(3 points)
11. A farmer buys 20 sheep, half male and half female. She was told that the annual rate of
increase for the sheep population is 60%. Assuming that none of the sheep die, when will the
farmer have 200 sheep? Write and solve an exponential equation, showing your work.
Use
to indicate an exponent. Use /to indicate a fraction.

Answers

Answer 1

Answer:

The exponential Function is [tex]20+12h=200[/tex].

Farmer will have 200 sheep after 15 years.

Step-by-step explanation:

Given:

Number of sheep bought = 20

Annual Rate of increase in sheep = 60%

We need to find that after how many years the farmer will have 200 sheep.

Let the number of years be 'h'

First we will find the Number of sheep increase in 1 year.

Number of sheep increase in 1 year is equal to Annual Rate of increase in sheep multiplied by Number of sheep bought and then divide by 100.

framing in equation form we get;

Number of sheep increase in 1 year = [tex]\frac{60}{100}\times20 = 12[/tex]

Now we know that the number of years farmer will have 200 sheep can be calculated by Number of sheep bought plus Number of sheep increase in 1 year multiplied by number of years  is equal to 200.

Framing in equation form we get;

[tex]20+12h=200[/tex]

The exponential Function is [tex]20+12h=200[/tex].

Subtracting both side by 20 using subtraction property we get;

[tex]20+12h-20=200-20\\\\12h=180[/tex]

Now Dividing both side by 12 using Division property we get;

[tex]\frac{12h}{12} = \frac{180}{12}\\\\h =15[/tex]

Hence Farmer will have 200 sheep after 15 years.


Related Questions

When abby reaches age of 55, she will deposit $50,000 to fund an annuity with the Dallas cowboys insurance company. The money will be invested at 8% each year, compounded semiannually. She is ro draw payments until she reaches age 65. What is the amount of each payment?

Answers

Answer:

The Amount draw from the account after 10 years is $109,555 .

Step-by-step explanation:

Given as :

The principal deposited in account = p = $50,000

The rate of interest = 8% semiannually

The time period for the amount will be in account = t = 10 years

Let The Amount draw from the account after 10 years = $A

Now, From Compound Interest method

Amount = principal × [tex](1+\dfrac{\texrm rate}{2\times 100})^{\textrm 2\times time}[/tex]

A = p × [tex](1+\dfrac{\texrm r}{2\times 100})^{\textrm 2\times t}[/tex]

Or, A = $50,000 × [tex](1+\dfrac{\texrm 8}{2\times 100})^{\textrm 2\times 10}[/tex]

Or, A = $50,000 × [tex](1.04)^{20}[/tex]

Or, A = $50,000 × 2.1911

Or, A = $109,555

So, The Amount draw from the account after 10 years = A = $109,555

Hence,The Amount draw from the account after 10 years is $109,555 . Answer

Blaire walked around her garden in the morning and saw that 18 of her tomato plants had tomatoes ready to pick. If this was 90% of her tomato plants, how many tomato plants does Blaire have altogether?

Answers

Blaire has 20 tomato plants altogether.

Step-by-step explanation:

Given,

Tomatoes plants ready to pick = 18

This represents 90% of total tomato plants.

Let,

x be the original number of tomato plants.

90% of x = 18

[tex]\frac{90}{100}*x=18[/tex]

[tex]0.9x=18[/tex]

Dividing both sides by 0.9

[tex]\frac{0.9x}{0.9}=\frac{18}{0.9}[/tex]

[tex]x=20[/tex]

Blaire has 20 tomato plants altogether.

Keywords: percentage, division

Learn more about division at:

brainly.com/question/10666510brainly.com/question/10699220

#LearnwithBrainly

Mr Thomson wants to protect his garage by installing a flood barrier.He connects two barriers side by side.Each barrier is 9 feet long by 2 feet high.What is the combined area of the barriers?

Answers

Answer:

  36 square feet

Step-by-step explanation:

The area of one barrier is the product of the given dimensions:

  (9 ft)(2 ft) = 18 ft²

Two such barriers will have twice the area: 36 ft².

Final answer:

The combined area of the two barriers is calculated by multiplying the length by the height for each barrier to get an area for each one, and then those two areas are added together. Each barrier has an area of 18 square feet, so the total combined area is 36 square feet.

Explanation:

The question is asking for the combined area of two barriers, each being 9 feet long and 2 feet high. In order to find this, we must multiply the length by the height for each barrier, and then add these two areas together. The calculation would look like this:

Area of each barrier = Length x Height = 9 ft x 2 ft = 18 square feet

Now, since there are two barriers:

Combined Area = 2 x Area of each barrier = 2 x 18 square feet = 36 square feet

Therefore, the combined area of the two barriers is 36 square feet.

Learn more about Area calculation here:

https://brainly.com/question/32024069

#SPJ3

1) Which equations represent functions that are non-linear? Select each correct answer.
a) Y = X
b) 2Y= 4x+6
c ) Y = 8 + x
d) Y - 6 = x^2
e) Y= - 3x+l/5
f) Y=2x^2+5-3x^2

Answers

Answer:

d) Y - 6 = x²; f) Y = 2x² + 5 - 3x²  

Step-by-step explanation:

Functions in which the exponent of x is not equal to one are nonlinear.

Functions in which the exponent of x is equal to one are linear.

In triangle ABC, the measure of angle B is 60 more than A. The measure of angle C is eight times the measure of A. If x represents the measure of angle A, set up and solve an equation to find the measure of angle A.

Answers

Answer: the measure of angle A is 12 degrees

Step-by-step explanation:

Let x represent the measure of angle A.

Let y represent the measure of angle B.

Let z represent the measure of angle C.

In triangle ABC, the measure of angle B is 60 more than A. This means that

y = x + 60

The measure of angle C is eight times the measure of A. This means that

z = 8x

Also, the sum of the angles in a triangle is 180 degrees. Therefore

x + y + z = 180 - - - - - - - - - 1

Substituting y = x + 60 and z = 8x into equation 1, it becomes

x + x + 60 + 8x = 180

10x + 60 = 180

10x = 180 - 60 = 120

x = 120/10 = 12

Answer:

Step-by-step explanation:

measure of A=x

∠C=8x

∠B=x+60

in a triangle sum of angles=180°

x+8x+x+60=180

10x=120

x=12

m∠A=12°

Yuan receives money from his relatives every year on his birthday. This year, Yuan received a total of $56. That is 12% more than he received last year. How much did Yuan received last year?

Answers

Answer:Yuan received $50 last year

Step-by-step explanation:

Yuan receives money from his relatives every year on his birthday.

Let x represent the amount of money that Yuan received last year on his birthday.

This year, Yuan received a total of $56. The amount that he received this year is 12% more than he received last year. This means that

the increment on the amount that he received last year is would be

12/100×x = 0.12x. Therefore,

x + 0.12x = 56

1.12x = 56

x = 56/1.12 = $50

Denzel earned money after school delivering newspapers and doing yardwork. He put - of this month's earnings into his savings. He took the rest to spend at the amusement park. He spent of this amount on popcorn and of it on rides. What fraction of his amusement park money did he spend on rides and popcorn?

Answers

Denzel took 1/40 of his earnings to the park but did not spend it on rides or popcorn.

Let's break down the information provided step by step to find the fraction of Denzel's earnings that he took to the park but did not spend on rides or popcorn.

Denzel put 1/2 of his earnings into savings. This means he kept 1/2 as his spending money for the amusement park.

Denzel spent 1/5 of the remaining amount on popcorn. This means he spent 1/5 * 1/2 = 1/10 of his earnings on popcorn.

Denzel also spent 3/4 of the remaining amount on rides. This means he spent 3/4 * 1/2 = 3/8 of his earnings on rides.

To find the fraction of his earnings that he took to the park but did not spend on rides or popcorn, we need to subtract the fractions spent on rides and popcorn from the fraction he took to the park.

Fraction taken to the park but not spent on rides or popcorn = 1/2 - (1/10 + 3/8)

To subtract fractions, we need a common denominator. The least common multiple of 10 and 8 is 40.

Converting the fractions to have a common denominator:

1/2 - (1/10 + 3/8) = 20/40 - (4/40 + 15/40) = 20/40 - 19/40 = 1/40

Therefore, Denzel took 1/40 of his earnings to the park but did not spend it on rides or popcorn.

Question: Denzel earned money after school. He put 1/2 of this month's earnings into savings. He took the rest to spend at the amusement park. He spent 1/5 of this amount on popcorn and 3/4 of it on rides. What fraction of his earnings did he take to the park but not spend on rides or popcorn?

a)Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s. b) What are the initial conditions? c) How many ternary strings of length six do not contain two consecutive 0s?

Answers

Final answer:

a) The recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s is [tex]\(a_n = 2a_{n-1} + a_{n-2}\).[/tex]

b) The initial conditions for the recurrence relation are [tex]\(a_1 = 3\) and \(a_2 = 9\).[/tex]

c) There are 21 ternary strings of length six that do not contain two consecutive 0s.

Explanation:

a) To derive the recurrence relation, consider the possibilities for the last digit in the string. If the last digit is 1 or 2, it doesn't affect the constraint of avoiding consecutive 0s. Hence, for strings of length n that end in 1 or 2, there are[tex]\(a_{n-1}\)[/tex]possibilities. However, if the last digit is 0, the previous digit cannot be 0 to satisfy the constraint. Therefore, for strings of length n that end in 0, there are \(a_{n-2}\) possibilities. This results in the recurrence relation[tex]\(a_n = 2a_{n-1} + a_{n-2}\).[/tex]

b) The initial conditions are established by considering strings of length 1 and 2. For strings of length 1, there are three possibilities (0, 1, or 2). For strings of length 2, there are nine possibilities (00, 01, 02, 10, 11, 12, 20, 21, 22), but among these, 00 is excluded to avoid consecutive 0s, leaving a total of nine valid strings. Therefore, the initial conditions are[tex]\(a_1 = 3\) and \(a_2 = 9\).[/tex]

c) To find the number of ternary strings of length six that do not contain two consecutive 0s, utilize the recurrence relation. Starting from the initial conditions, compute[tex]\(a_6 = 2a_5 + a_4\)[/tex] using the relation, which results in [tex]\(a_6 = 21\).[/tex]

Thus, there are 21 ternary strings of length six that satisfy the condition of not having two consecutive 0s.

"In summary, the recurrence relation [tex]\(a_n = 2a_{n-1} + a_{n-2}\)[/tex]governs the number of ternary strings of length n without consecutive 0s, with initial conditions[tex]\(a_1 = 3\) and \(a_2 = 9\)[/tex]. Computing[tex]\(a_6\)[/tex]using the relation yields 21 valid ternary strings of length six that do not contain two consecutive 0s."

The recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s is a_n = 2a_n-1 + 2a_n-2. The initial conditions are a_1 = 3 and a_2 = 8. Using these, we calculate that there are 448 such ternary strings of length six.

Ternary Strings without Consecutive 0s

Let's define a ternary string as a string composed of the digits 0, 1, and 2. We need to find a recurrence relation for the number of such strings of length n that do not contain two consecutive 0s.

Part (a)

Let a_n represent the number of ternary strings of length n that do not contain consecutive 0s. Consider the possibilities for the first digit of the string:

If the first digit is 1 or 2, the remaining (n-1) digits can be any string of length (n-1) that does not contain consecutive 0s.If the first digit is 0, the second digit must be 1 or 2 (to avoid two consecutive 0s). The remaining (n-2) digits can be any string of length (n-2) that does not contain consecutive 0s.

Thus, we have the recurrence relation: a_n = 2a_{n-1} + 2a_{n-2}

Part (b)

The initial conditions can be determined as follows:

a_1: There are three ternary strings of length 1 (0, 1, 2). Therefore, a_1 = 3.a_2: We need to count the ternary strings of length 2 that do not contain two consecutive 0s. These are 01, 02, 10, 11, 12, 20, 21, 22. Therefore, a_2 = 8.

Part (c)

Using the recurrence relation and initial conditions:

a_3 = 2a_2 + 2a_1 = 2(8) + 2(3) = 22a_4 = 2a_3 + 2a_2 = 2(22) + 2(8) = 60a_5 = 2a_4 + 2a_3 = 2(60) + 2(22) = 164a_6 = 2a_5 + 2a_4 = 2(164) + 2(60) = 448

Therefore, the number of ternary strings of length six that do not contain two consecutive 0s is 448.

Kenneth John makes a deposit at an ATM and receives $75.00 in cash and a receipt for the $872.25 total deposit. He remembers that the checks deposited totaled twice the currency he deposited. He did not deposit any coins. What amount in currency did he deposit? What amount in checks did he deposit?

Answers

Answer:

Currency= $291 and check= $581.25.

Step-by-step explanation:

Given: Cash received= $75

          Total deposit= $872.25

Lets assume currency deposited be dollar "x"

∴  As given check deposited will be "2x"  

Now, calculating amount of currency deposited.

We know that, [tex]currency\ deposit + check\ deposit= \$872.25[/tex]

∴ [tex]x+2x= \$872.25[/tex]

⇒[tex]3x=\$872.25[/tex]

Cross multiplying

∴[tex]x= \$290.75 \approx \$291 \textrm{ as Kenneth John have not deposited any coins}[/tex]

∴  Amount of currency deposited is $291.

Next, computing to get amount deposited through check.

As we know check deposited is double of currency.

Check deposited= [tex]2\times \$291= \$ 582[/tex]

∵ No coins were deposited and there is total deposit is $872.25.

We will consider amount deposited through check is $581.25.

 

Kenneth John deposited $290.75 in currency and $581.50 in checks.

To determine the amounts of currency and checks deposited by Kenneth John, we will define the variables for clarity. Let C represent the amount in currency deposited and CH represent the amount in checks deposited.

Given:

The total deposit after adding checks and currency is $872.25.

The checks deposited totaled twice the currency deposited (CH = 2C).

We can set up the following equation based on the given information:

[tex]C + CH = 872.25[/tex]

Since CH = 2C, we substitute CH:

[tex]C + 2C = 872.25[/tex]

This simplifies to:

[tex]3C = 872.25[/tex]

Solving for C, we divide both sides of the equation by 3:

[tex]C = \[\frac{872.25}{3} = 290.75[/tex]

Kenneth deposited $290.75 in currency.

Then, we calculate the amount in checks:

[tex]CH = 2 \times 290.75 = 581.50[/tex]

Assume that a procedure yields a binomial distribution with a trial that is repeated 10 times. Use the binomial probability formula to find the probability of 6 successes given that a single success has a probability of 0.30.

Answers

Answer: 0.036756909

Step-by-step explanation:

Formula for Binomial probability distribution.

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex]

, where x= number of success

n= total trials

p=probability of getting success in each trial.

According to the given information , we have

n= 10 , p= 0.30  and x= 6

Then, the required probability will be :

[tex]P(x=6)=^{10}C_6(0.3)^6(1-0.3)^{10-6}\\\\= \dfrac{10!}{6!(10-6)!}\times(0.3)^6(0.7)^4\\\\=\dfrac{10\times9\times8\times7\times6!}{6!4!}(0.3)^6(0.7)^4\\\\=(210)(0.000729)(0.2401)=0.036756909[/tex]

Hence, the required provability = 0.036756909

The probability of 6 successes given that a single success has a probability of 0.30 is given by the binomial distribution and P ( A ) = 0.03675 or 3.675 %

Given data ,

To find the probability of exactly 6 successes in 10 trials, with a probability of success (p) equal to 0.30, we can use the binomial probability formula:

P ( x ) = [ n! / ( n - x )! x! ] pˣqⁿ⁻ˣ

P(X = k) is the probability of getting exactly k successes,

n is the total number of trials,

k is the number of desired successes,

p is the probability of success for a single trial,

In this case, n = 10, k = 6, and p = 0.30. The binomial coefficient C(n, k) is calculated as:

P(n, k) = n! / (k! * (n - k)!)

Substituting the values into the formula, we have:

P(X = 6) = C(10, 6) x (0.30)⁶ * (1 - 0.30)⁽¹⁰⁻⁶⁾

Calculating the binomial coefficient:

C(10, 6) = 10! / (6! x (10 - 6)!)

= 10! / (6! x 4!)

= (10 x 9 x 8 x 7) / (4 x 3 x 2 x 1)

= 210

Substituting the values into the formula:

P(X = 6) = 210 x (0.30)⁶ (0.70)⁴

P ( X = 6 ) = P ( A ) = 210 ( 0.000729 ) ( 0.2401 )

P ( A ) = 0.036756909

Therefore, the probability of getting exactly 6 successes in 10 trials, with a probability of success of 0.30, is approximately 0.03675 or 3.675 %

To learn more about binomial distribution click :

https://brainly.com/question/29350029

#SPJ6

Three different die are rolled __ probability that exactly to roll tthe same number.

Answers

Answer: Our required probability is [tex]\dfrac{1}{36}[/tex]

Step-by-step explanation:

Since we have given that

Total number of outcomes in single die = 6

So, total number of outcomes if three different die = [tex]6^3=216[/tex]

Number of favourable outcome i.e. exactly roll the same number = (1,1,1), (2,2,2) (3,3,3) (4,4,4) (5,5,5), (6,6,6) = 6

So, Probability of getting exactly roll the same number is given by

[tex]\dfrac{\text{number of favourable outcome}}{\text{Number of total outcomes}}\\\\=\dfrac{6}{216}\\\\=\dfrac{1}{36}[/tex]

Hence, our required probability is [tex]\dfrac{1}{36}[/tex]

Craig has a box of chocolates to share when his friends. The box has 5 rows of chocolate with 20 chocolates in row. Craig and his friends eat 64 chocolates. How much did they eat? Show this as an decimal.

Answers

Answer:

0.64

Step-by-step explanation:

Given: Craig has a box of chocolate with 5 rows in it.

           Each row has 20 chocolate.

           Craig and his friends eat 64 chocolate.

As given, we understand that there is box of chocolate with 5 rows and each row have 20 chocolate, therefore we can find total number of chocolate.

Total number of chocolate=[tex]5\ rows \times 20\ chocolates = 100\ chocolates[/tex]

Total number of chocolates in box= 100.

Now, we know craig and his friends eat 64 chocolate.

∴ To find decimal of number chocolate eaten out of 100 chocolate, we need to  put numbers in fraction first then convert it in decimal.

Number of chocolate ate by craig and his friends is [tex]\frac{64}{100} = 0.64[/tex]

Craig and his friends eat 0.64 chocolates.

What is the equation, in standard form, of a parabola that models the values in the table?

Answers

Using the values in the table you can easily use the provided x-values to plug into any equation to get a corresponding f(x) value. When applying this to the 4 functions, we see that only the second answer choice will give the exact same outputs when the inputs are plugged in from the table.

[tex]4x^2+3x-6[/tex]

[tex]x=-2\\f(-2)=4(-2)^2+3(-2)-6\\f(-2)=4[/tex]

[tex]x=0\\f(0)=4(0)^2+3(0)-6\\f(0)=-6[/tex]

[tex]x=4\\f(4)=4(4)^2+3(4)-6\\f(4)=70[/tex]

Tyrone’s financial goal is to create an emergency fund. To make Tyrone’s financial goal specific, he could give himself a . To make his goal timely, he could give himself a .

Answers

Answer:

Goal amount of $10,000

Deadline of next year

Step-by-step explanation:

Final answer:

Tyrone can make his financial goal ‘specific’ by deciding on a target amount for his emergency fund. He can make it 'timely' by assigning a deadline by which to save that amount.

Explanation:

To make Tyrone's financial goal specific, he could give himself a target amount to save for the emergency fund. This could be a fixed sum, like $1000, or a figure based on monthly expenses, like saving for 6 months' worth of living expenses. This clarity can help him to plan and track his progress.

To make his goal timely, he could give himself a deadline by which he wants to achieve this goal. For example, he might aim to save his specified amount within a year or two. The timetable can provide added motivation to adhere to a budget and save consistently.

Learn more about Specific and Timely Financial Goals here:

https://brainly.com/question/33428499

#SPJ5

Edin has £300 in his savings account. His bank offers him a fixed 5% simple interest rate per annum, for a period of 3 years. How much interest will he have earnt after 3 years?

Answers

Answer: her interest in 3 years is $45

Step-by-step explanation:

For simple interest, the principal is not compounded. The interest is only on the original capital. The formula for simple interest is expressed as

I = PRT/100

Where

I represents the interest on the principal

P represents the initial amount

R represents the interest rate.

T represents the time in years.

From the information given

P = $300

R = 5%

T = 3 years

I = 300×5×3)/100

I = 4500/100 = 45

You want to invest in a hot dog stand near the ballpark. You have a 0.35 probability that you can turn your current $15,000 into $50,000 and an 0.65 probability that fierce competition will drive you to ruin, losing all your money. If you decide not to enter, you keep your $15,000. Would you enter the market?

Answers

Answer:

Step-by-step explanation:

The probability that you can turn your current $15,000 into $50,000. This means that the probability of success is 0.35. In terms of percentage, it is 0.35×100 = 35%

You have a 0.65 probability that fierce competition will drive you to ruin, losing all your money. This means that the probability of failure is 0.65. In terms if percentage, it is 0.65×100 = 65%

Looking at the percentage, entering the market will be too risky so I won't enter market since the chance of failing is very high compared to that of succeeding

Given the perimeter of the given shape, find the length of each side of the object.

1) A triangle where the perimeter is 25 inches. The length of the sides are 2w+1, 3w and 3w.

Answers

Answer:

The length of each side is 17 in, 24 in, 24 in.

Step-by-step explanation:

Given,

Perimeter of the triangle = [tex]25\ in[/tex]

Length of 1st side = [tex]2w+1[/tex]

Length of 2nd side = [tex]3w[/tex]

Length of 3rd side = [tex]3w[/tex]

The perimeter of a triangle is equal to the sum of the length of all the three sides of the triangle.

Perimeter of the triangle = Length of 1st side + Length of 2nd side + Length of 3rd side

Now substituting the given values, we get;

[tex]2w+1+3w+3w=25\\\\8w+1=25\\\\8w=25-1\\\\8w=24\\\\w=\frac{24}{8}=3[/tex]

Now we have the value of w so we can calculate the length of each side.

Length of 1st side = [tex]2w+1=2\times8+1=16+1=17\ in[/tex]

Length of 2nd side = [tex]3w=3\times8=24\ in[/tex]

Length of 3rd side = [tex]3w=3\times8=24\ in[/tex]

Thus the length of each side is 17 in, 24 in, 24 in.

True or False:The following pair of ratios forms a proportions.3/2 and 18/8

Answers

Answer:

Correct answer: False

Step-by-step explanation:

coeff c= 3/2 = 1,5        coeff c₁ = 18/8 = 2,25

c ≠ c₁

God is with you!!!

Answer: False

Step-by-step explanation: When we are asked to determine whether two ratios form a proportion, what we are really being asked to do is to determine whether the ratios are equal because if the ratios are equal, then we know they form a proportion.

So in this problem, we need to determine whether 3/2 = 18/8. The easiest way to determine whether 3/2 = 18/8 is to use cross products. If the cross products are equal, then the ratios are equal.

The cross products for these two ratios are 3 x 8 and 2 x 18.

Since 3 x 8 is 24 and 2 x 18 is 36, we can easily see that 24 ≠ 36 so the cross products are not equal which means that the ratios are not equal and since the ratios are not equal, we know that they do not form a proportion.

So the answer is false. 3/2 and 18/8 do not form a proportion.

Luis hizo un viaje en el coche en el cual consumio 20 l de gasolina. el trayecto lo hizo en dos etapas en la primera consumio 2/3 de la gasolina que tenia en el deposito y en la segunda, la mitadque le quedaba. ¿cuanta gasolina habia en el deposito?

Answers

Answer: [tex]24\ liters[/tex]

Step-by-step explanation:

Let be "x" the amount of gasoline in liters that the car's tank had at the beginning of the trip.

 1. In the first part of the trip the amount of gasoline the car used can be expressed as:

 [tex]\frac{2}{3}x[/tex]

2. After the first part of the trip, the remaining was:

[tex]x-\frac{2}{3}x=\frac{1}{3}x[/tex]  

3. In the second part of the trip the car used [tex]\frac{1}{2}[/tex] of the remaining. This is:

[tex](\frac{1}{3}x)(\frac{1}{2})=\frac{1}{6}x[/tex]

4. The total amount ot gasoline used in this trip was 20 liters.

5. Then, with this information, you can write the following equation:

[tex]\frac{2}{3}x+\frac{1}{6}x=20[/tex]

6. Finally, you must solve for "x" in order to find its value. This is:

[tex]\frac{2}{3}x+\frac{1}{6}x=20\\\\\frac{5}{6}x=20\\\\5x=120\\\\x=24[/tex]

Machine A can complete a certain job in x hours. Machine B can complete the same job in y hours. If A and B work together at their respective rates to complete the job, which of the following represents the fraction of the job that B will not have to complete because of A's help?A) (x – y)/(x + y)B) x/(y – x)C) (x + y)/(xy)D) y/(x – y)E) y/(x + y)

Answers

Answer:

[tex]\frac{y}{x+y}[/tex]

Step-by-step explanation:

The required answer is the rate at  which Machine A  works when the two machines are combined.

Note: the rate of doing work is express as

[tex]rate=\frac{1}{time taken} \\[/tex]

Hence we can conclude that Machine A working rate is

[tex]machine A=\frac{1}{x} \\[/tex] and machine B working rate is

[tex]machine B=\frac{1}{y} \\[/tex]

When the two machine works together, the effective working rate is

[tex]\frac{1}{x}+\frac{1}{y}\\\frac{xy}{x+y}\\[/tex]

The fraction of the work that Machine B will not have complete because of Machine A help is the total work done by machine A

Hence the fraction of work done by A is expressed as

[tex]\frac{1}{x}*combine working rate[/tex]

[tex]\frac{1}{x}*\frac{xy}{x+y}\\\frac{y}{x+y} \\[/tex]

Hence the fraction of the work that Machine B will not have complete because of Machine A help is the total work done by machine A is [tex]\frac{y}{x+y} \\[/tex]

A Web music store offers two versions of a popular song. The size of the standard version is 2.1 megabytes (MB). The size of the high-quality version is
4.4 MB. Yesterday, there were 1310 downloads of the song, for a total download size of 4752 MB. How many downloads of the standard version were there?

Answers

Answer:

There were 440 Standard version of songs downloaded in Web music store.

Step-by-step explanation:

Given,

Total number of songs downloaded = 1310

Total size of the downloaded songs = 4752 MB

Size of standard version of song = 2.1 MB

Size of high quality version of song = 4.4 MB

Solution,

Let the number of standard version  of song be 'x'.

And also let the number of high quality version of song be 'y'.

Now, total number of songs is the sum of total number of standard version  of song and total number of high quality version of song.

On framing the above sentence in equation form, we get;

[tex]x+y=1310\ \ \ \ \ equation\ 1[/tex]

Now, Total size of the downloaded songs is the sum of total number of standard version of song multiplied with size of standard version  of song and total number of high quality version of song multiplied with size of high quality version of song.

On framing the above sentence in equation form, we get;

[tex]2.1x+4.4y=4752[/tex]

Multiplying with 10 on both side, we get;

[tex]10(2.1x+4.4y)=4752\times10\\\\21x+44y=47520\ \ \ \ equation\ 2[/tex]

Now multiplying equation 1 by 21, we get;

[tex]21(x+y)=1310\times21`\\\\21x+21y=27510\ \ \ \ equation\ 3[/tex]

Now subtract equation 3 from equation 2, we get;

[tex](21x+44y)-(21x+21y)=47520-27510\\\\21x+44y-21x-21y=20010\\\\23y=20010\\\\y=\frac{20010}{23}\\\\y=870[/tex]

On substituting the value of y in equation 1, we get the value of x;

[tex]x+y=1310\\\\x+870=1310\\\\x=1310-870=440[/tex]

Hence There were 440 Standard version of songs downloaded in Web music store.

Rewrite with only sin x and cos x.

cos 3x

Answers

Answer:

cos(3x) --> cos³(x) - 3sin²(x)cos(x)

Step-by-step explanation:

The text in pink are the trig identities I used to convert cos(2x) and sin(2x) into their other equivalent forms.

This question is pretty much asking if you know how to use your trig identities if i understand it correctly.

Final answer:

To rewrite cos 3x using only sin x and cos x, we can use the trigonometric identity: cos 3x = 4(cos x)^3 - 3(cos x). This identity allows us to express cos 3x in terms of cos x. However, if we want to rewrite it using only sin x and cos x, we can use the Pythagorean identity: (cos x)^2 = 1 - (sin x)^2.

Explanation:

To rewrite cos 3x using only sin x and cos x, we can use the trigonometric identity: cos 3x = 4(cos x)^3 - 3(cos x). This identity allows us to express cos 3x in terms of cos x. However, if we want to rewrite it using only sin x and cos x, we can use the Pythagorean identity: (cos x)^2 = 1 - (sin x)^2. So, we can substitute this identity into the previous equation to get: cos 3x = 4(1 - (sin x)^2)^3 - 3(1 - (sin x)^2).

Describe your research question, and explain its importance. Describe how you would use the four-step hypothesis test process to answer your research question. Explain how using a t test could help you answer your research question.

Answers

Answer:

See explanation below

Step-by-step explanation:

Data given and notation  

First we need to find the sample mean and deviation from the data with the following formulas:

[tex]\bar X =\frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]

[tex]\bar X[/tex] represent the sample mean  

[tex]s[/tex] represent the sample standard deviation

[tex]n[/tex] sample size  

[tex]\mu_o [/tex] represent the value that we want to test  

[tex]\alpha[/tex] represent the significance level for the hypothesis test.  

z would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We have three possible options for the null and the alternative hypothesis:

Case Bilateral  

Null hypothesis:[tex]\mu = \mu_o[/tex]  

Alternative hypothesis:[tex]\mu \neq \mu_o[/tex]

Case Right tailed

Null hypothesis:[tex]\mu \leq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu > \mu_o[/tex]

Case Left tailed

Null hypothesis:[tex]\mu \geq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu < \mu_o[/tex]

We assume that w don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic  

We can replace in formula (1) and the value obtained is assumed as [tex]t_o[/tex]

Calculate the P-value  

First we need to find the degrees of freedom:

[tex] df=n-1[/tex]

Case two tailed

Since is a two-sided tailed test the p value would be:  

[tex]p_v =2*P(t_{df}>|t_o|)[/tex]  

Case Right tailed

Since is a one-side right tailed test the p value would be:  

[tex]p_v =P(t_{df}>t_o)[/tex]  

Case Left tailed

Since is a one-side left tailed test the p value would be:  

[tex]p_v =P(t_{df}<t_o)[/tex]  

Conclusion  

The rule of decision is this one:

[tex]p_v >\alpha[/tex] We fail to reject the null hypothesis at the significance level [tex]\alpha[/tex] assumed

[tex]p_v <\alpha[/tex] We reject the null hypothesis at the significance level [tex]\alpha[/tex] assumed

In the company Educational Solutions, the ratio of the employees using a laptop computer to those not using one was 1:3 in the year 2005. In 2006, the number of employees using a laptop as well as those not using it doubled. What was the ratio of the employees using a laptop to those not using one in 2006?

Answers

Answer:

the answer is 1:12

Step-by-step explanation:

hope it helps!

Need some help with this .

Answers

Area of a triangle = 1/2 bh
10.5*18=189

slader An electronics company is planning to introduce a new camera phone. The company commissions a marketing report for each new product that predicts either the success or failure of the product. Of new products introduced by the company, 60% have been successes. Furthermore, 70% of their successful products were predicted top be successes, while 40% of failed products were predicted to be successes. Find the probability that this new camera phone will be successful if its success has been predicted.

Answers

Answer: Our required probability is 0.7241.

Step-by-step explanation:

Since we have given that

Probability that new product have been successes P(S) = 60%

Probability that new product have not been successes P(F) = 40%

Probability that their successful products were predicted to be successes = P(A|S)=70%

Probability that their failed products were predicted to be successes =P(A|F) = 40%

So, Probability that this new camera phone will be successful if its success has been predicted is given by

[tex]P(S|A)=\dfrac{P(S).P(A|S)}{P(S).P(A|S)+P(F).P(A|F)}\\\\P(S|A)=\dfrac{0.7\times 0.6}{0.7\times 0.6+0.4\times 0.4}\\\\P(S|A)=0.7241[/tex]

Hence, our required probability is 0.7241.

The end points of a diameter of a circle are (6,2) and (-4,7).
What is the standard form of the equation
Enter any fraction is simplified form

Answers

Answer:

Step-by-step explanation:

The standard form equation of a circle with radius r is expressed as

( x − h )^2 + ( y − k )^2 =r ^2 ,

where r represents the radius

h and k are the coordinates of the center of the circle C( h , k )

To determine the coordinates at the center of the circle, the midpoint formula would be used. It is expressed as

[(x1 + x2)/2 , (y1 + y2)/2]

Midpoint of the circle =

(6 - 4)/2 , (2 + 7)/2 = (1, 4.5)

h coordinate of the center = 1

k coordinate of the center = 4.5

r^2 = (x - h)^2 + (2 - k)^2

r^2 = (6 - 1)^2 + (2 - 4.5)^2

r^2 = 5^2 + (- 2.5)^2 = 25 + 6.25

r^2 = 31.25

Substituting r^2 = 31.25, h = 1 and k = 4.5 into (x − h )^2 + ( y − k )^2 = r^2, the standard equation of the circle becomes

(x − 1 )^2 + ( y − 4.5 )^2 = 31.25

Final answer:

The standard form of the equation is (x - 1)² + (y - 4.5)² = 31.25.

Explanation:

The student is asking for the standard form equation of a circle given the endpoints of a diameter. To find the center of the circle, we average the x-coordinates and the y-coordinates of the endpoints, resulting in the center coordinates (1, 4.5).

The radius can be calculated using the distance formula between the center and one of the endpoints, which gives us √((6-1)²+(2-4.5)²) = √(5²+2.5²) = √(25+6.25) = √31.25.

The radius in its simple form is √31.25.

The standard form of the equation of a circle is (x - h)² + (y - k)² = r², where (h, k) is the center and r is the radius.

Substituting the values we have, the equation becomes (x - 1)² + (y - 4.5)² = (√31.25)², which simplifies to

(x - 1)² + (y - 4.5)² = 31.25.

Need help with two questions I am not good with this

Answers

Answer:

Part 12) [tex]Center\ (2,-3),r=2\ units, (x-2)^2+(y+3)^2=4[/tex]

Part 13) [tex]m\angle ABC=47^o[/tex]

Step-by-step explanation:

Part 12) we know that

The equation of a circle in center-radius form is equal to

[tex](x-h)^2+(y-k)^2=r^2[/tex]

where

(h,k) is the center of the circle

r is the radius of the circle

In this problem

Looking at the graph

The center is the [tex]point\ (2,-3)[/tex]

The radius is [tex]r=2\ units[/tex]

substitute in the expression above

[tex](x-2)^2+(y+3)^2=2^2[/tex]

[tex](x-2)^2+(y+3)^2=4[/tex]

Part 13) we know that

The measure of the external angle is the semi-difference of the arcs it covers.

so

[tex]m\angle ABC=\frac{1}{2}[arc\ DE-arc\ AC][/tex]

we have

[tex]arc\ DE=142^o[/tex]

[tex]arc\ AC=48^o[/tex]

[tex]m\angle ABC=\frac{1}{2}[142^o-48^o][/tex]

[tex]m\angle ABC=47^o[/tex]

A Lights-A-Lot quality inspector examines a sample of 25 strings of lights and finds that 6 are defective. What is the experimental probability that a string of lights is defective?

Answers

Final answer:

The experimental probability of a string of lights being defective is calculated by dividing the number of defective strings found during the inspection by the total number of strings inspected, leading to a probability of 6/25.

Explanation:

The experimental probability that a string of lights is defective is determined by dividing the number of defective strings of lights by the total number of strings inspected. This probability can be calculated as follows:

Number of defective strings = 6

Total number of strings inspected = 25

Experimental Probability = Number of defective strings / Total number of strings

So, the experimental probability of finding a defective string of lights is 6/25.

Mrs. Mary Moolah invested $20,000 in
two different types of bonds. The first
type paid a 5% interest rate, and the
second paid an 8% rate. Lif Mrs. Moolah's
combined profit from both investments
was $1,150, how much did she invest at
the 5% rate?

Answers

Answer: the amount of money invested at the 5% rate is $15000

Step-by-step explanation:

Let x represent the amount of money invested at the rate of 5%.

Let y represent the amount of money invested at the rate of 8%.

Mrs. Mary Moolah invested $20,000 in two different types of bonds. This means that

x + y = 20000

The formula for simple interest is expressed as

I = PRT/100

Where

P represents the principal

R represents interest rate

T represents time

Considering the investment at the rate of 5%,

P = x

R = 5

T = 1

I = (x × 5 × 1)/100 = 0.05x

Considering the investment at the rate of 8%,

P = y

R = 8

T = 1

I = (y × 8 × 1)/100 = 0.08y

If Mrs. Moolah's combined profit from both investments was $1,150, it means that

0.05x + 0.08y = 1150 - - - - - -1

Substituting x = 20000 - y into equation 1, it becomes

0.05(20000 - y) + 0.08y = 1150

1000 - 0.05y + 0.08y = 1150

- 0.05y + 0.08y = 1150 - 1000

0.03y = 150

y = 150/0.03 = 5000

Substituting y = 5000 into x = 20000 - y, it becomes

x = 20000 - 5000

x = 15000

Other Questions
When one store stays open late to gain an advantage, its competitors begin to stay open late, too. At this point the first store is no better off than it was before, but now every store has additional expenses. This illustration is an example of what Frank and Cook call a:______A) Struggle for parity.B) Virtual conflict.C) Positional arms race.D) Market economy.E) Capitalistic marathon. what is the solution to -7/8 m - 13/8 The viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation is ?y.Part A What will happen to the fringe spacing if the wavelength of the light is decreased? a. y will decrease b. y will increase c. y will not changePart B What will happen to the fringe spacing if the spacing between the slits is decreased? a. y will decrease b. y will increase c. y will not change Part C What will happen to the fringe spacing if the distance to the screen is decreased? a. y will decrease b. y will increase c. y will not changePart D Suppose the wavelength of the light is 460 nm . How much farther is it from the dot on the screen in the center of fringe E to the left slit than it is from the dot to the right slit? The most effective means of increasing productivity and overcoming economic crisis in the Late Middle Ages came from Select one: a. guild supervision and standards. b. higher wages. c. technological advances. d. the Hanseatic League and similar trade associations. e. the decline in guilds. On the planet Zorb, the acceleration due to gravity is 10 meters per second squared. If you were to launch a projectile at an angle of 30 degrees with an initial velocity of 10 meters per second, in seconds, how long would it take for the projectile to fall to the ground? A rocket burns fuel at a rate of 264 kg/s andexhausts the gas at a relative speed of 8 km/s.Find the thrust of the rocket.Answer in units of MN. Which object would a geologist date using carbon-14 dating? A DNA molecule consists of two antiparallel strands of polynucleotides. Each strand is composed of nucleotides bound to each other along the sugar-phosphate backbone. Let's write a simple markdown parser function that will take in a single line of markdown and be translated into the appropriate HTML. Donna has a home currently worth $142,000, for which she still owes $63,000 on her mortgage. She has $18,000 in student loan debt and $13,000 in credit card debt. She likes to keep an emergency fund, so she has $1000, in a savings account. Her annual salary this year will be $44,000. What is Donna's net worth? Esther Lugo has gone for an interview at an advertising firm in Manhattan and has been asked to complete a self-report survey to help interviewers understand if she is the right candidate for the job. From the interview, they have found that she is extroverted, empathic, scrupulous, and cooperative in nature, which are key characteristics needed for the job. These characteristics about Lugo indicate her ________.A) talentB) skillC) knowledgeD) genealogyE) personality A gas-filled balloon with a volume of 2.90 L at 1.20 atm and 20C is allowed to rise to the stratosphere (about 30 km above the surface of the Earth), where the temperature and pressure are 23C and 3.00 103 atm, respectively. Calculate the final volume of the balloon. whar are the phenotypes for FF Ff ff According to the Securities Act of 1933, a pooled investment fund will be classified as a federal covered security if it is____________. According to the course text, what dates do historians trace the beginning and end of ancient Egyptian civilization? Joe came into a sizeable inheritance about 5 years ago. His investment advisor representative recommended putting the majority if the inheritance into a variable annuity, once Joe had maxed out other tax-deferred products. Joe has seen the funds in the variable annuity grow over the past 5 years, but he wants to know more about how the variable annuity works and where the increases in value originate. Which of the following is a good statement from the IAR related to how variable annuities grow?A) "Variable annuities appreciate in value as the stock of the issuer of the variable annuity goes up."B) "Variable annuities have a fixed pay-out rate which is determined at the time of investment. Investors can look back at their original documents related to the variable annuity to see what this pre-determined rate of growth is."C) "Variable annuities include investments in various products, normally mutual funds, so the value of the variable annuity will fluctuate with increases or decreases in the values of the products held within the variable annuity."D) "You should contact the issuer of the variable annuity to find out more information on how it works. I am simply your investment advisor." Select all the correct answers.Sully works as a geologist in the southwestern United States. He plans to choose an unstable isotope to find the absolute age of a rock sample. Which two aspects must he consider before making his choice?There should be a sufficient amount of the selected isotope in the rock.The isotope should be one that decays at a very fast rate.The isotope must not be found in any neighboring rocks.The half-life of the isotope must be long enough to capture the age of the rock.There should be more than one unstable isotope in the rock. Identify the statements that accurately explain why gender inequality has existed in various societies. A manufacturer of potato chips would like to know whether its bag filling machine works correctly at the 444.0 gram setting. It is believed that the machine is underfilling the bags. A 40 bag sample had a mean of 443.0 grams. A level of significance of 0.02 will be used. Determine the decision rule. Assume the standard deviation is known to be 23.0. Kenny Electric Company's noncallable bonds were issued several years ago and now have 20 years to maturity. These bonds have a 9.25% annual coupon, paid semiannually, sells at a price of $1,075, and has a par value of $1,000. If the firm's tax rate is 40%, what is the component cost of debt for use in the WACC calculation? Select one: a. 4.35% b. 4.58% c. 4.83% d. 5.08% e. 5.33% Steam Workshop Downloader