correct answer is sea water
What is the solution to the following system of equations? x − 4y = 6 2x + 2y = 12 (0, 10) (10, 0) (6, 0) (0, 6)
Answer:
(6,0)
Step-by-step explanation:
The given system has equations:
[tex]x-4y=6[/tex]
[tex]2x+2y=12[/tex]
Multiply the top equation by 2 to get:
[tex]2x-8y=12[/tex]
[tex]2x+2y=12[/tex]
Subtract the top equation form the bottom equation to get:
[tex]2x-2x+2y--8y=12-12[/tex]
[tex]\implies 10y=0[/tex]
[tex]\implies y=0[/tex]
Put y=0 into [tex]x-4y=6[/tex]
[tex]x-4*0=6[/tex]
[tex]\implies x=6[/tex]
Therefore the solution is (6,0)
Your Answer Is:
C: (6,0)
plzzz help rn i need it
Answer:
Therefore the slope of the line shown on the graph is option D)
[tex]-\dfrac{2}{3}[/tex]
Step-by-step explanation:
Given:
Let the Two points on the line be
point A( x₁ , y₁) ≡ ( 0 , 0) one as a Origin
point B( x₂ , y₂) ≡ (-3, 2)
To Find:
Slope AB = ?
Solution:
For a slope we require two points i.e
[tex]Slope=\dfrac{y_{2}-y_{1} }{x_{2}-x_{1}}[/tex]
Substituting the given values we get
[tex]Slope(AB)=\frac{2-0}{-3-0}\\\\Slope(AB)=-\dfrac{2}{3}[/tex]
Therefore the slope of the line shown on the graph is option D)
[tex]-\dfrac{2}{3}[/tex]
Draw to show the numbers write the number to solve. Charlie gathering apples pears and plums the number of apples and plums are 10 partners there are the same number of apples and pears how many pieces of fruit could Charlie gather?
Answer:
Charlie could gather 30 pieces of fruit.
Fetching Information:
As Charlie has gathered apples pears and plums, and the number of apples and plums are 10 partners, and also there are same number of apples and pears.
What to Determine?
How many pieces of fruit could Charlie determine?
Solution:
Let 'a' be the number of apples, 'b' be the number of plums, and 'c' be the number of pears.
As the number of plums and apples is same i.e both are 10 in numbers.
So, a = b = 10
Note that number of pears and apples is also same. So, the the total number of pears will be 10.
So, c = 10
Total number of pieces of fruit = number of apples + number of plums + number of pears
Hence,
Total number of pieces of fruit = a + b + c
= 10 + 10 + 10
= 30
Thus, Charlie could gather 30 pieces of fruit.
Keywords: number, total
Lear more about word problem solving from brainly.com/question/10731035
#learnwithBrainly
Explain how to estimate the quotient using compatible numbers. 27 2/3 divided by 3 9/10. Write a Sentence or two.
Answer:
Step-by-step explanation:The first fraction is between 27 and 28, closer to 28. The second fraction is between 3 and 4, closer to 4. Compatible numbers in division are numbers that can be divided mentally. 28 divided by 4 is 7. The quotient will be around 7.
Answer:
Step-by-step explanation:
Sample Response: The first fraction is between 27 and 28, closer to 28. The second fraction is between 3 and 4, closer to 4. Compatible numbers in division are numbers that can be divided mentally. 28 divided by 4 is 7. The quotient will be around 7.
Erik has $50 in a savings account that earns
5% annually. The interest is not compounded. How much will he have in 1 year?
Answer:
[tex]\$52.50[/tex]
Step-by-step explanation:
we know that
The simple interest formula is equal to
[tex]A=P(1+rt)[/tex]
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have
[tex]t=1\ year\\ P=\$50\\ A=?\\r=5\%=5/100=0.05[/tex]
substitute in the formula above
[tex]A=50(1+0.05*1)[/tex]
[tex]A=50(1.05)[/tex]
[tex]A=\$52.50[/tex]
Determine whether y2=3x+1 is a function.
The equation y2=3x+1 is a function.
Explanation:Determine whether y2=3x+1 is a function
A function is a relation in which each input has exactly one output. To determine if the equation y2=3x+1 is a function, we need to check if each input value of x corresponds to exactly one output value of y.
In this case, the equation represents a quadratic curve, which passes the vertical line test, meaning that it is indeed a function.
For example, when x=1, we can substitute it into the equation as follows: y2 = 3(1) + 1 = 4.
Therefore, for every value of x, there is a unique value of y, indicating that the equation y2=3x+1 is a function.
Simplify the expression 2 × 36 − 24 ÷ 6
Answer:
68
Step-by-step explanation:
P- parentheses
E- exponential
M- multiplication
D- division
A- addition
S- subtraction
2 x 36 = 72
72 - 24 ÷ 6
24 ÷ 6 = 4
72 - 4 = 68
Answer:
68
Step-by-step explanation:
*Remember the order of operations PEMDAS*(Parentheses, Exponents, Multiplication and Division, Addition and Subtraction)
2 x 36 = 7224 / 6= 4now, 72 - 4= 68hope it helps:)
PLZ HELP!!! Katrina is solving the equation x-2(x+3)=4(2x+3)-x(x-4) . Which equivalent equations might Katrina use? Check all that apply.
Answer:
X2-13X-18=0
Step-by-step explanation:
x-2(x+3)=4(2x+3)-x(x-4)
Multiply through the equations
x-2x-6=8x+12-x2+4x
Equate all to zero
x-2x-6-8x-12+x2-4x=0
x2-4x+x-2x-8x-6-12
x2-13x-18=0
Answer:
A. x minus 2 x minus 6 = 8 x + 12 minus x minus 4
E. Negative x minus 6 = 7 x + 8
Step-by-step explanation:
i took the unit test review on edg
Find the value of y for the following system of equations. x + y = 7 x + y = 7 7 2
The value of y is 28
y = 28
Select the four choices below that are equal to 2 × 3 × 4.
Final answer:
2 × 3 × 4, which equals 24.
Explanation:
To find equivalent expressions, we need to think about numbers that can multiply together to reach 24, while also keeping in mind the properties of operations and exponents.
One way is to use exponents. For instance, since 2 × 2 × 2 equals 23 or 8, and 3 × 4 equals 12, multiplying these two results gives us 8 × 12 which is also 24.We could also factor the number differently. Considering 2 × 2 × 2 × 3 can be rearranged to get (22 × 2) × 3 which simplifies to 4 × 2 × 3 and again equals 24.Another expression is taking multiples of 4 such as 4 × 6 which is the same as (2 × 2) × (2 × 3), resulting in the original 24.Last but not least, we can use the distributive property to create 2(3+9) since 3 + 9 equals 12, and 2 × 12 is 24.Mike bought 20 stamps for 0.40 $5 each and 15 Century 0.32 each how much money did Mike spend on stamp
Answer:
$8
Step-by-step explanation:
Here is the correct question: Mike bought 20 stamps for 0.40 each and 15 Century 0.32 each how much money did Mike spend on stamp.
Given: cost of each stamp is 0.40
Total stamp bought is 20.
Using unitary method
Cost of 1 stamp is 0.40.
∴ cost of 20 stamp is =[tex]20\ stamp \times 0.40= 8[/tex]
Cost of 20 stamp is $8
∴ Total money spent by Mike on buying 20 stamp is $8.
Find the x and y intercepts of the equation: 2x - 3y = 18 (0, 2) and (-3, 0) (0, 9) and (0, -6) (9, 0) and (0, -6) (2, 0) and (0, -3)
The x - intercept is (9, 0) and y - intercept is (0, -6)
Solution:
Given that the equation is: 2x - 3y = 18
We have to find the x and y intercepts of the equation
The x-intercept is the point at which the line crosses the x-axis. At this point, the y-coordinate is zero.
The y-intercept is the point at which the line crosses the y-axis. At this point, the x-coordinate is zero.
Finding x - intercept:
Substitute y = 0 in given equation
2x - 3y = 18
2x - 3(0) = 18
2x = 18
x = 9
Thus the x - intercept is (9, 0)
Finding y - intercept:
Substitute x = 0 in given equation
2(0) - 3y = 18
-3y = 18
y = -6
Thus the y-intercept is (0, -6)
. A friend opens a savings account by depositing $1000. He deposits an
additional $75 into the account each month.
a. What is a rule that represents the amount of money in the account as an
arithmetic sequence?
b. How much money is in the account after 18 months? Show your work.
Answer:
the rule is:
75x + 1000
Step-by-step explanation:
after 18 months
plug 18 in for x.
75(18) + 1000
= 1350
1350 + 1000
= 2350
$2350 after 18 months
Answer:
Part (A) 1000+(n-1)75
Part (B) 2,275
subtract the 1 it's not 2350
Step-by-step explanation:
Mason has an offer to buy an item with a sticker price of $14,800 by paying
8530 a month for 36 months. What interest rate is Mason being offered?
A 12.8%
B. 25.7%
C6.4%
d8,5%
Answer:
8.83%
Step-by-step explanation:
Using compound interest formula
A = P ( 1+ r) ^t where A = amount = 530 × 36 = $ 19080, P = the amount of the loan = $ 14800, t = 36 / 12 = 3 years
substitute the values into the equation
19080 = 14800 (1 + r) ^3
19080 / 14800 = (1 + r) ^3
1.2892 = (1 + r) ^3
∛(1.2892) = 1 + r
1.0884 = 1 + r
r = 1.0884 - 1 = 0.0884 × 100 = 8.83%
Answer:
d 8,5%, the most probable, provided the error in the question is confirmed!!!
Step-by-step explanation:
Mason has an offer to buy an item with a sticker price of P= $14,800.
He is to pay $8530 a month for 36 months.
Total amount paid by Mason will be
$8530*36= $307,080
This will be very outrageous compared to the sticker price!!!
If we presume he is paying yearly 8530 for 36 months or 3 years.
Then total amount paid will be 8530*3 = $25590
Also very high in my opinion.
Perhaps the dollar sign was wrongly typed as '8' in the question and he pays only $530 monthly,
Then the total amount paid will be $19,080
This is quite reasonable.
If the interest rate is compounded for n (n=3, 36 months = 3 years)
years, thus
19080= ((P*(1+i)^n) , meaning
19080 =((14800(1+i)^3), which when evaluated yields
i=8.8%
-3(v - 3) - 6 is greater than or equal to 12
Answer:
v<=-3
Step-by-step explanation:
-3(v-3)-6>=12
-3v+9-6>=12
-3v+3>=12
-3v>=12-3
-3v>=9
v>=9/-3
v>=-3
The recursive function for a sequence is given below.
f(1) = 200
f(n) = 2 · f(n − 1), for n = 2, 3, 4, ...
What is the 5th term of this sequence?
Answer:
f(5) = 3200
Step-by-step explanation:
Using the recursive formula to generate the terms, that is
f(2) = 2 × f(1) = 2 × 200 = 400
f(3) = 2 × f(2) = 2 × 400 = 800
f(4) = 2 × f(3) = 2 × 800 = 1600
f(5) = 2 × f(4) = 2 × 1600 = 3200
Answer: 6400
Step-by-step explanation:
Given :
f(1) = 200
f(n) = 2.f(n-1) , for n = 2 ,3 , 4 , ...
To find the 5th term
when n = 2 , the sequence becomes
f(2) = 2 .f(2-1)
f(2) = 2 f(1)
since f(1) = 200
therefore:
f(2) = 2 x 200
f(2) = 400
When n = 3
f(3) = 2f(2)
f(3) = 2 x 400
f(3) = 800
When n = 4
f(4) = 2 f(3)
f(4) = 1600
When n =5
f(5) = 2f(4)
f(5) = 3200
When n = 6
f(6) = 2f(5)
f(6) = 6400
Since n = 2 , 3 , 4 ... this means that the 5th term if f(6) , therefore ,the 5th term is 6400
4/7 - -4/7
It’s confusing I calculated it but there’s no answer so I really need help
Answer:
Step-by-step explanation:
4/7 - (-4/7) = 4/7 + 4/7 = 8/7 or 1 1/7......a negative times a negative is a positive...so those two negatives turn into a positive...so ur basically just adding them
Draw a picture to show the division. Express your answer as a fraction. 3÷5=
Answer:
your answer is down below
Step-by-step explanation:
Check the picture below.
y=-2x+5 was shifted down 7 units what equation is it now
Answer:
[tex]y=-2x-2[/tex]
Step-by-step explanation:
we have
[tex]y=-2x+5[/tex]
This is the equation of a line in slope intercept form
where
[tex]m=-2[/tex] ---> the slope
[tex]b=5[/tex] ----> the y-intercept
we know that
If the given line was shifted down 7 units, then the new y-intercept is equal to
[tex]b=5-7=-2[/tex]
The slope of the new line will be the same that the original line, because are parallel lines
so
The new equation is
[tex]y=-2x-2[/tex]
Write the equation of a line that is parallel to
y
=
9
y=9y, equals, 9 and that passes through the point
(
3
,
−
8
)
(3,−8)left parenthesis, 3, comma, minus, 8, right parenthesis.
Answer:
The equation of the line is [tex]y=-8[/tex]
Step-by-step explanation:
we know that
The equation of the line [tex]y=9[/tex] is a horizontal line (parallel to the x-axis)
The equation of a horizontal line is equal to the y-coordinate of the point that passes through it
In this problem, the line passes through the point (3,-8)
The y-coordinate is -8
therefore
The equation of the line is [tex]y=-8[/tex]
Alexis wants to figure out the price to charge friends for the blu-rays. She doesn’t want to make money at this point since it is a brand new business, but does want to cover her costs. Suppose Alexis created 50 blu-rays. What is the cost of producing those 50 blu-rays? How much is it for each blu-ray?
B(x) = 1250 +1.75x
Answer:
The cost of producing 50 blu-rays will be $1337.5
Each blu-rays must be sold of $26.75
Step-by-step explanation:
The cost of producing x number of blu-rays is given by the relation
B(x) = 1250 + 1.75x ........... (1)
Therefore, the total cost for producing 50 blu-rays will be
B(50) = 1250 + 1.75 × 50 = $1337.5 (Answer)
Now, Alexis does not want to make a profit by selling the blu-rays to her friends and wants just to cover her costs.
Therefore, the selling price of 50 blu-rays will be $1337.5.
Hence, each blu-rays must be sold of [tex]\frac{1337.5}{50} = 26.75[/tex] dollars. (Answer)
On a coordinate plane, a dashed straight line has a negative slope and goes through (0, 2), and (1, negative 1). Everything to the right of the line is shaded. The solutions to the inequality y > −3x + 2 are shaded on the graph. Which point is a solution? (0, 2) (2, 0) (1, −2) (−2, 1)
Answer:
(2,0)
Step-by-step explanation:
we know that
If a ordered pair is a solution of the inequality, then the ordered pair must satisfy the inequality
we have
[tex]y > -3x+2[/tex]
Substitute the value of x and the value of y of each point in the inequality and then compare the results
case a) (0, 2)
[tex]2 > -3(0)+2[/tex]
[tex]2 > 2[/tex] ----> is not true
so
the point not satisfy the inequality
therefore
The point is not a solution of the inequality
case b) (2,0)
[tex]0 > -3(2)+2[/tex]
[tex]0 > -4[/tex] ----> is true
so
the point satisfy the inequality
therefore
The point is a solution of the inequality
case c) (1, -2)
[tex]-2 > -3(1)+2[/tex]
[tex]-2 > -1[/tex] ----> is not true
so
the point not satisfy the inequality
therefore
The point is not a solution of the inequality
case d) (-2, 1)
[tex]1 > -3(-2)+2[/tex]
[tex]1 > 8[/tex] ----> is not true
so
the point not satisfy the inequality
therefore
The point is not a solution of the inequality
see the attached figure to better understand the problem
Answer:
(2,0)
Step-by-step explanation:
PLZ ANSWER
SCRENSHOT
Answer:
Marcelino will break even
Step-by-step explanation:
if he spends 45 dollars on profits, and sells each balloon for $1.50 then you multiply 30 balloons by 1.5 and that equals 45 dollars, so he will break even
Answer:
C
Step-by-step explanation:
A1.0 kg cart moving right at 5.0 -- on a frictionless track
collides with a second cart moving left at 2.0 m/s.
The 1.0 kg cart has a final speed of 4.0 m/s to the left, and the
second cart has a final speed of 1.0 m/s
to the right.
What is the mass of the second cart?
Consider rightward as the positive direction.
Answer:
3.0 kg
Step-by-step explanation:
Momentum before collision = momentum after collision
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(1.0 kg) (5.0 m/s) + m (-2.0 m/s) = (1.0 kg) (-4.0 m/s) + m (1.0 m/s)
5.0 kg m/s + m (-2.0 m/s) = -4.0 kg m/s + m (1.0 m/s)
9.0 kg m/s = m (3.0 m/s)
m = 3.0 kg
In triangle abc, cos A= -0.6. Find A and Tan A
Answer:
Part 1) [tex]A=126.87^o[/tex]
Part 2) [tex]tan(A)=-\frac{4}{3}[/tex]
Step-by-step explanation:
we have
[tex]cos(A)=-0.6[/tex]
The cos(A) is negative, that means that the angle A in the triangle ABC is an obtuse angle and the value of the sin(A) is positive
The angle A lie on the II Quadrant
step 1
Find the measure of angle A
[tex]cos(A)=-0.6[/tex]
using a calculator
[tex]A=cos^{-1}(-0.6)=126.87^o[/tex]
step 2
Find the sin(A)
we know that
[tex]sin^2(A)+cos^2(A)=1[/tex]
substitute the value of cos(A)
[tex]sin^2(A)+(-0.6)^2=1[/tex]
[tex]sin^2(A)=1-0.36[/tex]
[tex]sin^2(A)=0.64[/tex]
[tex]sin(A)=0.8[/tex]
step 3
Find tan(A)
we know that
[tex]tan(A)=\frac{sin(A)}{cos(A)}[/tex]
substitute the values
[tex]tan(A)=\frac{0.8}{-0.6}[/tex]
Simplify
[tex]tan(A)=-\frac{4}{3}[/tex]
write an equation for a line parallel to 3x-6y=18