Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
[tex]E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\[/tex]
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
[tex]P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\[/tex]
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]
Describe an experiment that tests whether all metals are magnetic and identify the independent and dependent variable in your experiment.
Answer and Explanation:
NOTE: Magnetism means the magnetic property of a material that causes it to create a magnetic field, hence getting it attracted to a magnet.
EXPERIMENTAL PROCEDURE
1. Use a tape to attach a permanent magnet to the end of a ruler so that the magnet is facing away from the ruler. Don't cover the magnetic surface with the tape. ( Leave the magnet in its decorative casing.)
2. Place your metal objects in a row, and make predictions of which one of them will be attracted to the magnet and which will not.
3. Hold the magnet over each metals, and record which metals are attracted to the magnet. Go back over the
objects that were not affected by the magnet at least one more time to be sure you didn't miss any.
In this experiment, the independent variable is the magnetism of the magnet used. This is the independent variable because it remained unchanged and unaffected by the metals' magnetic properties all through the experiment.
While the dependent variable is the magnetism of the metals used. This is so because the magnetism of these metals varied and also because it is what is been measured in the experiment. Some were attracted to the magnet from very close range while others were attracted even at some centimeters away from the magnet which indicates that those metals have strong metallic properties.
Answer:
The aim of this experiment is to determine the magnetism and magnetic properties of objects.
Magnetism can be defined as the phenomenon that is a result of the movement of the free electron that produces an electric charge which in turn results in attractive and repulsive force between objects.
Explanation:
Aim: Determining which objects are magnetic.Material Required: Different kinds of objects such as eraser, wood cuttings, plastic balls, pins, glass, wires, coins, paper clip, screw, nut, and bolt.A magnet.Procedure:Scatter the various objects as mentioned above on the floor.Once scattered, take the piece of magnet and slowly hold it on top of each object.Observe carefully which of these objects slightly moves in the direction of magnet or simply which of these objects are attracted to the magnet.Inference: The objects that move in the direction of the magnets are attracted towards magnets, they're also called ferromagnetic. These include metals like Iron, Cobalt, Nickle, and their alloys.The objects that show no movement in the direction of the magnet are not attracted to a magnet.Independent variable: Such variables whose values don't depend on others. Here, the independent variable is the magnetism of the magnet.Dependent variable: Such variables whose value values depend on others or other factors. Here, the magnetic properties of the objects used in the experiment are dependent variables because the degree of attraction is different for different objects. Objects made of wood, glass, and plastic will have no magnetic properties while the alloys of Iron, Nickle, and Cobalt will have slight magnetic properties and objects made purely of the these metals will show strong magnetic properties.For more information:
https://brainly.com/question/12740727
An object has a kinetic energy of 249 J and a momentum of magnitude 24.6 kg · m/s.(a) Find the speed of the object.
Answer:
The speed of the object is 20.24 m/s.
Explanation:
For a body of mass 'm' travelling with velocity 'v' , its kinetic energy is gievn by -
[tex]KE = \frac{1}{2}mv^{2}[/tex] --- 1
The momentum of body is given by -
[tex]p = mv[/tex] ---- 2
Dividing equation 1 and 2 , we get -
[tex]\frac{KE}{p} = \frac{v}{2}[/tex]
Given that ,
KE = 249 J
p = 24.6 kg.m/s
Substituting the 2 values in the above equation , we get -
v = 20.24 m/s.
Studies have shown that viewing violent actions in the media __________ the inhibition against performing those actions, especially if the behavior is rewarded or results in positive benefits. A. increases B. decreases C. does not affect D. intensifies
Answer:
Decreases
Explanation:
Answer:
B. Decreases
Explanation:
According to differential reinforcement theory, one of the social learning theories, when behaviors are rewarded with the certain positive actions or positive outcomes then it is called positive enforcement. Positive enforcement increases the criminal actions. On the other hand, negative enforcement increases the actions which reduce the criminal activities.
According to theory explained above Studies have shown that viewing violent actions in the media decreases the inhibition against performing those actions when behavior is rewarded with the positive enforcement.
A 59.3 kg diver jumps off a board
and reaches the water with 1450 J
of KE. How high was the board?
(Unit = m)
The board is 2.50m high.
Why?
We can calculate how high was the board applying the Law of Conservation of Mechanical Energy. This Law states that the mechanical energy (kinematic and potential) will be conserved during the motion.
It can be described with the following formula:
[tex]E_{M_{1}}=E_{M_{2}}\\\\PE_{1}+KE_{1}=PE_{2}+KE_{2}[/tex]
[tex]PE=m*g*h\\KE=\frac{1}{2}m*v^{2}[/tex]
At the top of the boar, the kinetic energy is equal to 0.
At the water, the potential energy is equal to 0.
So,
[tex]PE_{1}=KE_{2}\\\\m*g*h=1450J\\\\59.3kg*9.8\frac{m}{s^{2}}*h=1450J\\ \\h=\frac{1450J}{59.3kg*9.8\frac{m}{s^{2}}}=2.50m[/tex]
Hence, we have that the board is 2.50m high.
Have a nice day!
Which type of energy releases greenhouse gases when used to make electricity?
A.) Nuclear
B.) Hydroelectric
C.) Geothermal
D.) Natural gas
Plz help! Apex:(
Answer:
Natural gas
Explanation:
Nuclear is from splitting atoms in a nuclear power plant and doesn't emit GHG.
Hydroelectric is a clean energy which powered by water currents in turn not emitting any GHG.
Geothermal is heat captured from underneath the surface and within Earth and doesn't have GHG once the contruction of putting pipes underground is done.
Natural gas once burned emits GHG.
In a living organism, a fixed fraction 1.30 × 10-12 of 12C is the radioactive isotope 14C, which has a half life of 5730 y.
The question relates to the presence of isotopes 12C and 14C in living organisms and how the half-life of 14C is used for radiometric or carbon-14 dating. After an organism's death, its ratio of 14C to 12C decreases, and this shift can be compared to ratios in currently living organisms to estimate the age of the object. The accuracy of this method can somewhat be affected by human activities, so corrections are applied.
Explanation:In living organisms, a small fraction, which is 1.30 × 10-12, of 12C is comprised of the radioactive isotope 14C. The half-life of 14C is 5730 years, meaning after around 5730 years, half of the starting concentration of 14C will decay to 14N. This property makes it useful in aging formerly living objects, a process known as radiometric dating or carbon-14 dating.
When an organism dies, its 14C is no longer replenished so the ratio of 14C to 12C begins to decrease. By comparing this ratio to the ratio in living organisms, the amount of 14C that has not decayed can be determined, which enables the calculation of the age of the object to about 50,000 years.
The ratio in the atmosphere, and hence in living organisms, is slightly altered due to human activities such as the burning of fossil fuels. Corrections based on other data sources, including tree ring dating, are used to correct the current 14C/12C ratio to that from the past era when the organism was alive.
Learn more about Radiometric Dating here:https://brainly.com/question/29766391
#SPJ11
8. In what family would each of these elements be classified?
Radium -
Tin -
Iodine -
Cesium -
Answer: Radium is a member of the alkaline metals group.
Tin is classified in the 'Other Metals' section which can be located in groups 13, 14, and 15 of the Periodic Table.
Iodine is classified as a halogen — a subset of very chemically reactive elements (Group 17 on the periodic table) that exist in the environment as compounds rather than as pure elements. The other halogens include fluorine (F), chlorine (Cl), bromine (Br) and astatine (At).
Cesium is classified as an "Alkali Metal" and located in Group 1 elements of the Periodic Table. An Element classified as an Alkali Metal is a very reactive metal that does not occur freely in nature. Alkali metals are soft, malleable, ductile, and are good conductors of heat and electricity.
Radium belongs to Alkaline Earth Metals, Tin to Post-transition Metals, Iodine to Halogens, and Cesium to Alkali Metals.
Explanation:The elements in question belong to different families on the Periodic Table.
Radium belongs to the Alkaline Earth Metals family. Tin belongs to the Post-transition Metals family. Iodine belongs to the Halogens family. Cesium belongs to the Alkali Metals family.
The elements Radium, Tin, Iodine, and Cesium belong to different families in the Periodic Table of Elements. Radium is classified in the Alkaline Earth Metals family, Tin is classified in the Carbon Group family, Iodine is classified in the Halogens family, and Cesium is classified in the Alkali Metals family.
Each family is grouped together because of similarities in chemical properties, as well as their shared valence electron structure.
Learn more about Element Families here:https://brainly.com/question/6107900
#SPJ2
Match the lithification processes.
1 . recrystallization
contact pressure causing grains to "fuse" together
2 . cementation
precipitation of bonding agents between grains
3 . compaction
increase in density due to weight of overburden
Answer:
Cementation---precipitation of bonding agents between grains.
Recrystallization---contact pressure causing grains to "fuse" together.
Compaction---increase in density due to weight of overburden.
Explanation:
I hope this helps you! Good luck and have a great day. ❤️✨
Find the resultant of two components, 3km west and 4 km south. How do I solve this using the Pythagorean theorem?
Answer:5
Explanation:
a=3
b=4
c=√(a²+b²)
c=√9+16
c=√25
c=5
Final answer:
To find the resultant of two components, 3km west and 4 km south, using the Pythagorean theorem, treat the components as the legs of a right triangle and apply the formula d = √(3² + 4²). The magnitude of the resultant of the two components, 3 km west and 4 km south, is 5 km.
Explanation:
To find the resultant of two components using the Pythagorean theorem, you need to consider the components as the legs of a right triangle. The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.
In this scenario, the two components are 3 km west and 4 km south. These can be considered as the legs of a right triangle.
Let's denote:
- a = 3 km (west component)
- b = 4 km (south component)
The resultant, which represents the magnitude of the total displacement, can be found using the Pythagorean theorem:
[tex]\[ \text{Resultant}^2 = a^2 + b^2 \][/tex]
[tex]\[ \text{Resultant}^2 = (3 \, \text{km})^2 + (4 \, \text{km})^2 \][/tex]
[tex]\[ \text{Resultant}^2 = 9 \, \text{km}^2 + 16 \, \text{km}^2 \][/tex]
[tex]\[ \text{Resultant}^2 = 25 \, \text{km}^2 \][/tex]
Now, to find the magnitude of the resultant, we take the square root of both sides:
[tex]\[ \text{Resultant} = \sqrt{25 \, \text{km}^2} \][/tex]
[tex]\[ \text{Resultant} = 5 \, \text{km} \][/tex]
So, the magnitude of the resultant of the two components, 3 km west and 4 km south, is 5 km.
how many grams of NO2 are in 3 moles of a nitrogen dioxide???
90.2g
138.2g
160g
0.07g
Answer:
138.0165
Explanation:
look up nitrogen dioxide to grams for stuff like this
Which of the following is speed? a. the time at which a bicycle slows down b. the length of a racetrack c. the path of an elevator d. the rate at which a person slides down a rope
D. the rate at which a person slides down a rope.
This indicates speed because the person is timing people on how fast they will slide down a rope.
The density of mercury is 13.6 g/cm3 calculate the mass of 1 cm3 of mercury
the mass of 1cm3 of mercury is 13.6g because
the formula of density is mass/volume and when paste the number in it. you get the answer
Which is not a common property of ionic compounds?
good conductivity as a liquid
high melting point
low melting point
poor conductivity as a solid
Final answer:
A low melting point is not a common property of ionic compounds; they are characterized by high melting points, being hard and brittle, and conducting electricity when molten but not as a solid.
Explanation:
The property that is not common to ionic compounds is having a low melting point. Ionic compounds are known for their distinctive characteristics, which include being hard, brittle, and capable of conducting electricity as a liquid but not as a solid.
They typically have high melting points and high boiling points. When they are solid, the ionic compounds have ions that are held in place and cannot move, which means they do not conduct electricity. However, when these compounds are in a molten state (liquid), the ions can move freely, and this allows the compound to conduct electricity.
4.
A 4800-kg truck traveling with a
velocity of +4.0 m/s collides head-on
with a 1200-kg car traveling with a
velocity of -12 m/s. The truck and car
entangle and move together after the
collision. Fill in the before- and after-
collision table below.
Momentum Bo
Before the collision, the total momentum of the system is the sum of the momentum of the truck and the car. After the collision, the truck and the car move together with a final velocity of 0.8 m/s.
Explanation:Before the collision, the total momentum of the system is the sum of the momentum of the truck and the car:
Total momentum before = (mass of truck × velocity of truck) + (mass of car × velocity of car)
Total momentum before = (4800 kg × 4.0 m/s) + (1200 kg × -12 m/s)
Total momentum before = 19200 kg·m/s - 14400 kg·m/s = 4800 kg·m/s
After the collision, the truck and the car move together. They have the same final velocity. To find this velocity, we can use the principle of conservation of momentum:
Total momentum after = (mass of the combined system × final velocity)
4800 kg·m/s = (6000 kg × final velocity)
Final velocity = 4800 kg·m/s / 6000 kg = 0.8 m/s
Learn more about Momentum here:https://brainly.com/question/30677308
#SPJ12
The final velocity is (4800 kg ×7 m/s) ×7 (6000 kg) = 0.8 m/s.
The subject question is concerned with momentum conservation in a collision between a truck and a car, a fundamental concept in physics. To fill in the before-and-after collision table, we calculate the initial momentum of each vehicle and use conservation of momentum to find the final velocity of the entangled masses.
The initial momentum of the truck is the product of its mass and velocity, which is (4800 kg) ×(4.0 m/s) = 19200 kg ×7 m/s directed 'positive'. For the car, it is (1200 kg) ×(-12 m/s) = -14400 kg ×7 m/s directed 'negative'. The total initial momentum of the system is the sum of the individual momenta: 19200 kg ×7 m/s - 14400 kg ×7 m/s = 4800 kg ×7 m/s.
After the collision, since the truck and car move together, we must find their combined mass and solve for the final velocity using the equation: (Total Initial Momentum) = (Total Mass) ×(Final Velocity). The total mass is (4800 kg + 1200 kg) = 6000 kg.
In your own words, what was the purpose of the field study?
Procedure
Write a short summary of how you completed your field study and how you classified the organisms.
Data
Use the following key to help you complete the field study.
New Fabula Creatures Taxonomic Key
Step Physical Feature Classification
1 Smooth skin Go to 2
Fur Go to 3
2 One eye Go to 4
Two eyes Go to 5
3 One eye Go to 7
Two eyes Go to 8
4 Arms and legs Silkus monowrestle
Legs only Silkus monosquirmus
5 Arms and legs Go to 6
Legs only Silkus duosquirmus
6 Tail Silkus tallyhas
No tail Silkus stretchilus
7 Tail Fuzzus tallywag
No tail Fuzzus feelzalot
8 Two teeth Go to 9
More than two teeth Fuzzus chompilus
9 Pointy Fuzzus pointilus
Square Fuzzus squarilus
Fill in the chart with each creature's scientific name based on your field study observations.
Creature Scientific Name
1
2
3
4
5
6
7
8
9
10
Conclusion
Now that you have classified the organisms on planet Fabula, answer the following questions:
1. How many different species are there?
2. How many different genus groups are there? List them.
3. Do you think all of these creatures would belong in the same Kingdom? Why or why not?
4. Explain in your own words the order in which the creature's traits may have evolved, starting from the first likely trait. (Hint: Which trait is most common across the creatures?)
Answer:
Hi there! I have only the procedure and the scientific names of the creatures. Hope this helps!
Procedure
I studied the physical features of ten creatures and classified them using the key. I completed each section below and recorded the creature's scientific name in the data section.
The Creatures Scientific Names:
1
Fuzzus tallywag
2
Fuzzus pointilus
3
Silkus duosquirmus
4
Fuzzus chompilus
5
Silkus stretchilus
6
Silkus tallyhas
7
Fuzzus feelzalot
8
Silkus monosquirmus
9
Fuzzus squarilus
10
Silkus monowrestle
Have a thrilling Thursday!
~Lola
Answer:
Creature
Scientific Name
1.
Fuzzus tallywag
2.
Fuzzus pointilis
3.
Silkus duosquirmus
4.
Fuzzus chompilus
5.
Silkus stretchilus
6.
Silkus tallyhas
7.
Fuzzus feelzalot
8.
Silkus monosquirmus
9.
Fuzzus squarilus
10.
Silkus monowrestle
Conclusion (10 points)
Now that you have classified the organisms on planet Fabula answer the following questions:
Skilled Scientist level from Rubric: Student used critical thinking skills and evidence to establish a possible relationship among organisms and a possible evolutionary history of traits.
How many different species are there?
THere are 10 different species.
How many different genus groups are there?
There are 10 different genus groups.
List the different genus groups:
Fuzzus Tallywag
Fuzzus pointilus
Silkus duosquirmus
Fuzzus chompilus
Silkus stretchilus
Silkus tallyhas
Fuzzus feelzalot
Silkus monosquirmu
Fuzzus squarilus
Silkus monowrestle
Do you think all of these creatures would be long to the same Kingdom? Why or why not?
Yes, because they all look the same, but also look different. It's kind of like cats and lions or dogs and wolves.
Explanation:
A ball is dropped from the top of a cliff. By the time it reaches the ground, all the energy in its gravitational potential energy store has been transferred into its kinetic energy store. If the ball is travelling at 20 m/s when it hits the ground, what height was it dropped from? (Assume that the gravitational field strength is 10 N/kg.)
Answer:
20 meters.
Explanation:
mgh = 1/2mv^2
gh = 1/2v^2
10(h) = 1/2(20)^2
10h = 1/2(400)
10h = 200
(10h)/10 = 200/10
h = 20
Answer:
20 meters
Explanation:
A total of 10.0 joules of work is done in accelerating a 20.-newton object from rest across a horizontal frictionless table. What is the total kinetic energy gained by the object?
Answer:
10.0 J
Explanation:
The work done equals the change in energy. Since there's no friction, and the table is horizontal, the only change in energy is kinetic.
The total kinetic energy gained by the object of 20 Newton weight is 10.0 joules.
What is law of conservation of energy?According to the law of conservation of energy, energy cannot be created or destroyed. It can, however, be transformed from one form to another. When all forms of energy are considered, the total energy of an isolated system remains constant. The law of energy conservation applies to all forms of energy.
In summary, the law of energy conservation states that the total energy of a closed system, that is, a system that is isolated from its surroundings, is conserved.
Total work done on the object is 10.0 joules.
Weight if the object = 20 Newton.
Hence, total kinetic energy gained by the object = Total work done on the object
= 10.0 joules.
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ2
4. How far does a car travel in 90 seconds if it is traveling at a speed of 55 m/s?
Answer:90×55=4950km
Explanation:d=s×t
Answer:
4950 miles
Explanation:
If one horsepower is equal to 746 watts, how much horsepower does a highly trained athlete generate by doing 340 joules of work per second for an hourOne
746 joules per second = 746 watts = 1 horsepower
340 joules per second = 340 watts = (340/746) = 0.456 horsepower
Power is a RATE or a SPEED of doing work.
How long you do it doesn't matter.
Just like 30 miles per hour doesn't change whether you do it for an hour or for 10 minutes.
If one horsepower is equal to 746 watts, and a highly trained athlete generate by doing 340 joules of work per second for an hour is 0.456 horsepower.
What is Horsepower?Horsepower unit was first time used by James Watt in 1782. The story refers that James Watt uses worked with pony to charge coal from the mines. According to that story, he have the need of a unit to measure the force from one of this animals. He founds that they can move 22.000 lbs per minute, so he (arbitrarily) increase this measure in 50% been the unit Horsepower in 33.000 lb/feet per minute.This measure unit can measure "work" or "force". In the SI correspond to move up 75 Kg, to 1 meter high, in one second.
1 HP = (330 lb) x (100 feet)/1min = 33000 lb x feet/min
Is a practical unit, because reduce the amount of digits in a specific value. Also, it is more used specially in mechanical applications.
1 HP= 746 W (0,746 kW)
746 joules per second = 746 watts = 1 horsepower
340 joules per second = 340 watts = (340/746) = 0.456 horsepower
Thus, For a trained athlete, the value is 0.456 horsepower.
Learn more about Horsepower,
https://brainly.com/question/13259300
#SPJ2
a girl pushes a cart with a force of 10 N. if the cart has a mass of 5 kg, what is its acceleration?
Explanation:
Force=Mass*acceleration or F=MA. To find acceleration can be rewritten as A=F/M. If you input the numbers ypu can rewrite as A= 10N/5kg, A=2
The acceleration is 2 meters per sec.
I need help on 31 and 32 please !!! 30pts !!
Answer:
h = 500 meters; angle = 45°
Explanation:
Don't worry the answers are very simple. As we can see in problem 31 we have a right triangle, the right triangle always has a 90° angle. Let's also remember that all the sum of the three angles of a triangle will be equal to 180°.
Using the trigonometric function of cosinus we can find the value for h.
[tex]cos(60)=\frac{h}{1000} \\h= cos(60)*1000\\h= 500[m][/tex]
Cosinus (angle) = adjacent side / hypotenuse
Hypotenuse = longest side of the right triangle
adjacent side = side of the triangle, near to the angle that we want to find its dimension.
In problem 32 we will use also the trigonometric function. In this case we don't know the hypotenuse dimension therefore the best trigonometric fuction is "tangent"
[tex]tan (\alpha ) = \frac{125}{125}\\\alpha =tan^{-1}(1)\\\alpha =45 (deg)[/tex]
tan (angle) = opposite side / adjacent side
You breathe in more oxygen than you breathe out. And you breathe out more carbon dioxide than you breathe in.
What type of change is oxygen turning into carbon dioxide?
A. physical only
B. chemical only
C. physical and chemical
Answer:
B. chemical only.
Explanation:
In the process of respiration which is a chemical process where organic compound is released. In this process exergonic reaction takes place in which compound changes into different ones.
Following are the two types of respiration:-
1] Aerobic respiration:- In this type of respiration requirement of oxygen is more and energy released is more.
2] Anaerobic respiration:- In this type of respiration oxygen requirement is less and energy released is also less.
will mark brainliest if correct!!!!!!!!!!!
Reflection refers to light _____.
A. bending in a medium
B. bouncing off a surface
C. passing through an object
D. being stopped at an object
Answer:
B
Explanation:
Reflect: (of a surface or body) throw back (heat, light, or sound) without absorbing it.
Answer:
bouncing off a surface
Explanation:
definition of reflection: the throwing back by a body or surface of light, heat, or sound without absorbing it.
Answer questions in pic and explain how to do it
Answer:
According the law of conservation of mass, the mass of the reactant should be equal to the products in an chemical reaction. so we go far balancing the chemical reactions.
1) [tex]S +O_2 \rightarrow SO_2[/tex]
2) [tex]2Na + O_2 \rightarrow Na_2O_2[/tex]
3) [tex]2Hg + O_2 \rightarrow 2HgO[/tex]
4) [tex]2Ag_2O \rightarrow 4Ag + O_2[/tex]
5) [tex]Ba(OH)_2 + H_3PO_4 \rightarrow BaHPO_4+ 2H_2O[/tex]
6) [tex]2NaOH + H_3PO_4 \rightarrow Na_2HPO_4 +2H_2O[/tex]
7) [tex]C_4H_8 + 6O_2\rightarrow 4CO_2+4H_2O[/tex]
8) [tex]C_3H_8 + 5O_2\rightarrow3CO_2+4H_2O[/tex]
9) [tex]2Fe + 3Cl_2\rightarrow 2FeCl_3[/tex]
10) [tex]2Al+6HCl \rightarrow2 AlCl_3 +3H_2[/tex]
11) [tex]2H_2 +O_2 \rightarrow 2H_2O[/tex]
12) [tex]N_2 + 3H_2 \rightarrow 2NH_3[/tex]
10 kg box accelerates at 2 meters per second as it slides down a ramp at an angle of 25 degrees. What is the coefficient of friction
Answer:
0.241
Explanation:
resolving weight into two components and calculating force of friction in terms of coefficient of friction and then applying Newton 's law we get the value .This all has been explained in attachment
Final answer:
To calculate the coefficient of friction for a box sliding down a ramp, we consider the forces acting on the box, including gravity, normal force, and friction. The frictional force equals the coefficient of friction times the normal force that comes out to be 0.24
Explanation:
To find the coefficient of friction for a 10 kg box accelerating down a ramp at 2 meters per second² at an angle of 25 degrees, we can use the following physics concepts. First, we identify the forces acting on the box: gravity, normal force, friction, and the resultant force causing the acceleration. We can calculate the component of the gravitational force parallel to the ramp (which is mg sin(25°)), and the normal force (which is mg cos(25°), where m is the mass of the box and g is the acceleration due to gravity).
The frictional force ([tex]F_{f}[/tex]) opposes the motion and can be expressed as [tex]F_{f}[/tex] = μN, where μ is the coefficient of static friction and N is the normal force. Since the box is accelerating, we set up Newton's second law of motion in the direction of the incline: [tex]F_{parallel}[/tex] - [tex]F_{f}[/tex] = ma, where a is the acceleration. Substituting the expressions for [tex]F_{parallel}[/tex], [tex]F_{f}[/tex], and N and solving for μ gives us the coefficient of friction.
Given: Mass (m) = 2 kg, Incline angle (θ) = 25°, Frictional force ([tex]F_{f}[/tex]) = 4.86 N . We get that by using the formula [tex]F_{f}[/tex] = μ * m * g * cos(θ), where g = 10 m/s² .
Now from[tex]F_{f}[/tex] = μN
Substitute the values to find μ = 0.24.
SA
9. When the distance was one-fourth as much, what happened to the force between the
objects?
10. When the distance was twice as much, what happened to the force between the w
(i) Doubling the mass of one object doubles the gravitational force.
(ii) Doubling the distance reduces the force to one-fourth; tripling reduces it to one-ninth.
(iii) Doubling both masses quadruples the force.
Let's analyze each scenario:
(i) If the mass of one object is doubled:
According to Newton's law of universal gravitation, the gravitational force (F) between two objects is directly proportional to the product of their masses (m1 and m2) and inversely proportional to the square of the distance (r) between their centers:
[tex]\[ F = G \frac{m1 \cdot m2}{r^2} \][/tex]
where G is the gravitational constant.
If we double the mass of one object (let's say m1), the force becomes:
[tex]\[ F' = G \frac{2m1 \cdot m2}{r^2} \][/tex]
Comparing F' with F, we see that F' is doubled. Therefore, doubling the mass of one object doubles the gravitational force between them.
(ii) If the distance between the objects is doubled and tripled:
Let's denote the original distance between the objects as r.
- If the distance is doubled (2r), the force becomes:
[tex]\[ F' = G \frac{m1 \cdot m2}{(2r)^2} = \frac{1}{4} \cdot \frac{G \cdot m1 \cdot m2}{r^2} \][/tex]
Comparing F' with F, we see that F' is one-fourth of the original force. Therefore, doubling the distance reduces the gravitational force to one-fourth of its original value.
- If the distance is tripled (3r), the force becomes:
[tex]\[ F' = G \frac{m1 \cdot m2}{(3r)^2} = \frac{1}{9} \cdot \frac{G \cdot m1 \cdot m2}{r^2} \][/tex]
Comparing F' with F, we see that F' is one-ninth of the original force. Therefore, tripling the distance reduces the gravitational force to one-ninth of its original value.
(iii) If the masses of both objects are doubled:
If we double the masses of both objects (m1 and m2), the force becomes:
[tex]\[ F' = G \frac{2m1 \cdot 2m2}{r^2} = 4 \cdot \frac{G \cdot m1 \cdot m2}{r^2} \][/tex]
Comparing F' with F, we see that F' is quadrupled. Therefore, doubling the masses of both objects quadruples the gravitational force between them.
The Correct question is:
What happens to the gravitational force between two objects, if
(i) the mass of one object is doubled?
(ii) the distance between the objects is doubled and tripled?
(iii) the masses of both objects are doubled? give ans with indetail calculation
Talia is on a road trip with some friends. In the first 2 hours, they travel 100 miles. Then they hit traffic and go only 30 miles in the next hour. The last hour of their trip, they drive 75 miles. Calculate the average speed of Talia’s car during the trip. Give your answer to the nearest whole number. mph
Answer:
51.25 mph
Explanation:
[tex]Speed=\frac {Distance}{Time}[/tex]
Total distance= 100 miles + 30 miles + 75 miles=205 miles
Total time=2 hours+1 hour+1 hour= 4 hours
Average speed, [tex]s=\frac {205 m}{4 h}=51.25 mph[/tex]
The answer is 51
Explanation: Edg2020
A marble is rolling at a velocity of 1.5 m/s, with a momentum of 0.10 kg. m/s. What is it's mass?
The mass of the marble is 0.067 kg
Explanation:
The momentum of an object is given by the equation
[tex]p=mv[/tex]
where
p is the momentum
m is the mass
v is the velocity
For the marble in this problem, we have:
p = 0.10 kg m/s is its momentum
v = 1.5 m/s is its velocity
Solving the equation for m, we can find the mass of the marble:
[tex]m=\frac{p}{v}=\frac{0.10}{1.5}=0.067 kg[/tex]
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
The mass of the marble is 0.067 kg.
To find the mass of the marble, we can use the formula for momentum (p), which is the product of mass (m) and velocity (v):
[tex]\[ p = m \times v \][/tex]
Given that the momentum (p) is 0.10 kg.m/s and the velocity (v) is 1.5 m/s, we can rearrange the formula to solve for the mass (m):
[tex]\[ m = \frac{p}{v} \][/tex]
Substituting the given values:
[tex]\[ m = \frac{0.10 \text{ kg.m/s}}{1.5 \text{ m/s}} \][/tex]
[tex]\[ m = \frac{0.10}{1.5} \][/tex]
[tex]\[ m \approx 0.0667 \text{ kg} \][/tex]
Rounding to three decimal places, the mass of the marble is 0.067 kg.
A projectile is launched diagonally into the air and has a hang time of 24.5 seconds. Approximately how much time is required for the project to reach its apex?
Answer:
[tex]t=12.25\ seconds[/tex]
Explanation:
Diagonal Launch
It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.
The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is
[tex]x=v_ocos\theta t[/tex]
[tex]\displaystyle y=y_o+v_osin\theta \ t-\frac{gt^2}{2}[/tex]
Where vo is the magnitude of the initial velocity, [tex]\theta[/tex] is the angle, t is the time and g is the acceleration of gravity
The maximum height the object can reach can be computed as
[tex]\displaystyle t=\frac{v_osin\theta}{g}[/tex]
There are two times where the value of y is [tex]y_o[/tex] when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making [tex]y=y_o[/tex]
[tex]\displaystyle y_o=y_o+v_osin\theta\ t-\frac{gt^2}{2}[/tex]
Removing [tex]y_o[/tex] and dividing by t (t different of zero)
[tex]\displaystyle 0=v_osin\theta-\frac{gt}{2}[/tex]
Then we find the total flight as
[tex]\displaystyle t=\frac{2v_osin\theta}{g}[/tex]
We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is
[tex]\boxed{t=24.5/2=12.25\ seconds}[/tex]
WILL GIVE BRAINLIEST AND 50 POINTS!
Use the graph to answer the questions.
1. Based on the graph, what happens to current as resistance increases?
A. Increase
B. Decreases
C. Stays the same
2. This type of graph shows which type of relationship between the two variables?
A. Direct proportionally
B. Indirect proportionally
C. Inverse proportionally
3. What would be a reasonable estimate for current at a resistance of 50 Ω?
A. 0.5 A
B. 1 A
C. 5 A
D. 2 A
Answer:
1) Current decreases; 2) Inverse proportionally; 3) 1[A]
Explanation:
1)
As we can see as the resistance increases the current decreases, if we take two points as an example, when the resistance is equal to 50 [ohms] the current is equal to 1[amp] and when the resistance is equal to 200 [ohms] the current tends to have a value below 0.5 [amp]. Thus demonstrating the decrease in current.
2)
Inverse proportionally, by definition we know that the law of ohm determines the voltage according to resistance and amperage. This is the voltage will be equal to the product of the voltage by the resistance.
[tex]V=I*R\\V = voltage [volts]\\I = current[amp]\\R = resistance [ohms][/tex]
where:
[tex]R =\frac{V}{I} \\or\\I=\frac{V}{R}[/tex]
And whenever we have in a fractional number the denominator the variable we are interested in, we can say that this is inversely proportional to the value we are interested in determining. In this case, we can see from the two previous expressions that both the current and the resistance appear in the denominator, therefore they are inversely proportional to each other.
3)
If we place ourselves on the graph on the resistance axis, we see that at 50 [ohm] will correspond a current value equal to 1 [A].
Answer:
1. A. decrease
2. C. Inverse proportionally
3. B. 1 A
Explanation: