A bag contains 1 blue, 2 green, and 3 red marbles, as shown. What is the probability of drawing a green marble out of the bag without looking?

Answers

Answer 1

ANSWER

[tex] P(G)= \frac{1}{3}[/tex]

EXPLANATION

The number of green marbles in the bag is

[tex]n(G) = 2[/tex]

The total number of marbles in the bag is

[tex]n(S)=1+2+3 = 6[/tex]

The probability of selecting a green marble from the bag without looking is

[tex]P(G)= \frac{n(G)}{n(S)} [/tex]

Substitute the values to get,

[tex]P(G)= \frac{2}{6} [/tex]

[tex]P(G)= \frac{1}{3} [/tex]

Answer 2

Answer:

The probability of drawing a green marble out of the bag without looking = 1/3

Step-by-step explanation:

It is given that, a bag contains 1 blue, 2 green, and 3 red marbles

Therefore total number of marble in the  bag = 1 + 2 + 3 = 6

To find the probability

Total number of marble = 6

Number of green marble  = 2

The probability of drawing a green marble = 2/6 = 1/3


Related Questions

Which line contains the point (2, 1)?
a)4x-y=7
b)2x+5y=4
c)7x-y=15
d)x+5y=21

Answers

A does.
4(2)-(1)=7

7=7

Water boils at 100 degree, C. This is 400 percent more than my room's temperature. What is my room's temperature?

Answers

Your room temperature is 25°C.

Step-by-step explanation:

hope this helps!

help
Which expression is equivalent to 8(a-6)

a. 8a-48
b. 2a
c. 8a-6
d. 48a

Answers

The correct answer would be A.

A.

You can distribute the 8

Distribute 8 to a and multiply them = 8a

Distribute 8 to -6 and multiply them = -48

= 8a-48

Example 5 suppose that f(0) = −8 and f '(x) ≤ 9 for all values of x. how large can f(3) possibly be? solution we are given that f is differentiable (and therefore continuous) everywhere. in particular, we can apply the mean value theorem on the interval [0, 3] . there exists a number c such that f(3) − f(0) = f '(c) − 0 so f(3) = f(0) + f '(c) = −8 + f '(c). we are given that f '(x) ≤ 9 for all x, so in particular we know that f '(c) ≤ . multiplying both sides of this inequality by 3, we have 3f '(c) ≤ , so f(3) = −8 + f '(c) ≤ −8 + = . the largest possible value for f(3) is .

Answers

[tex]f'(x)[/tex] exists and is bounded for all [tex]x[/tex]. We're told that [tex]f(0)=-8[/tex]. Consider the interval [0, 3]. The mean value theorem says that there is some [tex]c\in(0,3)[/tex] such that

[tex]f'(c)=\dfrac{f(3)-f(0)}{3-0}[/tex]

Since [tex]f'(x)\le9[/tex], we have

[tex]\dfrac{f(3)+8}3\le9\implies f(3)\le19[/tex]

so 19 is the largest possible value.

Final answer:

Given a differentiable function with f(0) = -8 and f'(x) ≤ 9 for all x, we use the Mean Value Theorem to find that f(3), at its largest, can be 1.

Explanation:

In this mathematics problem, we are given that f is a differentiable function with f(0) = -8 and its derivative f'(x) ≤ 9 for all x. We aim to calculate the possible maximum value of f(3). To do this, we apply the Mean Value Theorem for the interval [0, 3]. By this theorem, there exists a number 'c' in this interval such that the derivative at that point is equal to the slope of the secant line through the points (0, f(0)) and (3, f(3)). Thus, we get the equation: f(3) - f(0) = f'(c). Rearranging this, we get f(3) = f(0) + f'(c). Substituting the given values, f(3) = -8 + f'(c).

Since we know f'(x) ≤ 9 for all x, this means f'(c) ≤ 9 as well. Replacing this in the equation we get f(3) ≤ -8 + 9 = 1. Hence, the largest possible value for f(3) is 1.

Learn more about Mean Value Theorem here:

https://brainly.com/question/35411439

#SPJ11

Find three consecutive even integers that sum up to -72.

Answers

Answer:

-26, -24 and -22

Step-by-step explanation:

[tex]n,\ n+2,\ n+4-\text{three consecutive even integers}\\\\\text{The equation:}\\\\n+(n+2)+(n+4)=-72\\\\n+n+2+n+4=-72\qquad\text{combine like terms}\\\\3n+6=-72\qquad\text{subtract 6 from both sides}\\\\3n+6-6=-72-6\\\\3n=-78\qquad\text{divide both sides by 3}\\\\\dfrac{3n}{3}=-\dfrac{78}{3}\\\\n=-26\\\\n+2=-26+2=-24\\\\n+4=-26+4=-22[/tex]

Plz help me..
WILL GIVE BRAINLIEST

Answers

Answer:

B, 3x - 5

Step-by-step explanation:

Factor by grouping to get (3x - 5)(2x + 3).

Factor 6x2−x−15

6x2−x−15

=(3x−5)(2x+3)

Answer:

(3x−5)(2x+3)

Melinda spent 4 Hours Reviewing for Her Midterm exams. She spent 1/4 Of The Time studying for social studies.How Many Hours Did she spend on social studies

Answers

Answer:

1 hour

Step-by-step explanation:

1/4 of 4 is 1

Answer:one hour

Step-by-step explanation:

PLEASE HELP 15 POINTS Sphere A is similar to sphere B.
If the radius of sphere A is 3 times the radius of sphere B, then the volume of sphere A is____ times the volume of sphere B.
3
6
9
27
81

Answers

Answer:

27

Step-by-step explanation:

We figure out the scale factor first, which is the number of times one radius is of the other.  We call the scale factor, k.

To get how many times larger is the volume of similar spheres, we will need to cube the scale factor.

Since it is given that radius of Sphere A is 3 times that of Sphere B, we can say that the scale factor (k) = 3. Hence, the volume of Sphere A would be k^3 times the volume of Sphere B.

So,  [tex]k^3\\=(3)^3\\=27[/tex]

Hence, the volume of sphere A is 27 times the volume of sphere B.

Estimate the limit, if it exists.

Answers

Answer:

0

Step-by-step explanation:

The given limit is

[tex]\lim_{x \to \infty} \frac{x^2+x-22}{4x^3- 13}[/tex]

Divide both the numerator and the denominator by the highest power of x in the denominator.

[tex]=\lim_{x \to \infty} \frac{\frac{x^2}{x^3}+\frac{x}{x^3}-\frac{22}{x^3}}{\frac{4x^3}{x^3}- \frac{13}{x^3}}[/tex]

This simplifies to;

[tex]=\lim_{x \to \infty} \frac{\frac{1}{x}+\frac{1}{x^2}-\frac{22}{x^3}}{4- \frac{13}{x^3}}[/tex]

As [tex]x\to \infty, \frac{c}{x^n} \to 0[/tex]

[tex]=\lim_{x \to \infty} \frac{0+0-0}{4- 0}=0[/tex]

The limit is zero

9 minutes left to finish this!! I need help!
Joey is 17 years older than his sister Pat. In 6 years, Joey will be 7 more than twice Pat’s age then. How old are Joey and Pat today?

Answers

Answer:

p = 4

j = 21

Step-by-step explanation:

Joey = j

Pat = p

j = p + 17

(j+6) = 2*(p + 6) + 7      Simplify this. Remove the brackets.

j + 6 = 2p + 12 + 7        combine like terms    

j + 6 = 2p + 19               Subtract 6 from both sides

j +6-6 = 2p +19-6

j = 2p + 13

================

Equation j = 2p + 13 and j = p + 17

2p + 13 = p + 17                 Subtract p from both sides

2p-p+13 =p-p + 17

p + 13 = 17                         Subtract 13 from both sides

p = 17-13

p = 4

============

j = p + 17

j = 4 + 17

j = 21

Answer:

Joey is 21; Pat is 4

Step-by-step explanation:

The problem statement supports two equations in Joey's age (j) and Pat's age (p):

j - p = 17

(j +6) -2(p +6) = 7

Subtracting the second equation from the first, we have ...

(j -p) -((j +6) -2(p +6)) = (17) -(7)

p +6 = 10 . . . . . simplify

p = 4 . . . . . . . . . subtract 6

J = 17 +4 = 21

Joey is 21; Pat is 4.

Solve the equation. Round to the nearest hundredth. Show work.

[tex]4^{-5x-7} = 6^{2x-1}[/tex]

Answers

Answer:

[tex]x=-0.75[/tex]

Step-by-step explanation:

The given equation is

[tex]4^{-5x-7}=6^{2x-1}[/tex]

We take logarithm of both sides to base 10.

[tex]\log(4^{-5x-7})=\log(6^{2x-1})[/tex]

[tex](-5x-7)\log(4)=(2x-1)\log(6)[/tex]

We expand the brackets to get;

[tex]-5x\log(4)-7\log(4)=2x\log(6)-\log(6)[/tex]

Group similar terms;

[tex]-7\log(4)+\log(6)=2x\log(6)+5x\log(4)[/tex]

[tex]-7\log(4)+\log(6)=(2\log(6)+5\log(4))x[/tex]

[tex]\frac{-7\log(4)+\log(6)}{(2\log(6)+5\log(4))}=x[/tex]

[tex]x=-0.752478[/tex]

To the nearest hundredth.

[tex]x=-0.75[/tex]

write an explicit formula formula for the sequence 2, 8, 14, 20, 26,...

a. a_n= 2n-2
b. a_n= 2n+2
c. a_n=4n+2
d. a_n = 6n-4

Answers

Answer:

d.   a_n = 6n - 4.

Step-by-step explanation:

The common difference (d)  is 8-2 = 14-8 = 20-14 = 26-20 = 6.

This is an Arithmetic Sequence with the first term (a1) is 2.

The general form of the explicit formula is a_n = a1 + d(n - 1)  so this sequence has  the formula:

a_n = 2 + 6(n - 1)

a_n = 2 + 6n - 6

a_n = 6n - 4.

The sequence is an illustration of an arithmetic sequence.

The explicit formula is: (d) [tex]a_n = 6n - 4[/tex]

We have:

[tex]a_1 = 2[/tex] -- the first term

Next, we calculate the common difference (d)

[tex]d = a_2 - a_1[/tex]

So, we have:

[tex]d = 8 -2[/tex]

[tex]d = 6[/tex]

The explicit formula is calculated using:

[tex]a_n = a_1 + (n - 1)d[/tex]

So, we have:

[tex]a_n =2 + (n - 1) \times 6[/tex]

Open bracket

[tex]a_n = 2 + 6n - 6[/tex]

Collect like terms

[tex]a_n = 6n - 6 + 2[/tex]

[tex]a_n = 6n - 4[/tex]

Hence, the explicit formula is: (d) [tex]a_n = 6n - 4[/tex]

Read more about arithmetic sequence at:

https://brainly.com/question/18109692

Elmer body skateboard ramp for his son he wants to surprise him with it so he wants to wrap the ramp with special paper what is the minimum amount of wrapping paper he will need to wrap the ramp.

Answers

Answer:

480 feet

Step-by-step explanation:

Dana walks 3/4 miles in 1/4 hours. What is dana's walking rate in miles per hour?

Answers

Dana’s waking rate in miles per hour is 3 mph.

I did 3/4 x 4 = 3 because she walked 1/4 a mile and I needed to figure out the miles per one whole hour.

I hope this made sense and helped you.

Dana is walking 3 mph

If Seven cookies are shared equally by four people how many cookies will each person get

Answers

Final answer:

Each person will get 1 cookie and there will be 3 cookies leftover.

Explanation:

In this scenario, we have 7 cookies that are being shared equally among 4 people. To find out how many cookies each person will get, we divide the total number of cookies by the number of people.

So, 7 cookies divided by 4 people = 1.75 cookies per person.

Since we can't divide a cookie into fractions, each person will get 1 cookie and there will be 3 cookies leftover.

Solve for x in the given interval.

sec x= -2√3/3, for π/2 ≤x≤π

Answers

Answer:

b. [tex]x=\frac{5\pi}{6}[/tex]

Step-by-step explanation:

The given function is

[tex]\sec x=-\frac{2\sqrt{3} }{3},\:\:for\:\:\frac{\pi}{2}\le x \le \pi[/tex]

Recall that the reciprocal of the cosine ratio is the secant ratio.

This implies that;

[tex]\frac{1}{\cos x}=-\frac{2\sqrt{3} }{3}[/tex]

[tex]\Rightarrow \cos x=-\frac{3}{2\sqrt{3} }[/tex]

[tex]\Rightarrow \cos x=-\frac{\sqrt{3}}{2}[/tex]

We take the inverse cosine of both sides to obtain;

[tex]x=\cos^{-1}(-\frac{\sqrt{3}}{2})[/tex]

[tex]x=\frac{5\pi}{6}[/tex]

Two numbers total 14 ,and their differences is 12 .find two numbers

Answers

Answer:

12+2 =14

Step-by-step explanation:

Answer: 1 and 13.

Step-by-step explanation: Because of the total, we know that the first number has to be less than 5, but greater than 0. to start in the median, let's use 3.

3+12 = 15.

That won't work, so let's try 2.

2+12 = 14.

There's the answer.

2x+3x+4x=180
9x=180
x=20

how did they get 20, am i missing something

Answers

♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫

We'll work from here:

9x = 180

To isolate x, you would need to divide both sides by 9

x = 180/9

Solve:

x = 20

Hope This Helps You!

Good Luck (:

Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ

Answer: ❤️Hello!❤️ x = 20

Step-by-step explanation:  Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :  

2*x+3*x+4*x-(180)=0  

Step  1  :

Pulling out like terms :

1.1     Pull out like factors :

  9x - 180  =   9 • (x - 20)  

Step  2  :

Equations which are never true :

2.1      Solve :    9   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation :

2.2      Solve  :    x-20 = 0  

Add  20  to both sides of the equation :  

                     x = 20  

A cab charges $1.75 for the flat fee and $0.25 for each mile. Write and solve an inequality to determine how many miles Eddie can travel if he has $15 to spend.

Answers

Answer:

I think it's 53 miles

Step-by-step explanation:

After flat fee of $1.75 leaves him $13.25. Then use the remainder to calculate miles. Each dollar allows 4 miles × 13 = 52+1=53

Answer:

The inequality is:

             [tex]1.75+0.25x\leq 15[/tex]

The solution of the inequality is:

                    [tex]x\leq 53[/tex]

Step-by-step explanation:

Let Eddie could travel x miles.

It is given that:

A cab charges $1.75 for the flat fee and $0.25 for each mile.

This means that the fee charged by Eddie if he travels x miles excluding the flat fee is:

                   $  0.25x

Total amount the cab will charge Eddie is:

              1.75+0.25x

Also, it is given that:

He has only $ 15 to spend this means that he can spend no more than 15 on riding in a cab.

Hence, the inequality is given by:

            [tex]1.75+0.25x\leq 15[/tex]

Now on solving the inequality i.e. finding the possible values of x from the inequality.

We subtract both side of the inequality by 1.75 to obtain:

[tex]0.25x\leq 13.25[/tex]

Now on dividing both side of the inequality by 0.25 we get:

[tex]x\leq 53[/tex]

Hence, Eddie could travel less than or equal to 53 miles .

Write the augmented matrix for each system of equations.
9x-4y-5z=9
7x+4y-4z=-1
6x-6y+z=5

Answers

Answer:

a. [tex]\left[\begin{array}{cccc}9&-4&-5&|9\\7&4&-4&|-1\\6&-6&1&|-5\end{array}\right][/tex]

Step-by-step explanation:

The given system of equation is

[tex]9x-4y-5z=9[/tex]

[tex]7x+4y-4z=-1[/tex]

[tex]6x-6y+z=-5[/tex]

The coefficient matrix is :

[tex]\left[\begin{array}{ccc}9&-4&-5\\7&4&-4\\6&-6&1\end{array}\right][/tex]

The constant matrix is

[tex]\left[\begin{array}{c}9\\-1\\-5\end{array}\right][/tex]

The augmented matrix is obtained by  combining the coefficient matrix and the constant matrix.

[tex]\left[\begin{array}{cccc}9&-4&-5&|9\\7&4&-4&|-1\\6&-6&1&|-5\end{array}\right][/tex]

The correct choice is A

Help pleaseee!!! (Photo attached)

Answers

Answer:

length of base is 10

Step-by-step explanation:

The area of the entire firgure is 1600 cm^2.  There are 4 equal sized pennants, so each pennant is 1600/4 = 400

the bottom pennant has area 400 and is triangular shaped.  the area of a triangle is 1/2 b h.  

A = 1/2 b h       given height is 80 and area is 400.  plug these values in

400 = 1/2 b (80)

400 = 40 b       divide both sides by 40

b = 10

There are two brands of Corn Flakes, Post and Kellogs. Each brand has the same size box. However, because of each brand’s filling procedure, they have different mean weights. The weights of a box of Post Corn Flakes is approximately normal with μ = 64.1 oz and σ = .5 oz while the weight of a box of Kellogs, which is also normally distributed, has μ = 63.9 oz and σ = .4 oz.


A box is selected from each brand and weighed. What is the probability that the Post box will outweigh the Kellogs box?

Answers

Probability of an event is the measure of its chance of occurrence.  The probability that the post box will outweigh the Kellogs box is 0.4129 approximately.

How to get the z scores?

If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z-score.

If we have

[tex]X \sim N(\mu, \sigma)[/tex]

(X is following normal distribution with mean [tex]\mu[/tex] standard deviation [tex]\sigma[/tex])

then it can be converted to standard normal distribution as

[tex]Z = \dfrac{X - \mu}{\sigma}, \\\\Z \sim N(0,1)[/tex]

(Know the fact that in continuous distribution, probability of a single point is 0, so we can write

[tex]P(Z \leq z) = P(Z < z) )[/tex]

Also, know that if we look for Z = z in z-tables, the p-value we get is

[tex]P(Z \leq z) = \rm p \: value[/tex]

What is the distribution of random variable which is sum of normal distributions?

Suppose that a random variable X is formed by [tex]n[/tex] mutually independent and normally distributed random variables such that:

[tex]X_i = N(\mu_i , \sigma^2_i) ; \: i = 1,2, \cdots, n[/tex]

And if

[tex]X = X_1 + X_2 + \cdots + X_n[/tex]

Then, its distribution is given as:

[tex]X \sim N(\mu_1 + \mu_2 + \cdots + \mu_n, \: \: \sigma^2_1 + \sigma^2_2 + \cdots + \sigma^2_n)[/tex]

If, for the given case, we assume two normally distributed random variables as:

X = variable assuming weights of boxes of Post Corn Flakes
Y = variable assuming weights of boxes of Kellogs

Then, as per the given data, we get:

[tex]X \sim N(\mu = 64.1, \sigma = 0.5)\\Y \sim N(\mu = 63.9, \sigma = 0.4)[/tex]

Then,  the probability that the Post box will outweigh the Kellogs box can be written as:

[tex]P(X > Y)[/tex]

Or,

[tex]P(X -Y > 0)[/tex]

We need to know about the properties of X-Y.

Also, since [tex]E(aX) = aE(X), Var(aX) = a^2Var(X)[/tex], thus,

[tex]-Y \sim N(-63.9, 0.4)[/tex]

As both are independent(assuming), thus,

[tex]X - Y \sim N(\mu = 64.1 - 63.9, \sigma = 0.5 + 0.4) = N(0.2, 0.9)[/tex]

Using the standard normal distribution, we get the needed probability as:

[tex]P(X -Y > 0) = 1 - P(X - Y \leq 0) \\P(X -Y > 0)= 1- P(Z = \dfrac{(X-Y) - \mu}{\sigma} \leq \dfrac{0 - 0.2}{0.9})\\P(X -Y > 0) \approx 1 - P(Z \leq -0.22)[/tex]

Using the z-tables, the p-value for Z = -0.22 is 0.4129

Thus, [tex]P(X > Y) = P(X - Y > 0) \approx 0.4129[/tex]

Thus, the probability that the post box will outweigh the Kellogs box is 0.4129 approximately.

Learn more about standard normal distribution here:

https://brainly.com/question/10984889

The probability that a randomly selected Post box outweighs a Kellogg's box is approximately 50%.

To find the probability that the Post box will outweigh the Kellogg's box, we need to calculate the difference in weights between the two brands and then determine the probability that this difference is positive.

Let X be the weight of a box of Post Corn Flakes and Y be the weight of a box of Kellogg's Corn Flakes.

We are given that:

- For Post Corn Flakes, X ~ N(μ = 64.1, σ = 0.5)

- For Kellogg's Corn Flakes, Y ~ N(μ = 63.9, σ = 0.4)

We want to find P(X > Y), which is the probability that a randomly selected box of Post Corn Flakes weighs more than a randomly selected box of Kellogg's Corn Flakes.

Now, let Z = X - Y. We are interested in finding P(Z > 0).

The mean and standard deviation of Z can be calculated as follows:

- Mean of Z: μ_Z = μ_X - μ_Y = 64.1 - 63.9 = 0.2 oz

- Standard deviation of Z: σ_Z =[tex]sqrt(σ_X^2 + σ_Y^2) = sqrt(0.5^2 + 0.4^2)= sqrt(0.25 + 0.16)= sqrt(0.41) = 0.64 oz[/tex]

Now, we standardize Z:

Z = (X - Y - μ_Z) / σ_Z

Therefore,

P(Z > 0) = P((X - Y - μ_Z) / σ_Z > 0)

         = P((X - Y) > μ_Z)

         = P((X - Y) > 0.2)

Now we look up the z-score corresponding to Z = 0.2:

z = (0.2 - μ_Z) / σ_Z

  = (0.2 - 0.2) / 0.64

  = 0

The probability that Z is greater than 0 is equal to the probability that the standardized Z-score is greater than 0, which is 0.5.

Therefore, the probability that the Post box will outweigh the Kellogg's box is 0.5 or 50%.

An experiment consists of rolling a die, flipping a coin, and spinning a spinner divided into 4 equal regions. The number of elements in the sample space of this experiment is

12

3

6

48

Answers

Answer:

48

Step-by-step explanation:

There are 3 events that are taking place.

Rolling a die which has 6 possible outcomes.

Flipping a coin which has 2 possible outcomes.

Spinning a spinner which has 4 possible outcomes.

Since the outcome of each event is independent of the other, the total possible outcomes will be equal to the product of outcomes of each event.

i.e.

Total outcomes = 6 x 2 x 4 = 48

The sample space of the experiment contains all the possible outcomes. so the number of elements in the sample space of this experiment will be 48

Answer:

The correct answer option is 48.

Step-by-step explanation:

Here in this experiment, three events are taking place that include rolling a die, flipping a coin and spinning a spinner.

The possible outcomes of each of these events are:

Rolling a die - 6

Flipping a coin - 2

Spinning a spinner - 4

Therefore, we can find the number of elements in the sample space of this environment by multiplying their possible outcomes.

Number of elements = 6 × 2 × 4 = 48

HELPPPPP ... Question 18

Answers

Answer:

Part a) The volume of the prism Q is two times the volume of the prism P

Part b) The volume of the prism Q is two times the volume of the prism P

Step-by-step explanation:

Part 18) we know that

The volume of a rectangular prism is equal to

[tex]V=Bh[/tex]

where

B is the area of the base

h is the height of the prism

a) Suppose the bases of the prisms have the same area, but the height of prism Q is twice the height of prism P. How do the volumes compare?

Volume of prism Q

[tex]VQ=B(2h)=2(Bh)[/tex]

Volume of prism P

[tex]VP=Bh[/tex]

Compare

[tex]VQ=2VP[/tex]

so

The volume of the prism Q is two times the volume of the prism P

b) Suppose the area of the base of prism Q is twice the area of the base of prism P. How do the volumes compare?

Volume of prism Q

[tex]VQ=(2B)h=2(Bh)[/tex]

Volume of prism P

[tex]VP=Bh[/tex]

Compare

[tex]VQ=2VP[/tex]

The volume of the prism Q is two times the volume of the prism P

The length of a rectangular field is 7 m less than 4 times the width. The perimeter is 136m ?. Find the width and the length of the rectangle

Answers

♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫

The perimeter is the total of all the lengths / widths

The lengths can be represented by 4x - 7

The width can be represented by x

2 times the length + 2 times the width would equal the perimeter

2(x) + 2(4x - 7) = 136

Simplify:

2x + 8x - 14 = 136

10x - 14 = 136

Add 14 to both sides:

10x = 150

Divide both sides by 10:

x = 15

The width is equal to 15m

The length is 4(15) - 7 = 53m

Hope This Helps You!

Good Luck (:

Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ

The volume of a rectangle or prism is 72 m? the prism is 2 cm wide and the 4 cm high what is the length of the prism

Answers

Answer:

9 cm

Step-by-step explanation:

The formula of a volume of a rectangle prism:

[tex]V=lwh[/tex]

l - length

w - width

h - height

We have V = 72 cm³, w = 2 cm and h = 4 cm. Substitute:

[tex](2)(4)l=72[/tex]

[tex]8l=72[/tex]          divide both sides by 8

[tex]l=9\ cm[/tex]

If 5 bags of apples weigh 12 1/7 pounds, how many pounds would you expect 1 bag of apples to weigh?

Answers

Answer:

  2 and 3/7 pounds

Step-by-step explanation:

Convert the mixed number to an improper fraction

12 1/7 becomes 85/7

This represents 5 bags, so divide it by 5 to see what one bag should weigh...

(85/7)/5 becomes (85/7)/(5/1)

which becomes

(85/7)*(1/5)      (division is the same as multiplying by the reciprocal)

   85/35  

     17/7      (reduce the fraction by factoring out a 5 from top and bottom)

       2 and 3/7 pounds

The trail is 2982 miles long.It begins in city A and ends in city B.Manfred has hiked 2/7 of the trail before.How many miles has he hikes?

Answers

Answer:

852

Step-by-step explanation:

Please help! I'll mark brainiest!

Match the x-coordinates with their corresponding pairs of y-coordinates on the unit circle.

Answers

Answer:

Step-by-step explanation:

2  on  top goes  to  last  on  the  bottom  or  b  goes  to  d

1st one one top goes to the 2nd one on bottom or a goes to b

last one on top goes to the third one on bottom or d goes to c

The last two witch are 3rd on top and first one together

Hope this helped it took me a long time :)

The x and y coordinates on the circle will be such that they satisfy the equation of the unit circle.

[tex]y = \pm \dfrac{\sqrt{5}}{{3}} \rightarrow \left(\dfrac{2}{3}, y\right)[/tex][tex]y = \pm \dfrac{\sqrt{7}}{{3}} \rightarrow \left(\dfrac{\sqrt{2}}{3}, y\right)[/tex][tex]y = \pm \dfrac{3}{5} \rightarrow \left(\dfrac{4}{5}, y\right)[/tex][tex]y = \pm \dfrac{2\sqrt{2}}{{3}} \rightarrow \left(\dfrac{1}{3}, y\right)[/tex]

What is the equation of the circle with radius r units, centered at (x,y) ?

If a circle O has radius of r units length and that it has got its center positioned at (h, k) point of the coordinate plane, then, its equation is given as:

[tex](x-h)^2 + (y-k)^2 = r^2[/tex]


A unit circle refers to a circle with unit radius (r = 1 unit) and positioned at center ( coordinates of origin = (h,k) = (0,0))

Thus, the equation of unit circle would be:

[tex]x^2 + y^2 =1[/tex]

Getting expression for y in terms of x,

[tex]x^2 + y^2 =1\\\\y = \pm \sqrt{1 - x^2}[/tex]

Using this equation to evaluate x for all given y:

Case 1: y = ±√5/3

[tex]\pm \dfrac{\sqrt{5}}{3} = \pm \sqrt{1-x^2}\\\\\text{Squaring both the sides}\\\\\dfrac{5}{9} = 1 - x^2\\\\x^2 = \dfrac{4}{9}\\\\x = \pm \dfrac{2}{3}[/tex]

From the options available, the fourth block seems valid.

Thus, we get:

[tex]y = \pm \dfrac{\sqrt{5}}{{3}} \rightarrow \left(\dfrac{2}{3}, y\right)[/tex]

Case 2: y = ±√7/3

[tex]\pm \dfrac{\sqrt{7}}{3} = \pm \sqrt{1-x^2}\\\\\text{Squaring both the sides}\\\\\dfrac{7}{9} = 1 - x^2\\\\x^2 = \dfrac{2}{9}\\\\x = \pm \dfrac{\sqrt{2}}{3}[/tex]

From the options available, the fourth block seems valid.

Thus, we get: [tex]y = \pm \dfrac{\sqrt{7}}{{3}} \rightarrow \left(\dfrac{\sqrt{2}}{3}, y\right)[/tex]

Case 3: y = ±3/5

[tex]\pm \dfrac{3}{5} = \pm \sqrt{1-x^2}\\\\\text{Squaring both the sides}\\\\\dfrac{9}{25} = 1 - x^2\\\\x^2 = \dfrac{16}{25}\\\\x = \pm \dfrac{4}{5}[/tex]

From the options available, the fourth block seems valid.

Thus, we get: [tex]y = \pm \dfrac{3}{5} \rightarrow \left(\dfrac{4}{5}, y\right)[/tex]

Case 4: y = ±2√2/3

[tex]\pm \dfrac{2\sqrt{2}}{3} = \pm \sqrt{1-x^2}\\\\\text{Squaring both the sides}\\\\\dfrac{8}{9} = 1 - x^2\\\\x^2 = \dfrac{1}{9}\\\\x = \pm \dfrac{1}{3}[/tex]

From the options available, the fourth block seems valid.

Thus, we get: [tex]y = \pm \dfrac{2\sqrt{2}}{{3}} \rightarrow \left(\dfrac{1}{3}, y\right)[/tex]

Thus, the x and y coordinates on the circle will be such that they satisfy the equation of the unit circle.

[tex]y = \pm \dfrac{\sqrt{5}}{{3}} \rightarrow \left(\dfrac{2}{3}, y\right)[/tex][tex]y = \pm \dfrac{\sqrt{7}}{{3}} \rightarrow \left(\dfrac{\sqrt{2}}{3}, y\right)[/tex][tex]y = \pm \dfrac{3}{5} \rightarrow \left(\dfrac{4}{5}, y\right)[/tex][tex]y = \pm \dfrac{2\sqrt{2}}{{3}} \rightarrow \left(\dfrac{1}{3}, y\right)[/tex]

Learn more about equation of a circle here:

https://brainly.com/question/10165274

One angle of a triangle measures 60°. The other two angles are in a ratio of 7:17. What are the measures of those two angles?

Answers

Answer:

35° and 85°

Step-by-step explanation:

The sum of the 3 angles in a triangle = 180°

Since one angle = 60° then the sum of the other 2 angles = 120°

Sum the parts of the ratio 7 + 17 = 24 parts, hence

[tex]\frac{120}{24}[/tex] = 5° ← value of 1 pat of the ratio, hence

7 parts = 7 × 5° = 35°

17 parts = 17 × 5° = 85°

note that 60° + 35° + 85° = 180°

Other Questions
may somebody help me please. Go where you may, search where you will, roam through all the monarchies and despotisms of the Old World, travel through South America, search out every abuse, and when you have found the last, lay your facts by the side of the everyday practices of this nation, and you will say with me, that, for revolting barbarity and shameless hypocrisy, America reigns without a rival. What is one way that Douglass achieves his purpose of persuading the reader to see his point of view? 63. Weat the scene when the alarm went off(A) have just arrived(C) arrived(6) were just arriving(D) had just arrived What represents the value of the second-best alternative that a person gives up when making a choice? A. marginal spending B. marginal benefit C. opportunity cost D. marginal cost 11. Solve 5(2x 3) = x 15 + 9x for x. __________ created a set of rule for monks in the Roman Empire, while _______ created a set of rules for monks in the Byzantine Empire. a. Benedict / Basil c. Methodius / Cyril b. Basil / Benedict d. Cyril / Methodius The length of a rectangle is twice its width. If the area of the rectangle is 5 , find its perimeter What are some of the major environmental issues in Europe? forest overgrowth habitat loss pollution soil erosion2 choices Which of the following combined with the equation 9x + 3y = 12 creates a system of linear equations with no solution? What is the basic unit of all matter? A. Neutron B. Atom C. Electron D. Proton E. Nucleus How much will 12 points raise an 85.6% grade PLZZZZZZZZZZZ HELP ASAP Which is true of the population shown in this graph? A. It shows the effect of overpopulation on a species. B. The number of individuals will eventually drop to zero. C. The population has increased until it reached its carrying capacity. D. There are no limiting factors to control population growth. Why was Lyndon Johnson an effective negotiator for expanded civil rights?He was a cunning and forceful leader.He had unprecedented connections with the Supreme Court.He marched with civil rights protesters himself.He was a reformed racist. You should be working out at least ........ days per week Which of the following statements about weather are accurate? select all that apply The theme of the difference between dreams and reality is important in A Midsummer Night's Dream.How does the scene when Oberon removes the spell from Titania and Robin removes it from Bottom explore this theme?A. Titania and Bottom believe that they have been dreaming once the spell is removed.B. Bottom decides they must give up their "Pyramus and Thisbe" play because of what happened to him in the woods.C. Titania has had a dream about what will happen to the lovers in the future.D. Oberon promises that his future life with Titania will be like a dream come true. In Latin, adjectives do NOT have to agree with their noun in ___________.a. declensionb. numberc. genderd. case At 2:00pm a car's speedometer reads 20mph, and at 2:10pm it reads 30mph.Use the Mean Value Theorem to find an acceleration the car must achieve.Answer( in mi/h^2): The answer should be 30 based on what I've attempted but that was wrong. The temperature in Franklin city is -5C. The temperature in Silver city is 4 less what is the temperature in Silver city . Scientists learn about the universe by studying the light that comes to Earth from stars and other objects in space. If you were a scientist hoping to understand the universe, what three questions would you ask? Steam Workshop Downloader