Look at the attached picture z
⤴
Hope it will help u...
Which point is a solution to the linear inequality y < Negative one-halfx + 2? (2, 3) (2, 1) (3, –2) (–1, 3)
Answer: according to my calculations the answer is (3,-2) if im wrong im sorry but thats what i got
Step-by-step explanation:
The solution in the attached below that is point (2, 1).
What is a solution set to an inequality or an equation?If the equation or inequality contains variable terms, then there might be some values of those variables for which that equation or inequality might be true. Such values are called solutions to that equation or inequality. A set of such values is called a solution set to the considered equation or inequality.
we have given that the linear inequality y < Negative one-half + 2
y < - 1x/2 + 2
The solution of the inequality is the shaded area below the dashed line;
y = - 1x/2 + 2
The slope of the dashed line is negative 1/2.
The y-intercept of the dashed line is the point (0,2) and the x-intercept of the dashed line is the point (4,0).
The solution is attached below.
Noted that Any point that lies on the shaded area is a solution to the inequality and if a point is a solution to the linear inequality, then the point must satisfy the inequality.
Learn more about inequalities here:
https://brainly.com/question/27425770
#SPJ6
The score on a geometry test are normally distributed with a mean of 80 and a standard deviation of 5, the test scores range from 0 to a 100, 12 students had test scores between 80 and 90. Estimate the number of students who took the test.
Final answer:
To estimate the number of students who took a geometry test based on certain scores and parameters, consider the range of scores and standard deviations to make the calculation.
Explanation:
The question:
The student is asking to estimate the number of students who took a geometry test given certain scores and parameters.
Step-by-step explanation:
Given that 12 students scored between 80 and 90 on the test, we know this range corresponds to 1 standard deviation above the mean of 80.Since the standard deviation is 5, and the range from 80 to 90 covers 1 standard deviation, the total number of students can be estimated by calculating how many standard deviations cover the full range of scores from 0 to 100.Dividing the total range of 100 by the width of one standard deviation (5) gives us an estimate of 20 standard deviations in total, and therefore, an estimate of 20 students who took the test.Question 2. COUNTING. How many unique ways can the letters of the word LUMBERJACKS be arranged?
How many unique ways can the letters of the word HIGHLIGHT be arranged?
How many unique ways can the letters COOKBOOK be rearranged?
What is 88! divided by 86! ?
LUMBERJACKS: 4,989,600 arrangements. HIGHLIGHT: 362,880 arrangements. COOKBOOK: 10,080 arrangements. [tex]\( \frac{{88!}}{{86!}} = 7656 \).[/tex]
To find the number of unique arrangements for each word:
1. LUMBERJACKS:
- Total letters: 11
- Since there are repeated letters (U, B, E), we need to account for that.
- The formula for permutations of a word with repeated letters is [tex]\( \frac{{n!}}{{n_1! \times n_2! \times \ldots \times n_k!}} \), where \( n \) is the total number of letters and \( n_1, n_2, \ldots, n_k \)[/tex] are the counts of each distinct letter.
- For LUMBERJACKS, we have:
- 2 L's
- 2 M's
- 2 B's
- So, the number of unique arrangements is[tex]\( \frac{{11!}}{{2! \times 2! \times 2!}} \).[/tex]
2. HIGHLIGHT:
- Total letters: 9
- There are no repeated letters.
- So, the number of unique arrangements is simply [tex]\( 9! \).[/tex]
3. COOKBOOK:
- Total letters: 8
- There are repeated letters (O, K).
- For COOKBOOK, we have:
- 2 O's
- 2 K's
- So, the number of unique arrangements is [tex]\( \frac{{8!}}{{2! \times 2!}} \).[/tex]
4. [tex]\( \frac{{88!}}{{86!}} \)[/tex]:
- This expression simplifies to [tex]\( 88 \times 87 \), as \( 86! \) cancels out. - So, \( 88! \) divided by \( 86! \) equals \( 88 \times 87 \).[/tex]
Let's compute these:
1. For LUMBERJACKS:
[tex]\[ \frac{{11!}}{{2! \times 2! \times 2!}} = \frac{{39916800}}{{8}} = 4989600 \][/tex]
2. For HIGHLIGHT:
[tex]\[ 9! = 362880 \][/tex]
3. For COOKBOOK:
[tex]\[ \frac{{8!}}{{2! \times 2!}} = \frac{{40320}}{{4}} = 10080 \][/tex]
[tex]4. For \( \frac{{88!}}{{86!}} \):[/tex]
[tex]\[ 88 \times 87 = 7656 \][/tex]
Solve: 6^2x- 3 = 6^-2x+1
Answer:
x=1
Step-by-step explanation:
6^2x- 3 = 6^-2x+1
Since the bases are the same, the exponents are the same
2x-3 = -2x+1
Add 2x to each side
2x-3+2x = -2x+1+2x
4x-3 = 1
Add 3 to each side
4x-3+3 = 1+3
4x = 4
Divide each side by 4
4x/4 = 4/4
x=1
Answer: C. x = 1
Explanation: E21
Using the slot method and multiple cases, calculate the probability that you would roll 3 sixes.
Answer:
P = 1/216
the probability that you would roll 3 sixes is 1/216
Step-by-step explanation:
For a given dice, there are six possibilities.
We have;
1,2,3,4,5,6
The probability of rolling a six(6) is;
P(6) = 1/6
Then, the probability of rolling 3 sixes is a multiple of the P(6), given as;
P = P(6) × P(6) × P(6)
P = 1/6 × 1/6 × 1/6
P = 1/216
the probability that you would roll 3 sixes is 1/216
The probability of getting 3 sixes in 4 dice rolls is A. [tex]\( \frac{5}{216} \)[/tex].
To find the probability of rolling exactly 3 sixes with 4 dice rolls using the slot method, we'll analyze several cases:
Step 1 :
Case 1: Three sixes in the first three rolls, any number on the fourth roll.
Probability for this case: [tex]\( \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \).[/tex]
Case 2: Two sixes in the first two rolls, one six on the third roll, any number on the fourth roll.
Probability for this case: [tex]\( \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \).[/tex]
Case 3: One six in the first roll, two sixes in the next two rolls, any number on the fourth roll.
Probability for this case: [tex]\( \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \).[/tex]
Case 4: One six in the last roll, three sixes in the first three rolls.
Probability for this case: [tex]\( \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \).[/tex]
Step 2 :
Now, sum the probabilities from all cases:
Total probability [tex]\(= \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} + \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} + \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} + \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \).[/tex]
This simplifies to [tex]\( \frac{15}{216} + \frac{1}{216} = \frac{16}{216} = \frac{2}{27} \).[/tex]
Thus, the correct option is A. [tex]\( \frac{5}{216} \), as \( \frac{2}{27} \)[/tex] is equivalent to [tex]\( \frac{5}{216} \)[/tex].
Complete Question :
Question:
Using the slot method and considering multiple cases, calculate the probability of rolling exactly 3 sixes with 4 dice rolls.
A. [tex]\( \frac{5}{216} \)[/tex]
B. [tex]\( \frac{25}{216} \)[/tex]
C. [tex]\( \frac{45}{216} \)[/tex]
D. [tex]\( \frac{125}{1296} \)[/tex]
A certain vehicle emission inspection station advertises that the wait time for customers is less than 8 minutes. A local resident wants to test this claim and collects a random sample of 64 wait times for customers at the testing station. She finds that the sample mean is 7.43 minutes, with a standard deviation of 3.6 minutes. Does the sample evidence support the inspection station's claim? Use the alphaequals0.005 level of significance to test the advertised claim that the wait time is less than 8 minutes.
Final answer:
The sample evidence does not support the inspection station's claim that the wait time is less than 8 minutes.
Explanation:
To test the claim that the wait time at the vehicle emission inspection station is less than 8 minutes, we can conduct a hypothesis test using the sample data provided. The null hypothesis (H0) is that the mean wait time is greater than or equal to 8 minutes, and the alternative hypothesis (Ha) is that the mean wait time is less than 8 minutes.
We need to calculate the test statistic, which is the t-value. The formula to calculate the t-value is:
t = (sample mean - population mean) / (sample standard deviation / sqrt(sample size))
Using the given data, we can plug in the values:
t = (7.43 - 8) / (3.6 / sqrt(64))
Calculating this gives us a t-value of -1.248.
Next, we need to determine the critical value at a significance level of 0.005. Since the alternative hypothesis is that the mean wait time is less than 8 minutes, we will use a one-tailed test and find the critical value from the t-distribution table. At a significance level of 0.005 and 63 degrees of freedom (64 - 1), the critical value is -2.650.
Finally, we compare the test statistic to the critical value. If the test statistic is less than the critical value, we reject the null hypothesis. In this case, -1.248 is greater than -2.650, so we fail to reject the null hypothesis. This means that the sample evidence does not support the inspection station's claim that the wait time is less than 8 minutes at a significance level of 0.005.
A faucet drips 23 gallon of water in 10 hours.
Which rate is the unit rate of water dripped per day
Answer:
55.2 gallons/day
Step-by-step explanation:
There are 2.4 ten-hour periods in one day, so the total number of gallons per day is ...
(2.4 periods/day)(23 gallons/period) = 55.2 gallons/day
Please help and get these points
Answer:
y = 15x
Step-by-step explanation:
The biggest giveaway here is the other answers have + a whole number at the end of the equation. We would see this + as a y-intercept on the graph.
Since our line had no y-intercept and starts from zero, y =15x can be used to represent the graph shown
Another way to know this is to look at the points marked on the line. There is a point at (2, 30). By plugging these co-ordinated into y = 15x we get 30 = 30, which makes sense
Answer:
y=15x
Step-by-step explanation:
because the y-intercept is 0, y=15x is the only choice that has y intercept 0
The amount of time people wait in the drive through line at an In-n-Out restaurant follows a normal distribution with a mean of 138 seconds and a standard deviation of 29 seconds. What is the minimum number of seconds we could expect the longest 20% of customers to wait in line? i. Which of the following illustrates the shaded area under the normal distribution for the top 20%? a. b. ii. What is the minimum number of seconds we could expect the longest 20% of customers to wait in line? (round time to the nearest second)
Answer:
i) The sketch of the area under the normal distribution curve is attached to this solution of the question.
ii) The minimum number of seconds we could expect the longest 20% of customers to wait in line = 162 seconds.
Step-by-step explanation:
This is is a normal distribution problem with
Mean = μ = 138 seconds
Standard deviation = σ = 29 seconds
i) Which of the following illustrates the shaded area under the normal distribution for the top 20%?
We first obtain the z-score that corresponds to the lower limit of the top 20% of the distribution of waiting times.
Let that z-score be z'
P(z > z') = 0.20
P(z > z') = 1 - P(z ≤ z') = 0.20
P(z ≤ z') = 1 - 0.20 = 0.80
P(z ≤ z') = 0.80
So, checking the normal distribution table,
z' = 0.842
we can then go ahead and obtain the waiting time that corresponds to this z-score.
Let the waiting time that corresponds to this z-score be x'
z' = (x' - μ)/σ
0.842 = (x' - 138)/29
x' = 162.42 seconds
Since, the options for the shaded area under the normal curve isn't presented with this question, the graph of the shaded area under the normal curve that corresponds to the top 20% waiting times is attached to this solution.
ii) What is the minimum number of seconds we could expect the longest 20% of customers to wait in line?
The minimum number of seconds we could expect the longest 20% of customers to wait in line corresponds to the lower limit of the top 20% waiting times obtained in (i) above.
The minimum number of seconds we could expect the longest 20% of customers to wait in line = 162.42 seconds = 162 seconds to the nearest second
Hope this Helps!!!
Scott reads 11 pages of a book each day.
How many pages will he read in 7 days?
Answer:
Scott will read 77 pages in 7 days.
Step-by-step explanation:
7x11=77
(9/3)+4(6-7)
Simplify the expression
Answer:
7
Step-by-step explanation:
Answer:
-1
Step-by-step explanation:
(9/3)+24-28
(3)+(-4)
-1
HELP NOW PLEASE !!!Mrs. Havarti's art class made five identical conical sculptures. Each sculpture has a diameter of 9 cm and a slant height of
16.5 cm. The lateral area of each sculpture is to be covered with newspaper. How many square centimeters of newspaper are
needed to cover the lateral areas of all five sculptures? (Use 3.14 for x and round to the nearest hundredth. Recall the formula
LA- rl.)
233.15 cm
466.29 cm
1,165.73 cm
2,331.45 cm
Answer:
1165.73 sq.cm. of newspaper are needed to cover the lateral areas of all five sculptures
Step-by-step explanation:
Diameter of 1 sculpture = 9 cm
Radius of 1 sculpture =[tex]\frac{9}{2}=4.5 cm[/tex]
Slant height of sculpture = l = 16.5 cm
Lateral surface area of each sculpture = [tex]\pi r l = \frac{22}{7} \times 4.5 \times 16.5 =233.3571 cm^2[/tex]
Lateral surface area of 5 sculptures =[tex]233.3571 \times 5 =1165.73 cm^2[/tex]
Hence 1165.73 sq.cm. of newspaper are needed to cover the lateral areas of all five sculptures
Answer:
1,165.73 cm^2
Step-by-step explanation:
If y varies directly as x and y = 15 when x = 5,what is the value of y when x = 6? a. 5 b. 36 c. 9 d. 18
never mind its D
The equation of a circle is x2 + 8x + y2 - 12y = 144. What are the coordinates of the center and the length of the radius of the circle?
Answer:
The centre is the point (-4,6).
The length of the radius is 14.
Step-by-step explanation:
The equation of a circle has the following format:
[tex](x - x_{0})^{2} + (y - y_{0})^{2} = r^{2}[/tex]
In which r is the radius and the centre is the point [tex](x_{0}, y_{0})[/tex]
In this question:
We have to complete the squares, to place the equation in the general format:
So
[tex]x^{2} + 8x + y^{2} - 12y = 144[/tex]
To complete the quares, we divide each first order term(8 and -12) by two, having two new terms(4 and -6). With this, we write as the square of (x+4) and (y-6). To compensate, we have to find the square of 4 and -6 on the other side of the equality.
[tex](x+4)^{2} + (y-6)^{2} = 144 + (4)^{2} + (-6)^{2}[/tex]
[tex](x+4)^{2} + (y-6)^{2} = 196[/tex]
The centre is the point (-4,6).
The length of the radius is [tex]\sqrt{196} = 14[/tex]
The center and the length of the radius of the circle is (-4, 6) and 14units respectively
Equation of a circleThe standard equation of a circle is expressed as:
x^2+y^2+2gx+2fy+c = 0
where:
C = (-g, -f)
r = √g²+f²-c
Given the equation of a circle expressed as:
x^2 + 8x + y^2 - 12y = 144.
Compare both equations
2gx = 8x
g = 4
2fy = -12y
y = -6
The centre of the circle will be at (-4, 6)
Determine the radius
r = √4²+6²+144
r = 14
Hence the center and the length of the radius of the circle is (-4, 6) and 14units respectively
Learn more on the equation of a circle here: https://brainly.com/question/1506955
the second term in a geometric sequence is 20. The fourth term in the same sequence is 45/4 or 11.25. What is the common ratio in this sequence.
Answer:
3/4
Step-by-step explanation:
We know a geometric sequence has the formula: a_n = a_1 * r^(n-1)
a_2 = 20
a_4 = (45/4)
so... a_2 = a_1* r^(2-1) = 20
and a_4 = a_1* r^(4-1) = (45/4)
a_1 * r = 20
a_1* r^3 = (45/4)
a_1 = 20/r
(20/r) * r^3 = (45/4)
20 * r*r = 45/4
r*r = 45/80 = 9/16
r = 3/4 or r = -3/4 it must be positive.
common ratio is r = 3/4
Domain of {(-5, 4), (-4, -1), (-2, 1), (0, 4), (1,3)}
Answer:
{-5, -4, -2, 0, 1}
Step-by-step explanation:
The domain is the list of first numbers of the ordered pairs. That list is shown above.
Conduct a test at the alphaequals0.05 level of significance by determining (a) the null and alternative hypotheses, (b) the test statistic, and (c) the P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 122, n 1 equals 244, x 2 equals 137, and n 2 equals 311.
Answer:
There is not enough evidence to reject the null hypothesis.
Step-by-step explanation:
(a)
The hypothesis can be defined as follows:
H₀: p₁ - p₂ ≤ 0 vs. Hₐ: p₁ - p₂ > 0.
(b)
The test statistic is defined as follows:
[tex]z=\frac{\hat p_{1}-\hat p_{2}}{\sqrt{\hat P(1-\hat P)[\frac{1}{n_{1}}+\frac{1}{n_{2}}]}}[/tex]
The information provided is:
n₁ = 244
n₂ = 311
x₁ = 122
x₂ = 137
Compute the sample proportions and total proportions as follows:
[tex]\hat p_{1}=\frac{x_{1}}{n_{1}}=\frac{122}{244}=0.50\\\\\hat p_{2}=\frac{x_{2}}{n_{2}}=\frac{137}{311}=0.44\\\\\hat P=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{122+137}{244+311}=0.47[/tex]
Compute the test statistic value as follows:
[tex]z=\frac{\hat p_{1}-\hat p_{2}}{\sqrt{\hat P(1-\hat P)[\frac{1}{n_{1}}+\frac{1}{n_{2}}]}}[/tex]
[tex]=\frac{0.50-0.44}{\sqrt{0.47(1-0.47)[\frac{1}{244}+\frac{1}{311}]}}\\\\=1.41[/tex]
The test statistic value is 1.41.
The decision rule is:
The null hypothesis will be rejected if the p-value of the test is less than the significance level α = 0.05.
Compute the p-value as follows:
[tex]p-value=P(Z>1.41)\\=1-P(Z<1.41)\\=1-0.92073\\=0.07927\\\approx 0.08[/tex]
*Use a z-table.
The p-value of the test is 0.08.
p-value = 0.08 > α = 0.05
The null hypothesis will not be rejected at 5% significance level.
Thus, there is not enough evidence to reject the null hypothesis.
The Environmental Protection Agency (EPA) has contracted with your company for equipment to monitor water quality for several lakes in your water district. A total of 15 devices will be used. Assume that each device has a probability of 0.05 of failure during the course of the monitoring period. What is the probability that one of the devices fail?
Answer:
36.58% probability that one of the devices fail
Step-by-step explanation:
For each device, there are only two possible outcomes. Either it fails, or it does not fail. The probability of a device failling is independent of other devices. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A total of 15 devices will be used.
This means that [tex]n = 15[/tex]
Assume that each device has a probability of 0.05 of failure during the course of the monitoring period.
This means that [tex]p = 0.05[/tex]
What is the probability that one of the devices fail?
This is [tex]P(X = 1)[/tex]
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{15,1}.(0.05)^{1}.(0.95)^{14} = 0.3658[/tex]
36.58% probability that one of the devices fail
Monique has 2 hours to complete 3 homework assignments. She wants to spend the same amount of time on each assignment. How many minutes does she have for each assignment? *
20 points
10 minutes
20 minutes
30 minutes
40 minutes
Answer: Option D, (40 minutes) is the correct answer.
Step-by-step explanation: Time she has to complete 3 assignments = 2 hours.
Let the time taken to complete each assignment be 'x'
→ 2 hours = 120min
∴ The amount spend for each assignment is the same.
∴ Time taken for each assignment = 120/3 = 40min
∴ It takes 40 min to complete each assignment, Option D.
Solve for x. Assume that lines appear to diameters are actual diameters.
Answer:
B. 9
Step-by-step explanation:
We know that a full circle should equal 360°, that'll help!
Since the 140°+3x+13 should equal to 180, because that makes the half of the circle it covers, we know how to set up our equation!
It should look like this:
3x+13=40
ISOLATE YOUR VARIABLE:
- Subtract 13 from both sides
NEXT, CONTINUE ISOLATING:
3x=27
- Divide by 3 from both sides.
FINALLY:
You will get X=9!
Run a multiple regression where the dependent variable is ratings and the independent variables are star and fact. Use data from CBC only. CBC Management has several questions: Which has more impact on a movie’s rating: Being fact-based or having one star? How much does each of these factors change the ratings? How well does this regression analysis explain the ratings? Justify your answers referring to the relevant figures. Are either, both, or neither of the independent variables significantly related to the ratings at 95% confidence? Justify your answers referring to the relevant figures.
Answer:
See explaination
Step-by-step explanation:
See attachment for diagram
The r value is 0.373 (low). This implies a weak correlation between the dependent and independent variables for this sample.
The overall p- value for the regression model is 0.0017. This implies that at least one of the two independent variables (x1 or x2) in the model is significant predictor of the dependent variable y.
p- values for the both "Fact" and "Star" are < 0.05. This means both the independent variables are significant predictors of the "Rating" at 95% confidence level. The variable "Fact" is significant at 99% level of confidence also. This means the rating viewers award to a movie depends upon both the storyline (fact or Fiction) and the presence or absence of stars.
Expected rating for a fact based movie with no stars = 1.7991(1) + 1.2586(0) + 12.5685 = 14.37
Expected rating for a fiction based movie with a star = 1.7991(0) + 1.2586(1) + 12.5685 = 13.83
So, one may expect a fact based movie without any stars to get better ratings than a fiction based movie with one star.
A pole that is 12 feet tall casts a shadow that is 9 feet long. At the same time of day, how long is the shadow cast by a tree that is 45 feet tall?
Final answer:
To find the length of the shadow cast by the tree, calculate the scale factor between the pole and its shadow, then multiply this factor by the height of the tree to get the length of the tree's shadow.
Explanation:
To find the length of the shadow cast by the tree:
Calculate the scale factor between the pole and its shadow: 12 feet pole casts a 9 feet shadow, so the scale factor is 12/9 = 4/3.
Multiply this scale factor by the height of the tree: 45 feet x 4/3 = 60 feet shadow cast by the 45 feet tall tree.
The Florida Panhandle has almost 60 different types of habitats. Based on this fact, which statement best describes the Florida Panhandle?
Adidad
Answer:
A wide variety of life exists in Florida Panhandle
Step-by-step explanation:
A habitat is the natural environment in which organisms lives. We have three types of habitat which include aquatic, terrestrial and arboreal. These habitats contains different organisms.
Florida Panhandle having almost sixty different types of habitats means more organisms living in this place. This translates to a wide variety of life existing in Florida Panhandle.
The statement that best describes the Florida Panhandle based on the fact that it has almost 60 different types of habitats is that it is a region with high biodiversity and a variety of ecosystems.
The presence of nearly 60 distinct habitats in the Florida Panhandle indicates a rich tapestry of ecological systems. Biodiversity refers to the variety of life in the world or in a particular habitat or ecosystem. This includes the different species of plants, animals, and microorganisms, the genetic differences among them, and the ecosystems in which they occur. A high number of habitats suggests that the area supports a wide range of species that have adapted to the different environmental conditions present in these habitats.
Ecosystems are communities of living organisms in conjunction with the nonliving components of their environment (things like air, water, and soil), interacting as a system. These ecosystems can range from coastal marshes and estuaries to longleaf pine forests and freshwater springs. Each habitat type provides unique resources and living conditions, which in turn support different types of organisms.
The Florida Panhandle's diverse habitats likely result from its geography, climate, and history. The region may include coastal areas, wetlands, forests, and other landscapes, each with its own set of habitats. This diversity is crucial for the overall health of the environment, as it allows for a greater number of species to thrive and for ecological processes to function effectively. It also provides opportunities for recreation, research, and education, and it underscores the importance of conservation efforts to protect these valuable natural resources.
In summary, the high number of habitats in the Florida Panhandle is indicative of its ecological richness and the importance of conserving this diversity for environmental health and human enjoyment."
La suma de un número natural y el siguiente es 13. Averigua mentalmente cuáles son estos números. Después plantea una ecuación y resuelve con ella el problema planteado
To find the two consecutive natural numbers that sum up to 13, we set up an equation: x + (x+1) = 13. Solving this, we find that x = 6, and the next number is x + 1 = 7. Therefore, the numbers are 6 and 7.
Explanation:Let's call the natural number x. According to the problem, the sum of x and the next number (x+1) is 13. To find the values of these numbers, we can set up the following equation:
x + (x + 1) = 13
Simplifying the equation, we combine like terms to get:
2x + 1 = 13
Subtract 1 from both sides:
2x = 12
Divide both sides by 2:
x = 6
Now that we have the value of x, we can find the next number:
x + 1 = 6 + 1 = 7
So the two consecutive natural numbers that sum up to 13 are 6 and 7.
kitchen tiles cost £2.75 each
work out the total cost for 62 tiles
Answer:
170.5
Step-by-step explanation:
2.75x62=170.5 hope this helps
in the figure below. AB is a diameter of circle P.
What is the arc measure of AD in degrees?
Answer:
m Arc AD = 43°
Step-by-step explanation:
The question is missing a diagram. Find attached the diagram of the question.
Given:
AB is a diameter of circle P
Solution:
From the diagram,
∠ADP = 7x+1
∠BPC = 9x-7
∠CPD = 90° (the symbol of right angle is drawn)
∠m Arc APB = 180° (sum of angles on a straight line or sum of angle in a semi circle)
∠APD + ∠CPD + ∠BPC = 180°
(7x+1)° + 90° + (9x-7)° = 180°
7x+1 + 90 + 9x-7 = 180
Collect like terms
7x+9x = 180 - 90 + 7 -1
16x = 96
x = 96/16
x = 6
Insert the value color x in ∠APD
∠APD = 7(6) + 1
∠APD = 43°
m Arc AD = ∠ APD
m Arc AD = 43°
Therefore arc measure of AD in degrees = 43°
What is the area of the parallelograms?what is the square unit ?
Answer:
35 units^2.
Step-by-step explanation:
Area = base * altitude
= 7 * 5.
Answer:
35 sq. un.
Step-by-step explanation:
The Intuition for why the area of a parallelogram is A=bh (area = base x height)
The formula for the area of a parallelogram is base times height, just like the formula for the area of a rectangle.
Have a great day!
The radius of a circle is measured at 15.6cm. The actual radius is 15.3cm. Find, to the nearest percent, the percent error in the measurement of the radius.
Answer:
[tex]Percentage\hspace{3}error\approx 1.96\%[/tex]
Step-by-step explanation:
The error percentage is a measure of how inaccurate a measurement is, standardized based on the size of the measurement. It can be easily calculated using the following formula:
[tex]Percentage\hspace{3}error=|\frac{v_A-v_E}{v_E} | \times 100[/tex]
Where:
[tex]v_A=Approximate\hspace{3}value\\v_E=Exact\hspace{3}value[/tex]
Therefore, according to the data provided by the problem:
[tex]v_A=15.6\\v_E=15.3[/tex]
The percentage error is:
[tex]Percentage\hspace{3}error=|\frac{15.6-15.3}{15.3}| \times 100 = 1.960784314\%\approx 1.96\%[/tex]
You randomly draw a lane number for a 100-meter race. Then your friend randomly draws a
Lane number for the same race. Are these events independent or dependent?*
Answer:
Dependent
Step-by-step explanation:
Because you and your friend are in the same race, the lane number your friend will get is affected by your random draw.
Lane number for the same race is a dependent Event.
What is Independent and Dependent variable?An easy way to think of independent and dependent variables is, when you're performing an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. The independent variable can alternatively be viewed as the cause, and the dependent variable as the result.
We have,
A lane number for a 100-meter race.
Here, Lane number for same race is dependent Quantity.
As, You and a friend are competing in the same race.
Then, your random draw will determine which lane number your friend will receive.
Learn more Independent and Dependent variable here:
https://brainly.com/question/1479694
#SPJ2
Direct Mailing Company sells computers and computer parts by mail. The company claims that at least 90% of all orders are mailed within 72 hours after they are received. The quality control department at the company often takes samples to check if this claim is valid. A recently taken sample of 150 orders showed that 115 of them were mailed within 72 hours. What are the decision and conclusion of test? Use α=2.5%.
Answer:
We conclude that less than 90% of all orders are mailed within 72 hours after they are received.
Step-by-step explanation:
We are given that the company claims that at least 90% of all orders are mailed within 72 hours after they are received.
A recently taken sample of 150 orders showed that 115 of them were mailed within 72 hours.
Let p = proportion of orders that are mailed within 72 hours after they are received.
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 90% {means that at least 90% of all orders are mailed within 72 hours after they are received}
Alternate Hypothesis, [tex]H_A[/tex] : p < 90% {means that less than 90% of all orders are mailed within 72 hours after they are received}
The test statistics that would be used here One-sample z proportion statistics;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of orders that were mailed within 72 hours = [tex]\frac{115}{150}[/tex] = 0.767
n = sample of orders = 150
So, test statistics = [tex]\frac{0.767-0.90}{\sqrt{\frac{0.767(1-0.767)}{150} } }[/tex]
= -3.853
The value of z test statistics is -3.853.
Now, at 2.5% significance level the z table gives critical value of -1.96 for left-tailed test. Since our test statistics is less than the critical values of z as -3.853 < -1.96, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region due to which we reject our null hypothesis.
Therefore, we conclude that less than 90% of all orders are mailed within 72 hours after they are received.