The computer algorithm executes twice as many operations when the input size increases by 1. By using this information and calculating the operations for each input size, we find that it executes 26,624 operations for an input size of 26.
Explanation:To find out how many operations the computer algorithm executes when it is run with an input of size 26, we can use the given information. The algorithm executes twice as many operations when the input size increases by 1. So, if it executes 7 operations for an input size of 1, it would execute 14 operations for an input size of 2, 28 operations for an input size of 3, and so on.
Since the algorithm executes twice as many operations for each increase in input size, we can see that it follows a pattern of doubling. We can calculate the number of operations for an input size of 26 by doubling the number of operations for an input size of 25. Continuing this calculation, we get:
Input Size 1: 7 operations
Input Size 2: 14 operations
Input Size 3: 28 operations
...
Input Size 25: 13,312 operations
Input Size 26: 26,624 operations
Gina's literacy bucket weighs 6 pounds. Her novel weighs 1 4/6 pounds, and her chrome book weighs 2 1/6 how much would her bucket weigh if she took out the two items.
Answer:
[tex]2\frac{1}{6}[/tex] pounds.
Step-by-step explanation:
We have been given that Gina's literacy bucket weighs 6 pounds. Her novel weighs 1 4/6 pounds, and her chrome book weighs 2 1/6.
To find weight of bucket after taking out the two items, we will subtract weight of each item from 6 pounds as:
[tex]\text{Weight of bucket}=6-1\frac{4}{6}-2\frac{1}{6}[/tex]
Let us convert mixed fractions into improper fractions as:
[tex]1\frac{4}{6}=\frac{6\cdot 1+4}{6}=\frac{10}{6}\\\\2\frac{1}{6}=\frac{6\cdot 2+1}{6}=\frac{12+1}{6}=\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=6-\frac{10}{6}-\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{6\cdot 6}{6}-\frac{10}{6}-\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{36}{6}-\frac{10}{6}-\frac{13}{6}[/tex]
Combine numerators:
[tex]\text{Weight of bucket}=\frac{36-10-13}{6}[/tex]
[tex]\text{Weight of bucket}=\frac{13}{6}[/tex]
[tex]\text{Weight of bucket}=2\frac{1}{6}[/tex]
Therefore, the weight of the bucket is [tex]2\frac{1}{6}[/tex] pounds.
Write a polynomial function of minimum degree with real coefficients whose zeros include those listed. Write the polynomial in standard form.2, -4, and 1 3i
Answer:
[tex]f(x)=x^{4}+x^{3}-10x^{2} +8x[/tex]
Step-by-step explanation:
A number is a factor of f(x) if and only if f(x) is zero for that value/number.
For the factors of a function we write the factors as x-a where a is the zero of function i.e. value at which f(x) is zero.
To write the polynomial function of minimum degree with real coefficients whose zeros include 2, -4, and 1, 3i, we find the f(x) is the product of all factors i.e x-a where a will represent the given zeros.
[tex]f(x)=(x-2)(x-(-4))(x-1)(x-3i)\\f(x)=(x-2)(x+4))(x-1)(x-3i)\\f(x)=(x^{2} +4x-2x-8)(x^{2} -3xi-x+3i )\\f(x)=(x^{2} +2x-8)(x^{2} -x-(3x+3)i)\\[/tex]
As it is stated that polynomial should have real coefficients so skipping the terms with 'i' we get
[tex]f(x)=(x^{2} +2x-8)(x^{2} -x)\\f(x)=x^{4}-x^{3}+2x^{3}-2x^{2} -8x^{2} +8x\\f(x)=x^{4}+x^{3}-10x^{2} +8x[/tex]
Answer:
f(x) = x4 - 2x2 + 36x - 80
Step-by-step explanation:
The mean of the sampling distribution of the sample mean is: Select one: a. equal to the population mean b. greater than the population mean c. less than the population mean d. not equal to the population mean but the direction cannot be determined
Answer:
Correct option is (a) equal to the population mean.
Step-by-step explanation:
According to the Central limit theorem if a large sample is selected from an unknown population with mean μ and standard deviation σ then the sampling distribution of sample means follows a normal distribution.
The mean and standard deviation of this sampling distribution is:
[tex]\mu_{\bar x}=\mu[/tex]
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}[/tex]
This standard deviation of the sampling distribution of mean is known as the standard error.
Thus, the correct option is (a) equal to the population mean.
The mean of the sampling distribution of the sample mean is equal to the population mean, as stated by the Central Limit Theorem, when the sample size is sufficiently large.
Explanation:The correct answer to the student's question is: a. equal to the population mean. This principle is a key concept in statistics, known as the Central Limit Theorem. According to the theorem, if the size (n) of the sample is sufficiently large, the distribution of the sample means will be approximately normal, with the mean of these sample means equalling the population mean. Another important point to note is that the standard deviation of this distribution, called the standard error of the mean, is the population standard deviation divided by the square root of the sample size (n). Therefore, as the sample size increases, the standard deviation of the sampling distribution of the means decreases, leading to more precise estimations of the population mean.
Which equations represent the line that is parallel to 3x − 4y = 7 and passes through the point (−4, −2)? Select two options.
y = 3/4x + 1
3x − 4y = −4
4x − 3y = −3
y – 2 = –3/4(x – 4)
y + 2 = 3/4 (x+4)
Option A: [tex]y=\frac{3}{4}x+1[/tex] is the equation of the line.
Option E: [tex]y+2=\frac{3}{4}(x+4)[/tex] is the equation of the line.
Explanation:
Given that the line is [tex]3 x-4 y=7[/tex] and passes through the point [tex](-4,-2)[/tex]
We need to determine the equation of the line.
Formula:
The equation of the line can be determined using the formula,
[tex]y-y_1=m(x-x_1)[/tex]
Slope:
Since, the lines are parallel, from the equation [tex]3 x-4 y=7[/tex], we shall determine the slope.
Thus, we have,
[tex]-4 y=-3x+7[/tex]
[tex]y=\frac{3}{4} x+\frac{7}{4}[/tex]
Thus, the slope of the equation is [tex]m=\frac{3}{4}[/tex]
Equation of line:
Substituting [tex]m=\frac{3}{4}[/tex] and the point [tex](-4,-2)[/tex] in the formula, we get,
[tex]y+2=\frac{3}{4}(x+4)[/tex]
Hence, the equation of line is [tex]y+2=\frac{3}{4}(x+4)[/tex]
Thus, Option E is the correct answer.
Let us write the equation of line [tex]y+2=\frac{3}{4}(x+4)[/tex] in slope - intercept form.
Thus, we have,
[tex]y+2=\frac{3}{4}x+3[/tex]
[tex]y=\frac{3}{4}x+3-2[/tex]
[tex]y=\frac{3}{4}x+1[/tex]
Thus, the equation of the line is [tex]y=\frac{3}{4}x+1[/tex]
Hence, Option A is the correct answer.
Please help me with these rotation problem.
Answer:
see below
Step-by-step explanation:
In the attachment, the points are listed in the order given in the problem statement. (They are listed to the right of the "rotation matrix", with x-coordinates above y-coordinates.)
__
I really don't like to do repetitive calculations, so I try to use a graphing calculator or spreadsheet whenever possible. Angles are measured CCW.
As always, the rotation transformations are ...
180° — (x, y) ⇒ (-x, -y)
270° — (x, y) ⇒ (y, -x)
Line l is parallel to line m. The slope of line l is . What is the slope of line m? 4/9
The slope of Line m that is parallel to Line l is also 4/9.
Explanation:The slope of a line determines its steepness and direction. When two lines are parallel, they have the same slope. In this case, Line l is parallel to Line m, and the slope of Line l is 4/9. Therefore, the slope of Line m is also 4/9.
The second side of a triangular deck is 3 feet longer than the shortest side, and the third side is 3 feet shorter than twice the length of the shortest side. If the perimeter of the deck is 80 feet, what are the lengths of the three sides?
Answer: the lengths are 20 feet, 23 feet and 37 feet
Step-by-step explanation:
Let x represent the length of the shorter side of the triangular deck.
The second side of a triangular deck is 3 feet longer than the shortest side. This means that the length of the second side is (x + 3) feet.
The third side is 3 feet shorter than twice the length of the shortest side. This means that the length of the third of the triangle is (2x - 3) feet.
If the perimeter of the deck is 80 feet, it means that
x + x + 3 + 2x - 3 = 80
4x = 80
x = 80/4
x = 20
The length of the second side is
20 + 3 = 23 feet
The length of the third side is
20 × 2 - 3 = 40 - 3 = 37 feet
WILL MARK 1ST RIGHT ANSWER AS BRAINIEST
Bob placed three regular pentagons together at a vertex, thinking he might be able to form a tessellation. However, they left a gap. What is the number of degrees in the measure indicated?
Answer:
36
Step-by-step explanation:
The angles of a pentagon sum to 180(5-2) = 540 degrees, so each angle of a regular pentagon is 540/5 = 108. Therefore, three of these angles sum to $3 * 108 = 324, which means the indicated angle measures 360 - 324 = 36.
Answer:
36
Step-by-step explanation:
The angles of a pentagon sum to 180(5-2) = 540 degrees, so each angle of a regular pentagon is 540/5 = 108. Therefore, three of these angles sum to 3* 108 = 324, which means the indicated angle measures 360 - 324 = 36
The top five test scores in Mr. Rhodes's class were: 98, 92, 96, 97, and 97. What is
the mean absolute deviation?
plz help I'm lost!!
The mean of the top five test scores is 96. Then the mean absolute deviation is zero.
What is the mean absolute deviation?It is the average distance between each data point and the mean.
The top five test scores in Mr. Rhodes's class were: 98, 92, 96, 97, and 97.
Then the mean (μ) will be
[tex]\mu = \dfrac{98+92+96+97+97}{5}\\\\\mu = \dfrac{480}{5}\\\\\mu = 96[/tex]
Then the mean absolute deviation will be
[tex]\rm MAD = \dfrac{\Sigma (X_i - \mu)}{n}\\\\MAD = \dfrac{(98-96)+(92-96)+(96-96)+(97-96)+(97-96)}{5}\\\\MAD = \dfrac{2-4+0+1+1}{5}\\\\MAD = 0[/tex]
The mean absolute deviation is zero and the mean is 96.
More about the mean absolute deviation link is given below.
https://brainly.com/question/10258446
Final answer:
Calculating the mean absolute deviation of the top five test scores in Mr. Rhodes's class involves finding the mean score and then the average of the absolute deviations from this mean. The result is a MAD of 1.6, indicating the average dispersion of the top scores from the class mean.
Explanation:
The question involves calculating the mean absolute deviation (MAD) of the top five test scores in Mr. Rhodes's class, which are 98, 92, 96, 97, and 97. First, we find the mean (average) of these scores by adding them together and dividing by the number of scores, which gives us (98 + 92 + 96 + 97 + 97) / 5 = 96. Next, we calculate the absolute deviation of each score from the mean, which are 2, 4, 0, 1, and 1 respectively. The mean absolute deviation is then the average of these absolute deviations, calculated as (2 + 4 + 0 + 1 + 1) / 5 = 1.6.
The result of these calculations shows that the mean absolute deviation of the test scores is 1.6. This value represents how much, on average, each of the top five scores deviates from the mean score of the class, providing an understanding of the variability or dispersion within the top scores. The MAD is a useful measure in understanding how spread out the scores are from the mean.
To find the depth of a well, a farmer lowers a 50-foot rope vertically into the well. If 15 feet of rope remain above the well, how deep (in feet) is the well?
The well is 35 feet deep.
Step-by-step explanation:
Given,
Length of rope = 50 feet
Length of remaining rope = 15 feet
Let,
x be the depth of well.
Total length of rope = Length of remaining + Depth of well
[tex]50=15+x\\50-15=x\\x=35[/tex]
The well is 35 feet deep.
tickets for a harlem globetrotter show cost $28 general admission, $43 courtside, or $173 bench seats. Nine times as many general admission tickets were sold as bench tickets, & the number of general admission tickets sold was 55 more than the sum of the number of courtside tickets & bench tickets. Sales of all three kinds of ticks totaled $97,605. How many of each kind of ticket were sold algebra
Answer:
general admission tickets 1170
courtside tickets 985
tickets bench seats. 130
Step-by-step explanation:
To solve the problem, it is necessary to generate a system of equations with the information provided by the statement.
First be
x = # general admission tickets
y = # courtside tickets
z = # tickets bench seats.
The first equation would be that they sold nine times more general admission tickets than bench seats tickets.
That is: x = 9 * z (1)
And the second equation is that the number of general admission tickets sold was 55 more than the sum of the number of courtside tickets and bench seats tickets.
That is: x = 55 + y + z (2)
Now the third equation would be the money raised.
28 * x + 43 * y + 173 * z = 97605 (3)
Now if I replace I rearrange (1):
z = x / 9 (4) and replacement in 2, I have:
x = 55 + y + x / 9, rearranging:
y = (8/9) * x - 55 (5)
Now replacing (4) and (5) in 3, we have:
28 * x + 43 * ((8/9) * x - 55) + 173 * (x / 9) = 97605
Solving the above:
x = 1170, therefore
y = (8/9) * 1170 55 = 985
z = 1170/9 = 130
We can confirm this with equation (3)
28 * x + 43 * y + 173 * z = 97605
28 * 1170 + 43 * 985 + 173 * 130 = 97605
450 general admission tickets, 171 courtside tickets, and 50 bench tickets were sold for the Harlem Globetrotter show.
Explanation:Let's assign variables to represent the number of tickets sold for each category:
Lets x = number of general admission tickets sold
Lets y = number of courtside tickets sold
Lets z = number of bench tickets sold
According to the given information:
The cost of the general admission ticket = $28
The cost of the courtside ticket = $43
The cost of the bench ticket = $173
There were 9 times as many general admission tickets sold as bench tickets: x = 9z
The number of general admission tickets sold was 55 more than the sum of the courtside and bench tickets: x = y + z + 55
The total sales for all three types of tickets was $97,605: 28x + 43y + 173z = 97605
Now, we have a system of three equations with three variables:
x = 9z
x = y + z + 55
28x + 43y + 173z = 97605
We can use substitution or elimination method to solve this system of equations. Solving this system, we find that x = 450, y = 171, and z = 50. Therefore, 450 general admission tickets, 171 courtside tickets, and 50 bench tickets were sold for the Harlem Globetrotter show.
Learn more about ticket sales here:https://brainly.com/question/2777438
#SPJ3
Andy is thinking of a number that has a digit less than 5 in the tens place. It has a digit greater than 7 in the ones place. Fill in the bubble next to all the numbers that could be Andy's number
Step-by-step explanation:
Here, given:
Let us assume the number on Tens place = M
The number in Units place = N
So, the actual value of the number = 10 M + N
The number can be written as MN.
Now, The value of M ( Tens digit) is Less than 5.
So, M = 1, 2 , 3 or 4 ( 0 not included)
Also, The value of N(Unit digit) is greater than 7.
So, N = 8, 9 or 0 ( 0 included)
So, by combining all possibilities for M and N , the possible number chosen by Andy can be expressed as MN :
Number = {18,19,10,28,29,20,38,39,30,48,49 or 40}
Any number can be chosen from the above set as all the numbers match the given restrictions.
Jesse takes his dog and cat for Their annual vet visit. Jesse's dog weigh's 23 pounds. The vet tells him his cat weighs 5/8 as much as his dogs weighs. How much does his cat weigh
Answer:
14.375 pounds
Step-by-step explanation:
Jesse's dog: 23 lb
Cat: 5/8*23=115/8
Therefore, Jesse's cat weighs 14.375 pounds
find the area of a rectangle that has a base of (4a) cm and a height (2a + b)
Answer:
area = 8a^2 +4ab
Step-by-step explanation:
Area = (4a)(2a + b)
= 8a^2 +4ab
Step-by-step explanation:
[tex]Area of rectangle \\ = base \times height \\ = (4a) \times (2a + b) \\ = 4a \times 2a + 4a \times b \\ = 8 {a}^{2} + 4ab \\ [/tex]
Steve, an entrepreneur, decides to open a flower shop and looks for an appropriate location for his shop. He wants to use the center-of-gravity method for the purpose. He researches the zip codes in his area and finds the following information: Identify a true statement about the best center of gravity for the possible shop location.
A) The x-axis and the y-axis are less than 5.0.
B) The x-axis is less than 7.0 and the y-axis is more than 7.0.
C) The x-axis is more than 7.0 and the y-axis is less than 7.0.
D) The x-axis and the y-axis are more than 7.0.
Answer:
C
Step-by-step explanation:
The x-axis is more than 7.0 and the y-axis is less than 7.0.
Cheers
A boat is spotted in the water with an angle of depression of 25° from the top of a lighthouse that is 89 feet tall. To the nearest foot, how far away is the boat from the base of the lighthouse?A)37 feetB)42 feetC)98 feetD)191 feet
Answer:
D)191 feet
Step-by-step explanation:
Let the height of the light house be |AB| and the Boat be at point C as shown in the diagram.
The angle of depression of the boat from the top A of the lighthouse is given as 25 degrees
Angle BCA = 25 degrees (Alternate Angles are Equal)
We want to determine the distance of the boat C from the base of the lighthouse B i.e. |BC|
[tex]Tan\alpha =\frac{opposite}{adjacent}[/tex]
Tan 25=[tex]\frac{89}{|BC|}[/tex]
Cross multiply
|BC| X tan 25 =89
|BC| = [tex]\frac{89}{tan 25}[/tex]=190.86 feet
The distance of the boat C from the base of the lighthouse B is 191 feet (to the nearest feet).
1. The difference of a number and 3 equals 5
added to twice the number. Find the number.
Answer:
-8
Step-by-step explanation:
Let n represent the number. Then we have ...
n -3 . . . . the difference of a number and 3
= . . . . . . equals
5 +2n . . . 5 added to twice the number
Adding -n-5 to both sides of the equation gives ...
n -3 -n -5 = 5 +2n -n -5
-8 = n . . . . . simplify
The number is -8.
Help ASAP Please
The following two-way frequency table shows information collected from a survey of students regarding their grade level and how they spend their screen time.
Grade vs.
Screen Time Uses the
Internet Watches
TV Plays Video
Games Total
7th Grader 6 3 6 15
8th Grader 8 3 2 13
Total 14 6 8 28
What is the probability that a student uses the Internet, given that he or she is in eighth grade?
Enter your answer rounded to two decimal places, like this: 0.42
Enter your answer as a fraction in simplest form, formatted like this: 3/14
The probability of an eighth-grade student using the Internet, based on the data provided, is approximately 0.62, or simply 8/13 as a fraction.
Explanation:To calculate the probability that a student uses the Internet given he or she is in eighth grade, we look at the eight graders' behaviors in the table. There are 13 students in total in the eighth grade, and 8 of these use the Internet.
So, the probability can be expressed as P(Internet|8th grader) = number of internet users in 8th grade / total number of 8th graders = 8 / 13.
When rounded to two decimal places, this probability would be approximately 0.62. In terms of fractions, it can simply be left as 8/13.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ12
The probability that a student uses the Internet, given that he or she is in eighth grade, is 2/3.
We are asked for the probability that a student uses the Internet, given that he or she is in eighth grade. This is the conditional probability [tex]$P({\text{Internet}} | {\text{8th Grade}})$[/tex], which can be calculated using Bayes' Theorem: \begin{align*}
[tex]P({\text{Internet}} | {\text{8th Grade}}) &= \frac{P({\text{8th Grade}} | {\text{Internet}})P({\text{Internet}})} {P({\text{8th Grade}})} \\&= \frac{\frac{8}{28} \cdot \frac{14}{28}} {\frac{13}{28}} \\&= \frac{2}{3}[/tex]
\end{align*}
Therefore, the probability that a student uses the Internet, given that he or she is in eighth grade, is [tex]$\boxed{\frac{2}{3}}$[/tex].
Here is a more detailed explanation of how we arrived at our answer:
Step 1: Calculate the probability of being in eighth grade, given that the student uses the Internet. This is the conditional probability [tex]$P({\text{8th Grade}} | {\text{Internet}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{8th Grade}} | {\text{Internet}}) = \frac{8}{14}$[/tex]
Step 2: Calculate the probability of using the Internet.** This is the marginal probability [tex]$P({\text{Internet}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{Internet}}) = \frac{14}{28}$[/tex].
Step 3: Calculate the probability of being in eighth grade.This is the marginal probability [tex]$P({\text{8th Grade}})$[/tex], which can be calculated from the table as follows: [tex]$P({\text{8th Grade}}) = \frac{13}{28}$[/tex].
Step 4: Apply Bayes' Theorem to calculate the conditional probability [tex]$P({\text{Internet}} | {\text{8th Grade}})$[/tex].
Therefore, the probability that a student uses the Internet, given that he or she is in eighth grade, is[tex]$\boxed{\frac{2}{3}}$[/tex].
For such more questions on probability
https://brainly.com/question/23417919
#SPJ6
Give a big-O estimate for the number of operations, where an operation is a comparison or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the for loops, where a1, a2, ..., an are positive real numbers). m :
Answer:
O(n2)
Step-by-step explanation:
the first iteration algorithm of the i-for loop (the outer loop), the j-for loop (the inner loop) will run 2 to
n times which is represented as
(n − 1 times).
the second iteration algorithm of the i-for loop, the j-for loop will run 3 to n times represented as
(n − 2 times).
the third to the last iteration algorithm of the i-for loop, the j-for loop will run n − 1 to n times (2 times).
And the second to the last iteration of the i-for loop, the j-for loop will run from n to n times (1 time)
For the last iteration of the i-for loop, the j-for loop will run 0 times because i + 1 > n.
Now we know that the number of times the loops are run is
1 + 2 + 3 + . . . + (n − 2) + (n − 1) = n(n − 1)/2
So we can express the number of total iterations as n(n − 1)/2.
Since we have two operations per loop (one comparison and one multiplication), we have
2 ·n(n−1)/2 = n
2 − n operations.
So f(n) = n2 − n
f(n) ≤ n2
for n > 1.
Therefore, the algorithm is O(n2) with
C = 1 and k = 1.
9-114. While setting up a mathematical sentence to solve a problem, Paulina and Aliya came up with the equations below. Since the equations did not look alike, the girls turned to you for help. Paulina: 4x+2y=6 Aliya: 12x+6y=18
Step-by-step explanation:
Below is an attachment containing the solution.
Paulina and Aliya's equations, 4x+2y=6 and 12x+6y=18, are multiples of each other. This means they represent the same line and indicate an infinite number of solutions rather than a single intersection point typically sought after in a system of distinct linear equations.
Explanation:Paulina and Aliya have created linear equations to solve a mathematical problem. Paulina has the equation 4x+2y=6 and Aliya has 12x+6y=18. At a glance, these equations may look different, but upon closer inspection, Aliya's equation is actually just Paulina's equation multiplied by 3. This realization is pertinent because it suggests both equations represent the same line. Therefore, these two equations should have the same solution set.
To analytically solve simultaneous equations, one could use methods such as substitution, elimination, or matrix and determinant-based approaches. Using elimination or substitution, we aim to isolate one variable and solve for it. For example, because Aliya's equation is a multiple of Paulina's, if they were meant to be a system of separate lines, one way to solve them would be to simplify Aliya's equation by dividing by 3, revealing it to be identical to Paulina's, which indicates that this system has an infinite number of solutions (all points on the line represented by the equation).
If a system has two distinct equations, elimination involves adding or subtracting equations from one another to eliminate one of the variables, and substitution involves solving for one variable in terms of the other and then substituting this expression into the other equation. When equations are actually multiples of each other, this indicates either an infinite number of solutions or no solutions dependant if the equations are consistent or inconsistent respectively.
Give the coordinates of each point under the given transformation.
Answer:
see below
Step-by-step explanation:
The rotation transformations are ...
90° : (x, y) ⇒ (-y, x)
180° : (x, y) ⇒ (-x, -y)
270° : (x, y) ⇒ (y, -x)
Applying these to the given points, you get ...
9) A'(6, 9)
10) A'(15, 11)
11) A'(9, 6)
12) A'(-11, 15)
13) A'(6, -9)
14) A'(15, -11)
What is the answer to this question??
Option B:
Point R on the number line best represents [tex]\frac{-6}{2}[/tex]
Solution:
In the number line,
The numbers which are left side of 0 are -1, -2, -3, -4, -5, -6, -7, -8.
The numbers which are right side of 0 are 1, 2, 3, 4, 5, 6, 7, 8.
Q is 6 points left of 0. That is Q = -6
R is 3 points left of 0. That is R = -3
S is 2 points left of 0. That is s = -2
T is 3 points right of 0. That is T = 3
[tex]$\frac{-6}{2}=-3[/tex]
In the number line -3 is the point of R.
Therefore point R on the number line best represents [tex]\frac{-6}{2}[/tex].
Option B is the correct answer.
If a standard dartboard's diameter is 17.75 inches, what is the area of once sector?
Answer:
12.37 square inches
Step-by-step explanation:
The area of the dartboard can be figured from the diameter as ...
A = (π/4)d² = (π/4)(17.75 in)² ≈ 247.4495 in²
There are 20 sectors, all the same size, so the area of one of them is ...
sector area = (1/2)(247.4495 in²) ≈ 12.37 in²
Gerry has two different part-time jobs, and he had work 20 hours per week at each job. He earns $8 per hour at one job. Which expression represents how much Gerry earned last week if he earns d dollars per hour at this other job? A- 20+20d B- 160+ 20d C- 40+ d D- 160+ 8d PLZZZZZZ ANSWER THX!!!!!!
Answer:The answer is B. 160 + 20d
Step-by-step explanation: first find out the total for how much he makes at the first job. 20 x 8 = 160 then you just write out the equation
What is the distance between point (6, -1) and point (5, 3) rounded to the nearest tenth?
4.6 units
1.4 units
17 units
4.1 units
Answer:
4.6
Step-by-step explanation:
Use the distance formula:
d = [tex]\sqrt{(x-x)^{2}-(y-y)^{2} }[/tex]
plug in the numbers
[tex]\sqrt{(6-1)^{2} -(5-3)^{2} }\\[/tex]
PEMDAS says do parenthisee first
[tex]\sqrt{(5)^{2} -(2)^{2} }[/tex]
now square it
[tex]\sqrt{25-4}[/tex]
subtract
[tex]\sqrt{21}[/tex]
do the calculator for this part
4.582575695
round it to get
4.6
A plastic rod 1.5 m long is rubbed all over with wool, and acquires a charge of -9e-08 coulombs. We choose the center of the rod to be the origin of our coordinate system, with the x-axis extending to the right, the y-axis extending up, and the z-axis out of the page. In order to calculate the electric field at location A = < 0.7, 0, 0 > m, we divide the rod into 8 pieces, and approximate each piece as a point charge located at the center of the piece. 1. What is the length of one of these pieces? 2. What is the location of the center of piece number 2? 3. How much charge is on piece number 2?
Answer:
Answer:
a) k = 0.1875 m
b) r2 = 0.46875 m
c) q = -1.125*10^-8 C
Step-by-step explanation:
Given:
- The total Length of rod L = 1.5 m
- The total charge of the rod Q = -9 * 10^8 C
- Total section of a rod n = 8
Find:
1. What is the length of one of these pieces?
2. What is the location of the center of piece number 2?
3. How much charge is on piece number 2?
Solution:
- The entire rod is divided into 8 pieces, so the length of each piece would be k:
k = L / n
k = 1.5 / 8
k = 0.1875 m
- The distance from center of entire rod and center of section 2 is 2.5 times the section length
r2 = 2.5*k
r2 = 2.5*(0.1875)
r2 = 0.46875 m
- Assuming the charge on the rod is uniformly distributed. The the charge for each section of rod is given by q:
q = Q / n
q = -9 * 10^8 / 8
q = -1.125*10^-8 C
The length of one of the eight pieces of the rod is 0.1875 m. The center of piece number 2 is at <0.28125, 0, 0> m. The charge on piece number 2 is -1.125e-08 Coulombs.
Explanation:The problem involves the concepts of electric field, charge distribution, and coordinate system in Physics. Let's answer the question part by part:
The length of one of these pieces is the total length divided by the number of pieces. That is, 1.5 m / 8 = 0.1875 m.The center of piece number 2 would be one and a half times the length of one piece, to the right of the origin in the x-direction; hence, it is at <0.28125, 0, 0> m.The charge on piece number 2 is the total charge divided by the number of pieces. That is, -9e-08 C / 8 = -1.125e-08 Coulombs.Learn more about Electric Field Calculation here:https://brainly.com/question/34817608
#SPJ3
hey, help me with this pls i only have 10 minutes. 30 points each :)
Answer:
y=-2x
Step-by-step explanation:
First you want to remember rise over run. Your rise is -2 and your run is 1. So -2/1 is your answer. And -2/1 is equal to -2.
Answer:
[tex]\frac{2} {-1}[/tex]=-2
Step-by-step explanation:
Find the value of variable x. If your answer is not an integer, write it in simplest radical form with the denominator rationalized.
Answer:
the answer is 7
Step-by-step explanation:
angle 30°
x=14/2
x=7
The value of x is 7 cm.
How to solve the variable?If you have the hypotenuse, multiply it by sin(θ) to get the length of the side opposite to the angle.
y = 14* sin 30°
y = 14* 0.5
y = 7
y = 7cm
What's the base of a triangle?
The bottom line of a triangle is the base of the triangle, and it can be one of the three sides of the triangle. In a triangle, one side is the base side and the remaining two sides can be the height or the hypotenuse side.
Learn more about triangles here: brainly.com/question/17335144
#SPJ2
X-1 0 1 2 fx 18 6 2 2/3 what is the decay factor of the exponential function represented by the table 1/3 2/3 2 6
The decay factor of the exponential function represented by the provided table is 1/3 as the ratio of the consecutive y-values of the function is consistently 1/3.
Explanation:The decay factor of an exponential function can be found by comparing the ratio of the y-values of the function.
In the given question, a table of x/f(x) values is provided.
A decay happens if the ratios of the consecutive y-values (outputs) are consistently less than 1.
Let's find the ratio between successive y-values. Between 18 and 6, the ratio is 6/18 = 1/3. Going from 6 to 2, the ratio is 2/6 = 1/3. Lastly, transitioning from 2 to 2/3, the ratio is (2/3)/2 = 1/3.
Since we find the ratio of successive outputs (y-values) to consistently be 1/3, it is safe to say that 1/3 is the decay factor for the exponential function represented by the given table.
Learn more about Decay Factor here:https://brainly.com/question/32873861
#SPJ2
Find the indicated sum for each sequence. S9 of –9, 36, –144, 576, ...
Answer:
-471,861
Step-by-step explanation:
The sum of 9 terms in the sequence –9, 36, –144, 576, ... is -471861.
What is a sequence?An ordered collection of objects that allows repetitions is referred to as a sequence. It has members, just like a set does. The length of the sequence is determined by the number of items.
Given:
–9, 36, –144, 576, ...
Calculate the ratio of the sequence as shown below,
ratio = 36 / -9
ratio = -4
Calculate the sum of 9 terms as shown below,
S₉ = -9 (1 - (-4)⁹) / (1 - (-4))
S₉ = -9 (1 + 262144) / 5
S₉ = -9 (262145) / 5
S₉ = -2359305 / 5
S₉ = -471861
To know more about the sequence:
https://brainly.com/question/28615767
#SPJ2