Answer:
11.4 million
Step-by-step explanation:
Let's define the variables i and i' to represent the number of infected bacteria initially and after 1 hour, and the variables n and n' to represent the number of non-infected bacteria initially and after 1 hour. The biologist's theory predicts ...
0.50i +0.20n = i'
0.50i +0.80n = n'
In matrix form, the equation looks like ...
[tex]\left[\begin{array}{cc}0.5&0.2\\0.5&0.8\end{array}\right] \left[\begin{array}{c}i&n\end{array}\right]=\left[\begin{array}{c}i'&n'\end{array}\right][/tex]
If i''' and n''' indicate the numbers after 3 hours, then (in millions), the numbers are ...
[tex]\left[\begin{array}{cc}0.5&0.2\\0.5&0.8\end{array}\right]^3 \left[\begin{array}{c}11&5.2\end{array}\right]=\left[\begin{array}{c}i'''&n'''\end{array}\right][/tex]
Carrying out the math, we find i''' = 4.8006 (million) and n''' = 11.3994 (million).
The population of non-infected bacteria is expected to be about 11.4 million after 3 hours.
Zeke lives 1.59 miles from school. One day he misses the bus and must walk to school if he can walk 3 times per hour how many minutes will it take him to walk to school
The distance between him and school is 1.59 miles. Of course this distance is linear to make this problem simple. He walks with a speed of 3 miles per hour or 0.00083 mile per second.
To calculate time from distance and speed we use this formula: [tex]t=\frac{d}{s}=\frac{3mil}{0.00083mil/s}\approx3614.46sec[/tex] seconds. To convert minutes we divide number of second by 60. [tex]t\div60=3614.46sec\div60\approx\boxed{60.24min}\approx\boxed{1h}[/tex].
It will take him approximately 60 minutes to get to school.
Answer:
20 minutes
Step-by-step explanation:
The wording of this question is a bit strange. Are you saying that Zeke can walk to school 3 times per hour?
If so, then the total distance he'd walk in 1 hour would be 3(1.59 miles), or
4.77 miles. So he walks 4.77 mph.
How long to talk to school? Divide 1.59 miles by 4.77 mph. The result is:
1/3 hour or 20 minutes.
Use Euler's formula to find the missing number
vertices: 16
edges: 43
face:???
Answer:
The number of faces is 29
Step-by-step explanation:
we know that
The Euler's formula state that, the number of vertices, minus the number of edges, plus the number of faces, is equal to two
[tex]V- E + F = 2[/tex]
In this problem we have
[tex]V=16[/tex]
[tex]E=43[/tex]
Substitute in the formula and solve for F
[tex]16- 43 + F = 2[/tex]
[tex]-27 + F = 2[/tex]
[tex] F = 2+27[/tex]
[tex] F = 29[/tex]
Which three-dimensional object is formed when the shape is rotated about the axis as shown?
Answer:
D. Cylinder
Step-by-step explanation:
Consider the rectangle that has to be rotated about the axis as shown in the picture. In attached diagrams this rectangle is black rectangle ABCD.
While rotating each point of the rectangle will describe the circle. The circles with the greatest radii will be circles made by the points from the side that is opposite to the side on the axis of rotation.
Formed figure appear to be cylinder.
Which day's low temperature was 9
colder than the low temperature on Friday?
Depends really:
If you think about it everywhere has a different temperature my lowest on Friday was 45 degrees and that was the lowest that week.
SO PLEASE CLARIFY
The triangle below what is the sine of 60°
Answer:
A
Step-by-step explanation:
sin(60) can be simplified into sqrt(3)/2.
The sine of 60° is √3/2.
What is sine of an angle?The ratio between the hypotenuse and the leg opposite the angle, when viewed as a component of a right triangle, is the trigonometric function for an acute angle.
Given
height = √3
hypotenuse = 2
sin θ = height/ hypotenuse
sin θ = √3/2
To know more about sine of an angle refer to :
https://brainly.com/question/2920412
#SPJ2
Use the figure below to complete the following problem.
Answer:
∠H = 120°
Step-by-step explanation:
In a parallelogram, adjacent angles are supplementary:
∠H +∠T = 180
(2x +60) + (x +30) = 180
3x = 90 . . . . . . . subtract 90, collect terms
x = 30 . . . . . . . . divide by the coefficient of x
Then the measure of angle H is ...
∠H = 2·30 +60 = 120 . . . . . degrees
Need help with number 8
What number do
You need help with
Every morning, my neighbor goes out walking. I observe that 20% of the time she walks with her beagle, 70% of the time she walks with her golden retriever, and 30% of the time she walks alone. Determine whether the following statement is true or false. We could find the probability of walking with a dog by adding P ( beagle )P(beagle) and P ( golden retriever )P(golden retriever).
Final answer:
The statement is true, as adding the probabilities of walking with the beagle (20%) and with the golden retriever (70%) correctly calculates the probability of walking with any dog as 90%.
Explanation:
The question involves calculating the probability of an event occurring, specifically the event of a neighbor walking with any dog. To determine whether the statement "We could find the probability of walking with a dog by adding P(beagle) and P(golden retriever)" is true or false, let's examine the given percentages. According to the information, the neighbor walks 20% of the time with her beagle, 70% of the time with her golden retriever, and 30% of the time she walks alone.
Adding the probabilities of walking with the beagle (20%) and with the golden retriever (70%) gives us a total of 90%. This calculation suggests that the neighbor walks with a dog 90% of the time, which is a valid way to find the probability of walking with any dog. Hence, the statement is true. However, it is important to ensure that the events (walking with the beagle and walking with the golden retriever) are exclusive and do not overlap, which is implied in this scenario.
A cylinder has a height of 3 inches and a diameter of 3 inches. What is the volume of the cylinder?
[tex]\displaystyle\\\text{If we have the radius of the circle, we use the formula: }\\V=\pi R^2\cdot h\\\\\text{If we have the diameter of the circle, we use the formula: }\\\\V=\frac{\pi D^2}{4}\cdot h\\\\\text{It is given:}\\{\bf D=3~in}\\{\bf h=3~in}\\\\\text{Is required:}\\{\bf V=?}\\\\\text{Solution:}\\\\V=\frac{\pi D^2}{4}\cdot h=\frac{\pi 3^2}{4}\cdot 3=\frac{27\pi}{4}=\boxed{\bf6.75\pi~in^2}[/tex]
What is the measure of the missing angle?
Answer:
13
180-125-42=13
You can find the measure of the missing angle by identifying the fraction of the total circle that the time period represents. For example, the movement from 12 to 3 on a clock represents a quarter of the clock's cycle, which corresponds to a 90 degrees angle.
Explanation:To find the measure of the missing angle, we must first identify the type of problem it is. Based on the information shared, it seems like it's a problem involving angles in a circle, specifically, how the hour hand of the clock moves.
When the hour hand moves from 12 to 3, we are looking at a quarter (1/4) of a 360 degrees circle, which is identified by 90 degrees.
So, if you're trying to find the measure of a missing angle over a certain period, you can use the fraction of the total circle that the period represents. For example, the quarter period from 12 to 3 on the clock would represent a 90 degrees angle.
Learn more about Angle Measurement here:https://brainly.com/question/33833061
#SPJ2
Amber and Austin were driving the same route from college to their home town. Amber left 2 hours before Austin. Amber drove at an average speed of 55 mph, and Austin averaged 75 mph per hour. After how many hours did Austin catch up with Amber?
Final answer:
To find the time it took for Austin to catch up with Amber, we calculated the distance Amber had covered before Austin started, and then divided that distance by the difference in their speeds, yielding a catch-up time of 5.5 hours.
Explanation:
The question is asking after how many hours Austin will catch up with Amber if they are driving the same route, but start at different times and drive at different speeds. To solve this problem, we can use the concept of relative speed and the equation Distance = Speed × Time. Since Amber left 2 hours earlier, by the time Austin starts, Amber has already covered a certain distance. We can calculate this distance by multiplying Amber's speed (55 mph) by the time she drove alone (2 hours), which gives us 110 miles. Now, Austin catches up by covering the difference in the distance at a relative speed, which is the difference of their speeds. So, the relative speed is Austin's speed (75 mph) minus Amber's speed (55 mph), resulting in 20 mph.
Now we can find the time it took Austin to catch up by dividing the distance Amber covered alone (110 miles) by the relative speed (20 mph). This comes out to 5.5 hours. Thus, Austin catches up with Amber after driving for 5.5 hours.
Consider function f below. f(x)=4^x-6 Determine function g which is created by shifting the graph of function f up 5 units.
A.
g(x) = 4x + 5
B.
g(x) = 4(x + 5) - 6
C.
g(x) = 4x - 1
D.
g(x) = 9x - 6
Answer: Option C
[tex]g(x) = 4 ^ x-1[/tex]
Step-by-step explanation:
If we have a function f(x) and we want to move its graph vertically then we apply the transformation:
[tex]g (x) = f (x) + k.[/tex]
So:
If [tex]k> 0[/tex] the function g(x) will be the function f(x) displaced k units up
If [tex]k <0[/tex] the function g(x) will be the function f(x) displaced k units down.
In this case we know that the graph of f(x) moves 5 units up.
then [tex]k> 0[/tex] and [tex]k = 5[/tex]
Therefore [tex]g (x) = f(x) +5[/tex]
[tex]g(x) = 4 ^ x - 6 +5\\\\g(x) = 4 ^ x-1[/tex]
5 x 10^5 is how many times as large as 1 x 10^5?
Answer:
5 times as large
Step-by-step explanation:
You can think of "10^5" as "green marbles" if you like. Then your question is ...
5 green marbles is how many times as large as 1 green marble.
Hopefully, the answer is all too clear: it is 5 times as large.
_____
In math terms, when you want to know how many times as large y is as x, the answer is found by dividing y by x:
y/x . . . . . tells you how many times as large as x is y.
Here, that looks like ...
[tex]\dfrac{5\times 10^5}{1\times 10^5}\\\\=\dfrac{5}{1} \qquad\text{the factors of $10^5$ cancel}\\\\=5[/tex]
Answer:
5 times as large
Step-by-step explanation:
I did the question
Please help me on this
ANSWER
D. 22-8√5
EXPLANATION
We want to expand
[tex](2 \sqrt{5} - 4)(3 \sqrt{5} + 2)[/tex]
We use the distributive property to obtain,
[tex]2 \sqrt{5} (3 \sqrt{5} + 2) - 4(3 \sqrt{5} + 2)[/tex]
We expand to get,
[tex]6(5) + 4 \sqrt{5} - 12 \sqrt{5} - 8[/tex]
Simplify to get,
[tex]22 - 8 \sqrt{5} [/tex]
The correct answer is D.
A second important result is that electrons will fill the lowest energy states available. This would seem to indicate that every electron in an atom should be in the n=1 state. This is not the case, because of Pauli's exclusion principle. The exclusion principle says that no two electrons can occupy the same state. A state is completely characterized by the four numbers n, l, ml, and ms, where ms is the spin of the electron. An important question is, How many states are possible for a given set of quantum numbers? For instance, n=1 means that l=0 with ml=0 are the only possible values for those variables. Thus, there are two possible states: (1, 0, 0, 1/2) and (1, 0, 0, −1/2). How many states are possible for n=2? Express your answer as an integer.
Answer:
8Explanation:
1) Principal quantum number, n = 2
n is the principal quantum number and indicates the main energy level.2) Second quantum number, ℓ
The second quantum number, ℓ, is named, Azimuthal quantum number.The possible values of ℓ are from 0 to n - 1.
Hence, since n = 2, there are two possible values for ℓ: 0, and 1.
This gives you two shapes for the orbitals: 0 corresponds to "s" orbitals, and 1 corresponds to "p" orbitals.
3) Third quantum number, mℓ
The third quantum number, mℓ, is named magnetic quantum number.The possible values for mℓ are from - ℓ to + ℓ.
Hence, the poosible values for mℓ when n = 2 are:
for ℓ = 0: mℓ = 0for ℓ = 1, mℓ = -1, 0, or +1.4) Fourth quantum number, ms.
This is the spin number and it can be either +1/2 or -1/2.Therfore the full set of possible states (different quantum number for a given atom) for n = 2 is:
(2, 0, 0 +1/2)(2, 0, 0, -1/2)(2, 1, - 1, + 1/2)(2, 1, -1, -1/2)(2, 1, 0, +1/2)(2, 1, 0, -1/2)(2, 1, 1, +1/2)(2, 1, 1, -1/2)That is a total of 8 different possible states, which is the answer for the question.
what is -4(-4d-5) equals to?
-4 x -4d=16d
-4 x-5=20
16d+20
Answer: -36d
Step-by-step explanation:
-4(-4d-5)
You have to multiply -4x-4d= -16d
Then do -4x5=-20
After you have to solve -16-20d
Which equals to -36d
Help please! 20 points!
(VIEW THE PICTURE)
Please explain how you got your answer
What is the surface area of the paperweight?
Enter your answer in the box.
Answer:
58 in^2
Step-by-step explanation:
The area of one face of the 3" cube is (3 in)^2 = 9 in^2. Then the 6 faces of that will have an area of ...
6·9 in^2 = 54 in^2
The area of the top of the paperweight is unaffected by the area of the added cube: the area the smaller cube covers is exactly the same as its exposed top area. So, the net effect of the added 1" cube is to increase the total area by that cube's lateral area: 4 faces at 1 in^2 for each face, a total of 4 in^2.
Then the total surface area of the paperweight is ...
54 in^2 + 4 in^2 = 58 in^2
Write the equation of the line ?
y=?
PLEASE HELP
Answer:
y=-2/3x -6
Step-by-step explanation:
y=-6 so b=-6
rise/run=-2/3
Put that into an equation of y=mx+b and you get y=-2/3x -6
What is the value represented by the letter c on the box plot of data? {80,18,34,80,59,67,12,55}
C is the median.
to find the median we need to put all the numbers given in order from smaller to largest
12, 18, 34, 55, 59, 67, 80, 80
then find the middle number of these
well we have to middle numbers 59 and 55
so we need to find the mid number between these two which 57.
The answer to this question is 57
hope this helped
Answer:
The answer is 18
State whether the given equation or function is linear. Write yes or no. Explain your reasoning. f(x) = 7x2 + 4
Yes, the equation is linear. It is of the form f(x) = m + b
Yes, the equation is linear form. It is of the form f(x) = mx + b.
No, the equation is not linear. It is in the form x + y = c.
No, the equation is not linear. It is not of the form f(x) = mx + b.
For this case we have the following function:
[tex]f (x) = 7x ^ 2 + 4[/tex]
By definition, we have that a linear equation is of the form [tex]y = mx + b[/tex]
On the other hand, a quadratic equation is of the form[tex]y = ax ^ 2 + bx + c[/tex]
Then, the given equation is not a linear equation, it is not of the form [tex]y = mx + b[/tex]
Answer:
No, the equation is not linear. It is not of the form [tex]f (x) = mx + b.[/tex]
Hey there!
Here goes your answer ↓
Question:- State whether the given equation or function is linear. Write yes or no. Explain your reasoning. f(x) = 7x² + 4
(a) Yes, the equation is linear. It is of the form f(x) = m + b
(b) Yes, the equation is linear form. It is of the form f(x) = mx + b.
(c) No, the equation is not linear. It is in the form x + y = c.
(d) No, the equation is not linear. It is not of the form f(x) = mx + b.
Answer :- Option (D)
Explanation :-
Given equation :- f(x) = 7x² + 4
•The form of any equation should be → y - mx + b
The given equation does not satisfy the above rule, and hence it is not a linear equation.
Hope it helps.
Have a great day ahead!
Sara had 94 dollars to spend on 8 books. After buying them she had 14 dollars. How much did each book cost
Answer: $10
Step-by-step explanation:
Let's analize the information given: We know that she had $94 to spend on 8 books and after buying these books she had $14. So, we need to calculate the amount of money she spent. Subtract $94 and $14:
[tex]Total\ spent=\$94-\$14\\Total\ spent=\$80[/tex]
Then, to calculate the cost of each book, we need to divide the "Total spent" by 8:
[tex]cost\ of\ each\ book=\frac{Total\ spent}{8}\\\\cost\ of\ each\ book=\frac{\$80}{8}\\\\cost\ of\ each\ book=\$10[/tex]
After Elise deposits $15.50 into her bank account her balance is 325
Answer:
15.50+n=325.00
Step-by-step explanation:
15.50+what she had in the bank already = what she has now
Answer:
The answer is $15.50 + n = $325.00.
Step-by-step explanation:
Fifteen dollars plus "n" (her account balance before the deposit) equals $325.00. Hope this helps! :D
Suppose that 62 percent of the graduates from your high school go on to four-year colleges, 15 percent go on to two-year colleges, 18 percent find employment, and the remaining graduates search for a job. If a randomly selected student is not going on to a four-year college, what is the probability he or she will find employment?a) .44b) .474c) .526d) .545e) .565
Answer:
b) .474
Step-by-step explanation:
If 62% go to a four-year college, that means that those who don't represent 38% of the high-school graduates.
You pick up someone who is NOT going to a four-year college (so, he's among the 38%)... what's the chance he's in the 18% of the whole high-school graduates population that found a job?
To calculate that probability, we have to divide 18% by 38%.
P = 18% / 38% = 0.4736, so 0.474
Since we are sure he doesn't go to a four-year college, there's 47.4% of chances he finds a job.
This is calculus
using L'hospitals rule
Lim x --> 0 (1+2x)^(-3/x)
De l'Hospital rule applies to undetermined forms like
[tex]\dfrac{0}{0},\quad\dfrac{\infty}{\infty}[/tex]
If we evaluate your limit directly, we have
[tex]\displaystyle \lim_{x\to 0}(1+2x)^{-\frac{3}{x}} = 1^\infty[/tex]
which is neither of the two forms covered by the theorem.
So, in order to apply it, we need to write the limit as follows: we start with
[tex]f(x)=(1+2x)^{-\frac{3}{x}}[/tex]
Using the identity [tex]e^{\log(x)}=x[/tex], we can rewrite the function as
[tex]f(x)=e^{\log\left((1+2x)^{-\frac{3}{x}}\right)}[/tex]
Using the rule [tex]\log(a^b)=b\log(a)[/tex], we have
[tex]f(x)=e^{-\frac{3}{x}\log(1+2x)}[/tex]
Since the exponential function [tex]e^x[/tex] is continuous, we have
[tex]\displaystyle \lim_{x\to 0} e^{f(x)} = e^{\lim_{x\to 0} f(x)}[/tex]
In other words, we can focus on the exponent alone to solve the limit. So, we're focusing on
[tex]\displaystyle \lim_{x\to 0} -\frac{3}{x}\log(1+2x) [/tex]
Which we can rewrite as
[tex]\displaystyle \lim_{x\to 0} -\frac{3}{x}\log(1+2x) = -3\lim_{x\to 0}\frac{\log(1+2x)}{x}[/tex]
Now the limit comes in the form 0/0, so we can apply the theorem: we derive both numerator and denominator to get
[tex]\displaystyle -3\lim_{x\to 0}\frac{\log(1+2x)}{x} = -3 \lim_{x\to 0}\dfrac{\frac{2}{1+2x}}{1} = -3\cdot 2 = -6[/tex]
So, the limit of the exponent is -6, which implies that the whole expression tends to
[tex]e^{-6}=\dfrac{1}{e^6}[/tex]
By applying L'Hospital's rule to the given expression, the limit is found to be 1 as x approaches 0.
L'Hospital's rule can be applied to find the limit of the expression (1+2x)^(-3/x) as x approaches 0. This rule states that if we have an indeterminate form 0/0 or ∞/∞, we can take the derivative of the numerator and denominator separately and then evaluate the limit again.
Take the derivative of the numerator: -3(1+2x)^(-3/x-1) * (2).Take the derivative of the denominator: -3/x^2 * (1+2x)^(-3/x).Now evaluate the limit by substituting x = 0 into the derivatives obtained.After simplifying the expressions and substituting x = 0, we find that the limit is equal to 1.
Please help me on this it a about to be due
Answer:
A
Step-by-step explanation:
sin is opposite/hypotenuse, which is 24/26, simplifying to 12/13
For this case, we have that by definition:
[tex]Sin (C) = \frac {24} {26}[/tex]
That is, the sine of angle C will be given by the leg opposite the angle C divided by the hypotenuse of the traingule.
[tex]Sin (C) = \frac {24} {26}[/tex]
Simplifying:
[tex]Sin (C) = \frac {12} {13}[/tex]
Answer:
Option A
Need math help please
Answer:
(0, -3), (-1, 1)
Step-by-step explanation:
The equation can be simplified to a form more helpful for graphing.
Subtract 7:
24x +18 = -6y
We note that all of the coefficients are multiples of 6, so we can divide by -6:
y = -4x -3
This is slope-intercept form, so it tells you that the y-intercept is -3, which means one point on the graph is (0, -3).
The slope is -4, so an x-value in the negative direction will give a more positive y-value. We can choose x=-1 and find y:
y = -4(-1) -3 = 4 -3 = 1
Then another point on the graph is (-1, 1).
Two points on the graph are (0, -3) and (-1, 1).
can someone please help me with this!
Answer:
a. 3 (see below for explanation)
b. Ln = 4 + 3(n -1)
c. 48
d. dn = 6n +2
Step-by-step explanation:
a. The common difference is found by subtracting any given term from the next one: 7 -4 = 3, or 10 -7 = 3. The common difference is 3.
__
b. The general expression for an arithmetic sequence with first term a1 and common difference d is ...
an = a1 + d(n -1)
Here, the first term is 4 and the common difference is d. We choose to name the n-th term of Levy's sequence "Ln", so we can fill in the numbers to get ...
Ln = 4 + 3(n -1)
__
c. We can call the terms of Zack's sequence Zn, so we have ...
Zn = 3·Ln = 3·(4 + 3(n -1)) = 12 +9(n -1)
Putting 5 where n is in this equation, we find ...
Z5 = 12 +9(5 -1) = 48
The 5th term of Zack's sequence is 48.
__
d. The difference of n-th terms of the two sequences is ...
dn = Zn -Ln = (3·Ln) - Ln = 2Ln = 2(4 +3(n -1)) = 8 +6(n -1)
dn = 6n +2
the exponential function modeled by the following table?
x f(x)
2 9
3 27
4 81
A: f(x) = x3
B: f(x) = 3x
C: f(x) = x2 + 5
D: f(x) = 2x + 5
Answer:
[tex]f(x)=3^x[/tex]
Step-by-step explanation:
From the table;
When x=2, [tex]y=9=3^2[/tex]
When x=3, [tex]y=27=3^3[/tex]
When x=4, [tex]y=81=3^4[/tex]
We can infer from the pattern that;
[tex]f(x)=3^x[/tex]
Help with this graph please
Answer:
see below
Step-by-step explanation:
Each point moves to a location 3 times its current distance from the center of dilation. The dilated figure connects those moved vertices.
___
In the attached figure, the orange lines show how the points move to their new location (3 times the original distance). The blue lines connect the dots to make the dilated figure.
Please how do you do this
Answer:
Option 3.
Step-by-step explanation:
The domain of a function is the complete set of possible values of the independent variable.
The argument of a square root can take negative values, then:
So x+3 must be greater than 0. So x+3> 0 -> x> -3.
Then, the domain of the function is: [-3, +inf)
The range of a function is the complete set of all possible resulting values of the dependent variable after we have substituted the domain.
So in this case, we know that the square root always is going to throw a positive value, but given that the square rooth is multiplied by a minus, the result is always going to be negative.
The least value the square root can take is 0, so in that case, the maximum value the function can take is y = -2.
So the range is (-inf, -2]
So, the correct option is option 3