A Change in matter that can be seen through direct observation are called?

Answers

Answer 1
It is physical properties.

Related Questions

A 1.50-g sample of hydrated copper(ii) sulfatewas heated carefully until it had changed completely to anhydrous copper(ii) sulfate () with a mass of 0.957 g. determine the value of x. [this number is called the number of waters of hydration of copper(ii) sulfate. it specifies the number of water molecules per formula unit of in the hydrated crystal.]

Answers

CuSO₄·xH₂O → CuSO₄ + xH₂O

M(CuSO₄)=159.61 g/mol
M(H₂O)=18.02 g/mol
m(CuSO₄·xH₂O)=1.50 g
m(CuSO₄)=0.957 g

m(CuSO₄·xH₂O)/M(CuSO₄·xH₂O)=m(CuSO₄)/M(CuSO₄)

M(CuSO₄·xH₂O)=M(CuSO₄)+xM(H₂O)

m(CuSO₄·xH₂O)/{M(CuSO₄)+xM(H₂O)}=m(CuSO₄)/M(CuSO₄)

M(CuSO₄)+xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)

xM(H₂O)=m(CuSO₄·xH₂O)M(CuSO₄)/m(CuSO₄)-M(CuSO₄)

x=M(CuSO₄)/M(H₂O){m(CuSO₄·xH₂O)/m(CuSO₄)-1}

x=159.61/18.02*{1.50/0.957-1}=5.0

x=5

CuSO₄·5H₂O

Green plants use light from the sun to drive photosynthesis. photosynthesis is a chemical reaction in which water and carbon dioxide chemically react to form the simple sugar glucose and oxygen gas.what mass of water is consumed by the reaction of carbon dioxide

Answers

The equation that represents the process of photosynthesis is: 


6CO2+12H2O+light->C6H12O6+6O2+6H2O


Photosynthesis is the process in plants to make their food. This involves the use carbon dioxide to react with water and make sugar or glucose as the main product and oxygen as a by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:


1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed


However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.


Final answer:

Photosynthesis involves converting carbon dioxide and water into glucose and oxygen with sunlight. The balanced chemical equation indicates a 6:1 mole ratio of water to glucose. The mass of water consumed would be six times the molecular weight of water times the moles of glucose formed.

Explanation:

Photosynthesis is a fundamental biological process in which green plants use sunlight to convert carbon dioxide (CO₂) and water (H₂O) into glucose (C₆H₁₂O₆) and oxygen (O₂). The balanced chemical equation for photosynthesis is:

6CO₂ + 6H₂O + sunlight → C₆H₁₂O₆ + 6O₂

The question asks about the mass of water consumed in the reaction with carbon dioxide to form glucose during photosynthesis. To determine this, you need to know the mole ratio between water and glucose from the balanced equation, which is 6:1, meaning six molecules of water are needed to produce one molecule of glucose. To find the specific mass of water used, you would multiply the molecular weight of water (18.01528 g/mol) by the number of moles of water consumed (which is typically six times the moles of glucose formed).

Which is expected to have the largest dispersion forces? which is expected to have the largest dispersion forces? c12h26 be cl2 c3h8 f2?

Answers

The one I would expect to have the largest dispersion forces would be the largest and heaviest molecule. This is evidenced by the fact that that molecule is a liquid at room temperature while all the others are gases.

C3H8 = This is propane and a gas at room temperature

F2 = Also a gas at room temperature

BeCl2 = This is a solid and forms an extended lattice in the form of Be-Cl-Be bridges therefore dispersion forces are not important

Therefore the answer to this is C12H26 which is a wax and a liquid at room temperature.

Answer:

C12H26

Final answer:

Among the substances listed (C12H26, Be, Cl2, C3H8, F2), the largest dispersion forces are expected in C12H26 due to its larger molecular size and weight. Dispersion forces are temporary shifts in electron density causing attraction between molecules and are much stronger in larger and heavier molecules.  Smaller molecules like Cl₂ and F₂ have weaker dispersion forces.

Explanation:

The substance expected to have the largest dispersion forces from the ones mentioned (C12H26, Be, Cl2, C3H8, F2) is C12H26 due to its large size and molecular weight. Dispersion forces, also known as London dispersion forces, are temporary shifts in electron density in non-polar molecules that result in attraction between molecules. This is typically stronger in larger and heavier molecules. As C12H26 is a larger, heavier, and more complex molecule than the others listed, it has more electrons, hence more shifting of electron density and stronger resultant dispersion forces.

For other compounds like Cl₂ and F₂, they are gases at room temperature, meaning that their dispersion forces are weaker. This is because dispersion forces influence the boiling and melting points of substances. Larger dispersion forces lead to higher melting and boiling points, which is also why C12H26, a component of diesel and other heavy oils, is a liquid at room temperature.

Learn more about Dispersion Forces here:

https://brainly.com/question/31306859

#SPJ11

Aluminum reacts with chlorine gas to form aluminum chloride. 2al(s)+3cl2(g)→2alcl3(s) what minimum volume of chlorine gas (at 298 k and 225 mmhg) is required to completely react with 7.85 g of aluminum

Answers

The balanced chemical reaction is expressed as:

2Al(s)+3Cl2(g)→2AlCl3(s)

To determine the volume of chlorine gas needed given the mass of aluminum metal to be used, we need to calculate for the moles of chlorine needed and use a relation that relates moles and volume by assuming the gas to be an ideal gas. We use the equation PV =nRT. We calculate as follows:

7.85 g Al ( 1 mol / 26.98 g ) ( 3 mol Cl2 / 2 mol Al ) = 0.43643 mol Cl2

PV = nRT
V = nRT / P
V = 0.43643 (0.08205) (298) / (225/760)
V = 36.04 L chlorine gas

The minimum volume needed would be 36.04 L.
Final answer:

To find the minimum volume of chlorine gas required to react with 7.85 g of aluminum, we convert the mass of aluminum to moles, find the necessary moles of chlorine gas using the balanced equation, and then apply the ideal gas law to find the volume.

Explanation:

The question is asking about the volume of chlorine gas required to completely react with a given amount of aluminum. We know from the balanced equation that 2 moles of aluminum (Al) react with 3 moles of chlorine gas (Cl) to form 2 moles of aluminum chloride (AlCl₃). First, we've to convert the mass of aluminum to moles by dividing the mass 7.85g by the molar mass of aluminum (26.98 g/mol), giving approximately 0.291 mol.

From the equation, we know the mole ratio of Al to Cl2 is 2 to 3. Therefore, 0.291 moles of Al will require 0.437 mol of Cl₂. Next, we apply the ideal gas law (PV=nRT) to find the volume. Here, P=225 mmHg (which is 0.296 atmospheres), R=0.0821(atm L)/(mol K), T=298 K and n=0.437 mol.

Finally, solving for V in PV=nRT gives us V = nRT/P, approximating 11.08 L as the minimum volume of chlorine gas required to react.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

A(n) ________ chemical reaction releases energy, whereas a(n) ________ reaction requires an input of energy.

Answers

There are two types of chemical reaction based on the direction of heat or energy. 

If the energy or heat is absorbed by the system of reactants in order to form the specific products then, the reaction is called endothermic. 

However, if the energy is released by the reactants in the process of producing the products then, the reaction is exothermic.

Hence, for this item, the first blank should be filled with exothermic and the second blank should be filled with endothermic. 

There are sometimes given chemical reactions that do not involve the transfer of heat from the system or from the system. 

Answer:

Exothermic chemical reaction

Endothermic chemical reaction

An Exothermic chemical reaction releases energy, whereas an Endothermic chemical reaction requires an input of energy.

An Exothermic chemical reaction involves the release of heat(thermal energy) in a system to the surroundings. The enthalpy(heat) change which is ΔH decreases in this type of reaction

An Endothermic chemical reaction involves the absorption or input of heat in the form of thermal energy by the system from the surroundings. The enthalpy(heat) change which is ΔH increases in this type of reaction.  

Read more on https://brainly.com/question/4548577

Why is it important to stir the solution in the flask as you add titrant from the buret?

Answers

The main reason for this instruction is to speed up the rate of diffusion. Neutralization reactions are determined by the end point. In theory, an endpoint can be determined from a slope in a graph. However, the slope is very steep, such that a slight change in addition of titrant, it would exceed the endpoint. Therefore, you have to stir the solution so that you can see the immediate reaction with every tiny drop that is added. There might be cases where the color is not significant because it still hasn't diffused in the solution very well.

Using the table below, what is the change in enthalpy for the following reaction? 3CO (g) + 2Fe2O3 (s) Imported Asset Fe(s) + 3CO2 (g)

Answers

To solve this problem, we should recall that the change in enthalpy is calculated by subtracting the total enthalpy of the reactants from the total enthalpy of the products:

ΔH = Total H of products – Total H of reactants

You did not insert the table in this problem, therefore I will find other sources to find for the enthalpies of each compound.

ΔHf CO2 (g) = -393.5 kJ/mol

ΔHf CO (g) = -110.5 kJ/mol

ΔHf Fe2O3 (s) = -822.1 kJ/mol

ΔHf Fe(s) = 0.0 kJ/mol

Since the given enthalpies are still in kJ/mol, we have to multiply that with the number of moles in the formula. Therefore solving for ΔH:

ΔH = [3 mol ( − 393.5 kJ/mol) + 1 mol (0.0 kJ/mol)] − [3 mol ( − 110.5 kJ/mol) + 2 mol ( − 822.1 kJ/mol)]

ΔH = 795.2 kJ

How many milliliters of a 0.266 m lino3 solution are required to make 150.0 ml of 0.075 m lino3 solution?

Answers

We need an equation that would relate the concentration of the original solution to that of the desired solution. To solve this we use the equation expressed as follows, 

M1V1 = M2V2

where M1 is the concentration of the stock solution, V1 is the volume of the stock solution, M2 is the concentration of the new solution and V2 is its volume.

M1V1 = M2V2

0.266 M x V1 = 0.075 M x 150 mL

V1 = 42.29 mL


Therefore, we need about 42.29 mL of the 0.266 M of lithium nitrate solution to make 150.0 mL of the 0.075 M lithium nitrate solution.

[tex]\boxed{{\text{42}}{\text{.3 mL}}}[/tex] of a 0.266 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution is required to make 150 mL of a 0.075 M [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Further Explanation:

The concentration is the proportion of substance in the mixture. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The molarity equation is given by the following expression:

[tex]{{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}} = {{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}[/tex]                      …… (1)

Here,

[tex]{{\text{M}}_{\text{1}}}[/tex] is the molarity of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{1}}}}[/tex] is the volume of the initial [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{M}}_{\text{2}}}[/tex] is the molarity of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

[tex]{{\text{V}}_{_{\text{2}}}}[/tex] is the volume of the new [tex]{\text{LiN}}{{\text{O}}_{\text{3}}}[/tex] solution.

Rearrange equation (1) to calculate [tex]{{\text{V}}_{\text{1}}}[/tex].

[tex]{{\text{V}}_{\text{1}}}=\frac{{{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}}}{{{{\text{M}}_{\text{1}}}}}[/tex]                    …… (2)

The value of [tex]{{\text{M}}_{\text{1}}}[/tex] is 0.266 M.

The value of [tex]{{\text{M}}_{\text{2}}}[/tex] is 0.075 M.

The value of [tex]{{\text{V}}_{_{\text{2}}}}[/tex] is 150 mL.

Substitute these values in equation (2).

[tex]\begin{aligned}{{\text{V}}_{\text{1}}}&=\frac{{\left({{\text{0}}{\text{.075 M}}} \right)\left( {{\text{150 mL}}} \right)}}{{{\text{0}}{\text{.266 M}}}}\\&=42.29{\text{ mL}}\\&\approx 42.{\text{3 mL}}\\\end{aligned}[/tex]

Learn more:

1. What is the concentration of alcohol in terms of molarity? https://brainly.com/question/9013318

2. What is the molarity of the stock solution of luminol? https://brainly.com/question/2814870

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, LiNO3, 42.3 mL, molarity equation, volume, M1, M2, V1, V2, 150 mL, 0.075 M, 0.266 M, concentration, concentration terms.

Jane bought some raisins to keep in her purse as a snack what is one reason raisins dont need refrigeration

Answers

Raisins are dried up grapes. The drying process worked on preserving raisins. Most of the water contained in them was removed during the drying process. This dry environment is not suitable for bacteria to breed in and, thus, raisins won't go rancid. 

Answer: The drying process worked to preserve them

Explanation: apex

What volume of 0.0200 m calcium hydroxide?

Answers

The molarity is the number of moles of solute dissolved in one liter of solvent. It is calculated using the formula M = n/V. To find the volume we have to specify the number of moles dissolved to get the required molarity concentration which is 0.200 m. 

Calcium hydroxide may be used in the process of titration with acids to get a neutral solution and determine the unknown concentration of the acid. In such case we use the following formula;
M1V1 = M2V2
M1 is the molarity of CaOH
V1 is the volume of CaOH
M2 is the molarity of the acid
V2 is the volume of the acid

Write a balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with ferrous ion

Answers

H₂O₂ + 2FeSO₄ + H₂SO₄ → Fe₂(SO₄)₃ + 2H₂O

H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O  k=1
Fe²⁺ → Fe³⁺ + e⁻                 k=2

H₂O₂ + 2H⁺ + 2Fe²⁺ → 2H₂O + 2Fe³⁺


The balanced equation for the reaction of hydrogen peroxide with ferrous ions to produce ferric ions and water in an acidic solution is H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq).

The balanced equation for the oxidation-reduction reaction that occurs when hydrogen peroxide reacts with the ferrous ion (Fe2+) in an acidic solution to produce ferric ion (Fe3+) and water is:

H2O2(aq) + 2H+(aq) + 2Fe2+(aq) → 2H2O(l) + 2Fe3+(aq)

This reaction showcases the oxidizing property of hydrogen peroxide. The ferrous ion (Fe2+) is oxidized to the ferric ion (Fe3+), while the hydrogen peroxide (H2O2) is reduced to water (H2O).

What is the ph of a solution containing 0.12 mol/l of nh4cl and 0.03 mol/l of naoh (pka of is 9.25)?

Answers

The Henderson-Hasselbalch equation fails to provide accurate pH readings for excessively diluted buffer solutions because it ignores the self-dissociation that occurs in water. The pH of the solution is 8.65.

The Henderson-Hasselbalch equation establishes a connection between an acid's pKa (acid dissociation constant) and pH in aqueous solutions. When the concentration of the acid and its conjugate base, or the base and the corresponding conjugate acid, are known, the pH of a buffer solution can be determined with the use of this equation.

The expression used to calculate pOH is:

pOH = pKb + log  [Conjugate acid]/ [Weak base]

pKa + pKb = 14

pKb = 14 - pKa

pKb = 14 - 9.25

pKb = 4.75

pOH = 4.75 + log 0.12 / 0.03

pOH = 5.35

pH = 14 - pOH

pH = 14 - 5.35

pH = 8.65

To know more about pH, visit;

https://brainly.com/question/27945512

#SPJ12

An undergraduate weighed out 20grams of sodium hydroxide pellets. If Na =23, O = 16 andH = 1, What is the mole of this sodium hydroxide.

Answers

Final answer:

To determine the number of moles of NaOH from 20 grams, calculate the substance's molar mass (39.997 g/mol) and divide the given mass by the molar mass, resulting in 0.5001 moles of NaOH.

Explanation:

The question asks about calculating the moles of sodium hydroxide (NaOH) from its mass in grams. To find moles, one has to use the molar mass of the substance.

First, calculate the molar mass of NaOH:
Na (1 x 22.990 g/mol) + O (1 x 15.999 g/mol) + H (1 x 1.008 g/mol) = 39.997 g/mol.

Next, use this molar mass to find the number of moles:
Given: 20.0 g NaOH,
Desired: moles NaOH
Since 1 mole of NaOH weighs 39.997 g, then:
moles of NaOH = mass (20 g) ÷ molar mass (39.997 g/mol) = 0.5001 moles.

when the pressure that a gas exerts on a sealed container changes from blank torr to 900 torr the temperature changes from 300 k to 450 k

Answers

It's 600 torr, just use Gay-Lussac's law P1/T1=P2/T2

Answer:

Initial pressure = 600 torr

Explanation:

Given:

Initial pressure, P1 = 900 torr

Initial Temperature, T1 = 300 K

Final temperature, T2 = 450 K

To determine:

Final pressure of  gas, P2

Explanation:

Based on the ideal gas equation

[tex]PV = nRT\\[/tex]

where n = moles of gas

R = gas constant, T = temperature

At constant volume (V), the above equation becomes:

P/T = constant

This is Gay-Lussac's law

[tex]\frac{P1}{T1} =\frac{P2}{T2} \\\\P1=\frac{P2}{T2} *T1=\frac{900\ torr}{450\ K} *300\ K=600\ torr[/tex]

How many grams of naoh would react with 507 g fecl2 in the reaction fecl2 + 2naoh fe(oh)2(s) + 2nacl?

Answers

Answer: Correct answer is 507g FeCl2 x (1 mol FeCl2 / 126.8 g FeC2) x (1 mol Fe(OH)2 / 1 mol FeCl2) x (89.8 g Fe(OH)2/ 1 mol Fe(OH)2) = 359 g Fe(OH)2.

Answer:ANSWER

Explanation:

Helium has a density of 1.79×10^-4 g/mL at standard temperature and pressure. A balloon has a volume of 6.3 liters. Calculate the mass of helium that it would take to fill the balloon. Be sure to follow significant figure rules when calculating the answer.

A. 35,000g
B. 1.1×10^-3 g
C. 2.8×10^-5 g
D. 1.1g

Answers

6,3 L = 6300 mL
..................
1,79×10^-4g -------- 1 mL
Xg --------------------- 6300 mL
X = 0,000179×6300
X = 1,1277g ≈ 1,1g

:•)

How much heat is removed from the skin by the evaporation of 190 g (about 1/2 cup) of isopropyl alcohol?

Answers

Final answer:

The evaporation of 190g of isopropyl alcohol would remove approximately 463.6 kJ of heat.

Explanation:

The student asked: 'How much heat is removed from the skin by the evaporation of 190 g (about 1/2 cup) of isopropyl alcohol?' The process of evaporation removes heat from the surface it's occurring on because energy is needed to change a substance from a liquid state to a gaseous one. This is known as the enthalpy of vaporization. Unfortunately, the value provided for the vaporization of water can't be directly used for isopropyl alcohol. However, using related scientific data, the approximate heat of vaporization for isopropyl alcohol is about 2.44 kJ/g. Therefore, to calculate the heat removed by evaporation of 190g of isopropyl alcohol, we would multiply the mass (190g) by the heat of vaporization (2.44 kJ/g) which totals approximately 463.6 kJ.

Learn more about Evaporation of isopropyl alcohol here:

https://brainly.com/question/36260030

#SPJ12

Final answer:

To calculate the heat removed by the evaporation of isopropyl alcohol, one would typically multiply the number of moles of the alcohol by its heat of vaporization, which is approximately 45.3 kJ/mol at boiling point; however, the specific heat of vaporization at skin temperature is necessary to determine the exact amount of heat removed.

Explanation:

To determine how much heat is removed from the skin by the evaporation of isopropyl alcohol, we need the heat of vaporization for isopropyl alcohol (also known as isopropanol). The heat of vaporization is the amount of heat required to turn a liquid into a vapor without a temperature change. Unfortunately, we do not have the exact heat of vaporization value for isopropyl alcohol at human skin temperature provided in the reference, which would directly allow the calculation. However, we can consider that the heat of vaporization for isopropyl alcohol is typically around 45.3 kJ/mol at its boiling point.

For the sake of explanation, let's assume that this value is close enough to use for a skin temperature of 37 °C. The molar mass of isopropyl alcohol (C3H8O) is approximately 60.1 g/mol. First, we would convert 190 g of isopropyl alcohol to moles:

Moles of isopropyl alcohol = mass (g) / molar mass (g/mol) = 190 g / 60.1 g/mol

Then, we would multiply the moles by the heat of vaporization to get the total amount of heat removed:

Heat removed (kJ) = moles * heat of vaporization (kJ/mol)

Without the exact value for the heat of vaporization of isopropyl alcohol at skin temperature, we cannot provide the exact amount of heat removed. However, this process illustrates how the calculation would be performed given the correct data.

Learn more about Heat removal by evaporation of isopropyl alcohol here:

https://brainly.com/question/31605623

#SPJ3

Research the amount of carbon dioxide generally found in the air and in breath. which has more carbon dioxide? what are some of the other sources of carbon dioxide in air?

Answers

In atmosphere there is 0.04 % of co2 in the air
In breath we breath out about 2 to 3 pounds of  co2 which is greater than the amount of co2 found in air \
The sources of co2 are
respiration 
combustion of organic fuels or compounds

Answer:

1- Carbon dioxide in our breath comes from the carbon in our food.

2- All plants need carbon dioxide to survive.

3- About .04 percent of the atmosphere's air is carbon dioxide and  4.4       percent of our breath is carbon dioxide we breathe out more carbon          dioxide than we breathe in.

4- Some effects might include combustion with other gasses and it could also potentially kill all life.

Explanation:

Consider the potassium permanganate reaction again.

2KMnO4 + 16HCl → 2KCl + 2MnCl2 + 8H2O + 5Cl2

How many moles of water are produced when 3.45 moles of KMnO4 react? Give your answer to the nearest 0.1 moles.

I know the answer is 13.8 moles but I dont know how to find this. Please explain.

Answers

Hey there !

Mole ratio :

2 KMnO4 + 16 HCl → 2 KCl + 2 MnCl2 + 8 H2O + 5 Cl2

2 moles KMnO4 ----------------- 8 moles H2O
3.45 moles KMnO4 ------------- (moles H2O )

Moles H2O = 3.45 * 8 / 2

Moles H2O = 27.6 / 2

 = 13.8 moles of H2O

The option that was given is wrong , You're right.

Answer:

Moles of H2O produced = 13.8

Explanation:

Given:

Moles of KMnO4 reacted = 3.45

To determine:

moles of H2O produced

Explanation:

Given reaction:

2KMnO4 + 16HCl →2KCl + 2MnCl2 + 8H2O + 5Cl2

Based on the reaction stoichiometry:

2 moles of KMnO4 produces 8 moles of H2O

Therefore, moles of H2O produced when 3.45 moles of KMnO4 react is:

[tex]= \frac{3.45\ moles\ KMnO4 * 8\ moles\ H2O}{2\ moles\ KMnO4} = 13.8[/tex]

Convert 112°C to Kelvin.

Answers

112°C is 385.15 Kelvin

Answer:

112 °C = 385 K

Explanation:

The relation between Kelvin and Celsius degrees is

0°C = 273.15 K

To convert the temperature from Celsius to Kelvin we must add 273.15:

112 °C + 273.15 = 385.15 K

With the correct significant figures the answer would be 385 K

If 1.20 moles of an ideal gas occupy a volume of 18.2 l at a pressure of 1.80 atm, what is the temperature of the gas, in degrees celsius?

Answers

We can calculate for temperature by assuming the equation for ideal gas law:

P V = n R T

Where,

P = pressure = 1.80 atm

V = volume = 18.2 L

n = number of moles = 1.20 moles

R = gas constant = 0.08205746 L atm / mol K

Substituting to the given equation:

T = P V / n R

T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm / mol K)

T = 332.70 K

We can convert K unit to ˚C unit by subtracting 273.15 to Kelvin, therefore

T = 59.55 ˚C

Consider KOH and the following information. Hsol = –58 kJ/mol Hhydr of = –336 kJ/mol Hhydr of = –532.7 kJ/mol What is the Hlat rounded to the correct number of significant figures? Use Hsol = –Hlat + Hhydr.
A. –927 kJ/mol
B. –926.7 kJ/mol
C. –811 kJ/mol
D. –810.7 kJ/mol

Answers

The total Hhydr is:

Hhydr = – 336 kJ/mol + – 532.7 kJ/mol

Hhydr = - 868.7 kJ/mol

Therefore using the formula Hsol = –Hlat + Hhydr we can get Hlat.

– 58 kJ/mol = – Hlat + - 868.7 kJ/mol

- Hlat = 810.7 kJ/mol

Hlat = - 810.7 kJ/mol

ANSWER: 

D. –810.7 kJ/mol

Answer:D

Explanation:

Which configuration of a phospholipid would you expect to see in the presence of water?

Answers

The configurations that you would expect a phospholipid to see in the presence of water would be double-layered aggregations. The fatty acid tails of the phospholipid would face inside since it is the hydrophobic part, of the molecule. And, the phosphate part would be the one facing outward, interacting with water molecules since it is the hydrophilic part, water-loving. Hydrophobic means it hates water or it repels water molecules while hydrophilic means it attracts water molecule. This configuration is also known as the phospholipid bilayer where two layers of phospholipid molecules are adjecent to each other forming a double layer.

The electron stable state configuration in atoms is best seen in the ______ configuration.

inert gas
full d shell
full f shell
full s shell

Answers

The electron stable state configuration in atoms is best seen in the inert gas configuration.
Inert gas are the most stable since they have their valence electron shell saturated with electrons (the valence shell has the maximum number of electrons it can hold). They need neither donate nor accept electrons.

Aluminium chloride dissolved in Water =? When you dissolve aluminium chloride in water, what is the balanced chemical equation? NOTE: Not a chemical reaction, just dissolving.

Answers

Dissolution and dissociation of aluminum chloride:

AlCl₃(s) → Al³⁺(aq) + 3Cl⁻(aq)


The cation of aluminum is hydrolyzed:

Al³⁺ + 2H₂O ⇄ AlOH²⁺ + H₃O⁺
AlOH²⁺ +2H₂O ⇄ Al(OH)₂⁺ + H₃O⁺
Al(OH)₂⁺ + 2H₂O ⇄ Al(OH)₃ + H₃O⁺

In the reaction 2 c o2 → 2 co, how many moles of carbon are needed to produce 66.0 g of carbon monoxide

Answers

The solution would be like this for this specific problem:

Given:

66.0 g of carbon monoxide

reaction 2 C + O2 → 2 CO

 

mol e= mass / molar mass 
mole of 2CO = 66.0g / (12.011  15.999)g / mol 
mole of 2CO = 2.36 (CO and C has a 1:1 mole ratio) 

mole of 2CO = 2.36 -> mole of 1 CO = 2.36 / 2 = 1.18 

We got 2 moles of C, thus 1.18 x 2 = 2.36

So, we 2.36 moles of carbon are needed to produce 66.0 g of carbon monoxide in the reaction 2 C + O2 → 2 CO.   To add, Carbon nonmetallic and tetravalent, thus, making four electrons available to form covalent chemical bonds. 

In the given reaction moles of carbon are needed to produce 66.0 g of carbon monoxide is 2.35 moles.

How we calculate moles?

Moles of any substance will be calculated as:

n = W/M, where

W = given mass

M = molar mass

Given chemical reaction is:

2C + O₂ → 2CO

Moles of 66g of CO = 66g / 28g/mol = 2.35 mol

2 moles of CO = produced by 2 moles of carbon

2.35 moles of CO = produced by 2.35 moles of carbon

Hence, required moles of carbon are 2.35 moles.

To know more about moles, visit the below link:

https://brainly.com/question/15374113

The balanced equation for the reaction occurring when iron(iii) oxide, a solid, is reduced with pure carbon to produce carbon dioxide and molten iron is

Answers

2Fe2O3+3C ---> 3CO2+4Fe

Answer: The balanced chemical equation is written below.

Explanation:

A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on the product side. These equations follow law of conservation of mass.

The chemical equation for the reaction of iron (III) oxide with carbon follows:

[tex]2Fe_2O_3(s)+3C(s)\rightarrow 3CO_2(g)+4Fe(l)[/tex]

By Stoichiometry of the reaction:

2 moles of solid iron (III) oxide reacts with 3 moles of pure carbon to produce 3 moles of carbon dioxide gas and 4 moles of molten iron

Hence, the balanced chemical equation is written above.

Copper is which type of solid? molecular solid ionic solid covalent atomic solid metallic atomic solid

Answers

It's metallic atomic solid as it is a kind of metal .

Copper is a metallic atomic solid , the atoms are arranged in a regular pattern, with the valence electrons being free to move throughout the structure.Thus, the correct option is metallic atomic solid.

Copper is an example of a metal, and metals typically exhibit metallic bonding, where the valence electrons form a "sea" of delocalized electrons, creating strong bonds between the metal atoms. This allows for the high electrical and thermal conductivity that metals are known for.

Metallic solids are compounds that are entirely comprised of metal atoms that are held together by metallic bonds.Metallic bonding is a type of intramolecular force of attraction that occurs between a lattice of positive ions and a "sea" of delocalized electrons.

Thus, the correct option is metallic atomic solid.

Learn more about metallic atomic solid,here:

https://brainly.com/question/28620902

#SPJ6

What number of atoms of phosphorus are present in 1.00g of each of the compounds in exercise 48?

Answers

Answer:

Explanation:

The compounds in exercise 48 are:

a) P4O6,

b) Ca3 (PO4)2, and

c) Na2 H PO4

So, proceed with the calculus for each compound.

a) Molecular formula: P4O6

Molar mass: 4 * 31 g/mol + 6* 16g/mol = 220 g/mol

Number of moles in 1.00 grams of compound = mass in grams / molar mass =

= 1.00 g / 220 g/mol = 0.004545 mol

0.004545 mol of P4O6 contains 4 * 0.004545 =  0.01818moles of atoms of P.

=> 0.01818 moles * 6.022 * 10^23 atoms / mol = 1.095 * 10^ 22 atoms of P.

Answer: 1.095 * 10^22 atoms of P.

b) Ca3 (PO4)2

molar mass = 3 * 40.1 g/mol + 2 * 31.0 g/mol + 8 * 16 g/mol = 310.3 g/mol

number of moles in 1.00 g of Ca3 (PO4)2 = 1.00 g / 310.3 g/mol = 0.00322 mol

0.00322 mol of compound * 2 mol P / mol of compound = 0.00644 mol P

0.00644 mol P * 6.022 * 10^23 atom / mol = 3.878 * 10 ^ 21 atoms P

Answer: 3.878 * 10^21 atoms P

c) Na2 H PO4

molar mass = 2 * 23.0 g/mol + 1 g/mol + 31.0 g/mol + 4 * 16g/mol = 142.0 g/mol

number of moles = 1.00 g / 142.0 g/mol = 0.0070 moles Na2HPO4

=> 0.0070 moles P

=> 0.0070 * 6.022 * 10^23 = 4.215 * 10^21 atoms of P

Answer: 4.215 * 10^21 atoms P

Final answer:

To determine the number of atoms of phosphorus in a compound, you need to use the molar mass and Avogadro's number. Convert the mass of the compound to moles and then multiply by Avogadro's number to get the number of atoms.

Explanation:

The number of atoms of phosphorus present in a compound can be determined using the molar mass and Avogadro's number. We need to convert the mass of the compound to moles using its molar mass, and then multiply by Avogadro's number to get the number of atoms.

For example, if we have 1.00g of phosphorus pentoxide (P2O5), we can calculate the number of atoms of phosphorus by:

Calculating the moles of P2O5 using its molar mass (141.94 g/mol) Converting the moles of P2O5 to moles of phosphorus using the ratio in the balanced equation (2 moles of P per 1 mole of P2O5) Multiplying the moles of phosphorus by Avogadro's number (6.022 x 1023 atoms/mol)

The result will be the number of atoms of phosphorus in 1.00g of P2O5.

If 1.20 moles of an ideal gas occupy a volume of 18.2 L at a pressure of 1.80 atm, what is the temperature of the gas, in degrees Celsius?
-125°C
59.5°C
273°C
32°C

Answers

The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant =  0.0821
T is the temperature required (calculated in kelvin)

Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin

The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius

Other Questions
What statement correctly describes the key features of the graph of f(x) = 4(1/2)^(x + 1 ) 3Y-intercept of (0, 1), starts up on the left, gets closer to y = 3 on the rightY-intercept of (0, 1), starts down on the left, gets closer to y = 3 on the rightY-intercept of (0, 1), starts up on the left, gets closer to y = 3 on the rightY-intercept of (0, 1), starts down on the left, gets closer to y = 3 on the right Which is most important to check when inspecting by touch a possible fraudulent piece of id? HELP ME WRITE THIS IN SPEACH FORM OFFERTING 15 POINTS!!Imagine it is late 1787. Your town is holding a community picnic to show support for the new government. You are one of a very few people who know about the debate over the Constitution. The townspeople have asked you to explain these events during the picnic in the center of town. A cylinder has a radius of 1 inch and height of 1 inch.What is the approximate volume of a cylinder? "what is the direct cause of death for the aquatic animals during eutrophication" Koch's kinky curve is created by starting with a straight segment and replacing it with four segments, each 1/3 as long as the original segment. So, at the second stage the curve has three bends. At the next stage, each segments replaced by four segments, and so on. How many bends does this curve have at the third stage? The fourth stage? The nth stage? Define Social and Environmental justice Why did the American colonists favor a representative government separate from England Mark owns Siberian Husky sled dogs. He knows from data collected over the years that the weight of the dogs is a normal distribution. They have a mean weight of 52.5 lbs and a standard deviation of 2.4 lbs. What percentage of his dogs would you expect to have a weight between 47.7 lbs and 54.9 lbs? When were the monuments erected on monument ave richmond, va? Which of the following cavities would a surgeon performing an operation on the intestines have to open?A) Abdominopelvic and abdominalB) Thoracic and abdominalC) Abdominopelvic and thoracicD) Thoracic and pericardial Which of the following is a primary rather than learned emotion What is the greatest number of triangular sections, each with a base of 5 inches and a height of 8 inches, that can be cut from a rectangular piece of paper measuring 30 inches by 40 inches? Humanistic psychologists focused on the importance of: A copy center offers its customers two different pricing plans for black and white photocopies of 8.5 in. by 11 in. pages. Customers can either pay $0.08 per page or pay $7.50 for a discount card that lowers the cost to $0.05 per page. Write and solve an equation to find the number of photocopies for which the cost of each plan is the same.A) .08c .05c - 7.50; c = 250B) . 05c .08c + 7.50; c = 22.5C) 7.50 = .08c + 05c; c = 58D) .08c = .05c + 7.50; c = 250 Sunni and Shiite are the two factions of this religion The nurse has reinforced instructions to a client regarding the method for instilling eye drops into the left eye. the nurse determines that the client needs further teaching if the client does which during a return demonstration? Many Latin American nations became military dictatorships fearing this ideology would be embraced by the government? a. Fascism c. Socialism b. Capitalism d. Communism Jeffrey is so preoccupied by his fear of germs that he always keeps his car and apartment windows sealed tightly, and refuses to allow anyone into his apartment. he carries his own silverware which he uses when he eats away from home, and washes his hands every time he touches anything that has been touched by someone else. jeffrey would most likely be diagnosed with which anxiety disorder? What is the answer to the question Steam Workshop Downloader