A consumer advocate claims that 80 percent of cable television subscribers are not satisfied with their cable service. In an attempt to justify this claim, a randomly selected sample of cable subscribers will be polled on this issue. (a) Suppose that the advocate's claim is true, and suppose that a random sample of 7 cable subscribers is selected. Assuming independence, use an appropriate formula to compute the probability that 5 or more subscribers in the sample are not satisfied with their service. (Do not round intermediate calculations. Round final answer to p in 2 decimal place. Round other final answers to 4 decimal places.) Binomial, n

Answers

Answer 1

Answer: 0.8520

Step-by-step explanation:

Given : The probability that cable television subscribers are not satisfied with their cable service is 80%=0.80.

We assume that each subscriber is independent from each other, so we can apply Binomial distribution.

In binomial distribution, the probability of getting success in x trials is given by :-

[tex]P(X=x)=^nC_xp^x(1-p)^{n-x}[/tex]

, where n is the total number of trials , p is the probability of getting success in each trial .

Let x be the number of subscribers in the sample are not satisfied with their service..

So, p=0.8

Sample size : n=7

The probability that 5 or more subscribers in the sample are not satisfied with their service will be :-

[tex]P(x\geq5)=P(5)+P(6)+P(7)\\\\=^7C_5(0.8)^5(0.2)^2+^7C_6(0.8)^6(0.2)^1+^7C_7(0.8)^7(0.2)^0\\\\=\dfrac{7!}{5!(7-5)!}(0.0131072)+(7)(0.0524288)+(1)(0.2097152)\ \[\because\ ^nc_r=\dfrac{n!}{r!(n-r)!}]\\\\=0.2752512+0.3670016+0.2097152\\\\=0.851968\approx0.8520[/tex]

Hence, the probability that 5 or more subscribers in the sample are not satisfied with their service is 0.8520 .

Answer 2

Final answer:

The detailed answer explains how to calculate the probability of 5 or more subscribers not satisfied out of a sample of 7 using the binomial formula.

Explanation:

Binomial Probability Calculation:

Given:

Probability of dissatisfaction (p) = 0.80

Sample size (n) = 7

Calculate the probability that 5 or more subscribers are not satisfied using the binomial formula: P(X >= 5) = 1 - P(X < 5)

Use appropriate formula:

P(X < 5) = (7C0 * (0.80)^0 * (0.20)^7) + (7C1 * (0.80)^1 * (0.20)^6) + (7C2 * (0.80)^2 * (0.20)^5) + (7C3 * (0.80)^3 * (0.20)^4) + (7C4 * (0.80)^4 * (0.20)^3)


Related Questions

Express the confidence interval 0.333< p < 0.999 in the form p±E.

Answers

Answer:

Therefore, the final form

p+/-E = 0.666+/-0.333

Step-by-step explanation:

Given:

Confidence interval = 0.333 < p < 0.999

To express the confidence interval in the forn p+/-E, where;

p is the midpoint of the confidence interval

E is the error.

The midpoint of the confidence interval is

p = (0.333+0.999)/2 = 1.332/2

p = 0.666

The error can be calculated using the formula:

Error = interval width/2

E = (0.999-0.333)/2 = 0.666/2

E = 0.333

Therefore, the final form

p+/-E = 0.666+/-0.333

Final answer:

The confidence interval 0.333< p <0.999 is expressed in the form p ± E as 0.666 ± 0.333. The midpoint of the interval is calculated by adding the two bounds and dividing by 2, and the distance from this point to either end of interval is calculated by subtracting the lower limit from the midpoint.

Explanation:

The confidence interval 0.333< p <0.999 can be expressed in the form p ± E by calculating the middle point of the interval (p), and the distance from the middle point to either end of the interval (E). To calculate the midpoint, add the two bounds and divide the result by 2. Thus, p = (0.999 + 0.333) / 2 = 0.666. Then, calculate E by subtracting the lower limit from p. So, E = 0.666 - 0.333 = 0.333. So, the confidence interval can be written as p ± E, or 0.666 ± 0.333.

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ6

All employees at three stores of a large retail chain were asked to fill out a survey.a. Is it random b. Systematic c. Stratified d. Cluster

Answers

Answer:

d. Cluster

Step-by-step explanation:

Random: Random is asking a group of people from a population. For example, to estimate the proportion of Buffalo residents who are Bills fans, you ask 100 Buffalo residents and estimate to the entire population.

Systematic: Similar to random. For example, you want to estimate something about a population, and your sample is every 5th people you see on the street.

Cluster:Divides the population into groups, with geographic characteristics.. Each element is the groups is used. Suppose you want to study the voting choices of Buffalo Bills players. You can divide into offense, defense and special teams, and ask each player of these 3 groups.

Stratified: Done on a group of clusters, that is, from each cluster(group), a number of people are selected.

In this problem, we have that:

All employees at three stores of a large retail chain were asked to fill out a survey.

Divided by clusters(stores).

So the orrect answer is:

d. Cluster

Final answer:

The type of sampling described in the question, where all employees at three selected stores are surveyed, is an example of cluster sampling. This method divides the population into groups, or 'clusters', and includes all members from selected clusters in the study.

Explanation:

The scenario described seems to be an example of cluster sampling. In cluster sampling, all subjects (in this case, employees at the stores) within selected groups (the three stores in this case) are studied. The selection is not random or systematic, but based on grouping. It is also not a stratified sample as we are not choosing samples proportionally from subgroups within the population.

In this case, the whole population is divided into groups (stores). Each group is called a cluster. All the members (employees) of the selected groups (stores) are included in the study. It is important to note that unlike stratification, where samples are taken from each group, in cluster sampling, we study the entire group.

Learn more about Cluster Sampling here:

https://brainly.com/question/32738962

#SPJ3

What does the pair of equations y = 3, z = 7 represent? In other words, describe the set of points (x, y, z) such that y = 3 and z = 7.

Answers

Answer:

the pair of equations y = 3, z = 7 represent the intersection of two plans, The set of points is (0,3,7) and the line is parallel to x axis.

Step-by-step explanation:

Consider the provided equation.

y=3 represents a vertical plane which is in xy plane.

Z=7 represents a horizontal plane which is parallel to xy plane

The both planes are perpendicular to each other and intersect.

y=3 and z=7 is the intersection of two plans, where the value of x is zero y=3 and z=7.

The set of points is (0,3,7) and the line is parallel to x axis.

Final answer:

The pair of equations y = 3 and z = 7 represents a set of points in three-dimensional space where the y-coordinate is always 3 and the z-coordinate is always 7.

Explanation:

The pair of equations y = 3 and z = 7 represents a set of points in three-dimensional space where the y-coordinate is always 3 and the z-coordinate is always 7. In other words, any point that satisfies both equations will have a y-value of 3 and a z-value of 7, regardless of the x-coordinate.

A student is applying to two different agencies for scholarships. Based on the student’s academic record, the probability that the student will be awarded a scholarship from Agency A is 0.55 and the probability that the student will be awarded a scholarship from Agency B is 0.40. Furthermore, if the student is awarded a scholarship from Agency A, the probability that the student will be awarded a scholarship from Agency B is 0.60. What is the probability that the student will be awarded at least one of the two scholarships?

Answers

Answer:

There is a 62% probability that the student will be awarded at least one of the two scholarships.

Step-by-step explanation:

We solve this problem building the Venn's diagram of these probabilities.

I am going to say that:

A is the probability that the student gets a scolarship from Agency A.

B is the probability that the student gets a scolarship from Agency B.

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a is the probability that the student will get an scolarship from agency A but not from agency B and [tex]A \cap B[/tex] is the probability that the student will get an scolarship from both agencies.

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

What is the probability that the student will be awarded at least one of the two scholarships?

This is

[tex]P = a + b + (A \cap B)[/tex]

We have that:

[tex]A = 0.55, B = 0.40[/tex]

If the student is awarded a scholarship from Agency A, the probability that the student will be awarded a scholarship from Agency B is 0.60.

This means that:

[tex]\frac{A \cap B}{A} = 0.6[/tex]

[tex]A \cap B = 0.6A = 0.6*0.55 = 0.33[/tex]

----------

[tex]A = a + (A \cap B)[/tex]

[tex]0.55 = a + 0.33[/tex]

[tex]a = 0.22[/tex]

--------

[tex]B = b + (A \cap B)[/tex]

[tex]0.40 = b + 0.33[/tex]

[tex]b = 0.07[/tex]

Answer:

[tex]P = a + b + (A \cap B) = 0.22 + 0.07 + 0.33 = 0.62[/tex]

There is a 62% probability that the student will be awarded at least one of the two scholarships.

The probability that the student will be awarded at least one of the two scholarships is 0.73.

To calculate the probability that the student will be awarded at least one of the two scholarships, we can use the following formula:

P(at least one scholarship) = 1 - P(no scholarships)

The probability that the student will not be awarded a scholarship from either agency is the product of the probability that the student will not be awarded a scholarship from Agency A and the probability that the student will not be awarded a scholarship from Agency B.

The probability that the student will not be awarded a scholarship from Agency A is

1 - 0.55 = 0.45.

The probability that the student will not be awarded a scholarship from Agency B is

1 - 0.40 = 0.60.

Therefore, the probability that the student will not be awarded a scholarship from either agency is

0.45 * 0.60 = 0.27.

Therefore, the probability that the student will be awarded at least one of the two scholarships is

1 - 0.27 = 0.73.

Another way to calculate this probability is to use the following formula:

P(at least one scholarship) = P(scholarship from Agency A) + P(scholarship from Agency B) - P(scholarship from both agencies)

We already know the probability that the student will be awarded a scholarship from each agency. The probability that the student will be awarded a scholarship from both agencies is the product of the probability that the student will be awarded a scholarship from Agency A and the probability that the student will be awarded a scholarship from Agency B given that the student was awarded a scholarship from Agency A.

The probability that the student will be awarded a scholarship from Agency B given that the student was awarded a scholarship from Agency A is 0.60.

Therefore, the probability that the student will be awarded a scholarship from both agencies is

0.55 * 0.60 = 0.33.

Therefore, the probability that the student will be awarded at least one of the two scholarships is

0.55 + 0.40 - 0.33 = 0.73.

To learn more about probability here:

https://brainly.com/question/32117953

#SPJ12

For what values of x does -x2 +7x + 5 = 0?

Answers

Answer:

Step-by-step explanation:

-2x + 7x + 5 = 0

-2x +7x = 5

5x = 5

divide both side by 5

5x/5 = 5/5

x = 1

A randon sample of monthly gasoline bills for a company's 15 sales persons are:$216 $254 $247 $257 $231 $265 $221 $226 $228 $252 $235 $265 $272 $285 $266.What is the mean?What is the median?what is the value of quartile 3?What is the value of the modethe range is equal to?What is the value of the standard deviation?what is the value of the coefficient of variation? do not express the answer as a percent, leave it as a ratio?are the numbers skewed positively, negatively or are they symmetrical? (for your answer enter only one word: positively, negatively or symmetrical.what is the value of the coefficient of skewness using pearson's coefficient of skewness?What is the value of quartile 2?

Answers

Answer:Mean = $248

Median = $252

Quartile 3 = $265

Mode = $265

range = $69

Standard deviation= 20.126

Coefficient of variation = 8.115

Negatively

Coefficient of skewness = -0.596

Quartile 2 = $252

Step-by-step explanation:

The detailed explanation can be found in the attached pictures

The cancellation method: a. Raises fractions to the highest terms. b. Results in multiplying a number evenly by the numerator and denominator of a fraction or fractions. c. Has a definite set of rules. d. Is an alternative method to reducing fractions to the lowest terms. e. None of these.

Answers

Answer:

Option d)  Is an alternative method to reducing fractions to the lowest terms.

Step-by-step explanation:

Cancellation Method:

It is a method of reducing the fraction to the lowest term.In this method, we reduce or divide both the numerator and the denominator with the greatest common divisor.So that the numerator and denominator cannot be further reduce.Or simply reducing the numerator and denominator with common factors such that they cannot be divided further.This is known as simplifying of fraction.The resultant fraction is the fraction in simplest or lowest term.

Thus, cancellation method

Option d)  Is an alternative method to reducing fractions to the lowest terms.

Final answer:

The cancellation method is a technique used to reduce fractions to their lowest terms by dividing both the numerator and denominator by their greatest common factor, making option (d) the correct answer.

Explanation:

The cancellation method in mathematics is a technique used to simplify fractions by dividing both the numerator and denominator by their greatest common factor. The goal of this method is to reduce fractions to their lowest terms. In practice, this method involves identifying factors common to both the numerator and the denominator and 'canceling' them out by dividing each by that factor. The cancellation method does not raise fractions to the highest terms, nor does it involve multiplying a number evenly by the numerator and denominator; rather, it simplifies fractions.

The answer to the student's question is option (d), as the cancellation method is indeed an alternative method to reducing fractions to the lowest terms. When working with unit conversions, for example, it's essential to cancel units correctly to ensure the correct units in the final answer. This process requires attention to detail to avoid inverting ratios and ending up with incorrect units.

Pls help in this IXL asap

Answers

Answer:

Step-by-step explanation:

Triangle BCD is a right angle triangle.

From the given right angle triangle

BC represents the hypotenuse of the right angle triangle.

Taking 45 degrees as the reference angle,

BC represents the adjacent side of the right angle triangle.

BD represents the opposite side of the right angle triangle.

To determine BC, we would apply trigonometric ratio

Cos θ = adjacent side/hypotenuse side. Therefore,

Cos 45 = BC/2√2

√2/2 = BC/2√2

BC = 2√2 × √2/2

BC = 2

We start by subdividing [0,5] into n equal width subintervals [x0,x1],[x1,x2],…,[xn−1,xn] each of width Δx. Express the width of each subinterval Δx in terms of the number of subintervals n.

Answers

Answer:

Therefore, Δx=5/n, when have n intervals.

Step-by-step explanation:

From exercise we have interval [0,5]. So the length of the given interval is     5-0=5. Since all intervals [x0,x1],[x1,x2],…,[xn−1,xn]  are equal in width.

We know that their width is Δx. We conclude that width of each subinterval Δx in terms of the number of subintervals n is equal 5/n.

Therefore, Δx=5/n, when have n intervals.

state the most specific name for each figure.
WHAT DO I DO

Answers

Answer:

3 and 9 are parallelograms

other two are quadrilaterals

Step-by-step explanation:

A study conducted in 2000 found that the mean number of children under 18 per household in a certain community was 1.7. A statistician is trying to determine whether this number has changed in the last 6 years. She declares the null and alternative hypotheses to be:

H0: The mean number of children per household in 2000 is 1.7
H1: The mean number of children per household in 2000 is not 1.7
Which of the following statements is true about this test?

a) this is a right tailed test
b) this is a left tailed test
c)this is a two tailed test d) this is a step tailed test

Answers

Answer:

c). Two tailed test

Step-by-step explanation:

The given hypothesis are

Null hypothesis: H0:μ= 1.7

Alternative hypothesis: H1:μ≠ 1.7

The alternative hypothesis demonstrates that  mean number of children are not 1.7 in 2000. This means that mean number of children can be greater than 1.7 or mean number of children can be less than 1.7. Thus, the given alternative hypothesis indicates the two tailed test.

In octagon $ABCDEFGH$, every side is perpendicular to each of its adjacent sides. What is the perimeter of $ABCDEFGH$?

Answers

Answer:

The perimeter is 48 units

Step-by-step explanation:

The picture of the question in the attached figure

we know that

The perimeter of the octagon is the sum of its length sides

so

[tex]P=AB+BC+CD+DE+EF+FG+GH+HA[/tex]

we have

[tex]BC=10\ units\\CD=6\ units\\EF=4\ units\\GH=8\ units[/tex]

substitute

[tex]P=AB+10+6+DE+4+FG+8+HA[/tex]

Combine like terms

[tex]P=AB+DE+FG+HA+28[/tex]

we know that

[tex]BC=DE+FG+HA[/tex] ---> by segment addition postulate

[tex]BC=10\ units[/tex]

so

[tex]DE+FG+HA=10\ units[/tex]

substitute in the expression of perimeter

[tex]P=AB+(DE+FG+HA)+28[/tex]

[tex]P=AB+10+28\\P=AB+38[/tex]

Since

[tex]DC= 6\ units[/tex]

and

[tex]EF = 4\ units[/tex]

The distance between F and line BC must be

[tex]6-4=2\ units[/tex]

so

[tex]AB = HG + 2 = 10\ units[/tex]

substitute

[tex]P=AB+38\\P=10+38=48\ units[/tex]

Evaluate the function at the given value:
f(a)=-3a^3+10a^2-3a-7 at a=2
Btw this unit is on the division of polynomials

Answers

Answer:

51

Step-by-step explanation:

Substitute the value of a

3(2)³+10(2)²-3(2)-7

3(8)+10(4)-3(2)-7

24+40-6-7

64-13

51

A particle moves according to a law of motion s = f(t), t ? 0, where t is measured in seconds and s in feet.

f(t) = t3 ? 9t2 + 15t

b) What is the velocity after 3 s?

v(3) =

(c) When is the particle at rest?

t= ___ (smaller value)

t= ___ (larger value)

(d) When is the particle moving in the positive direction? (Enter your answer in interval notation.)

(e) Find the total distance traveled during the first 6 s.

(f) Find the acceleration at time t.

(h) When, for 0 ? t < ?, is the particle speeding up? (Enter your answer in interval notation.)

When, for 0 ? t < ?, is it slowing down? (Enter your answer in interval notation.)

Answers

Answer:

a) [tex] \frac{ds}{dt}= v(t) = 3t^2 -18t +15[/tex]

b) [tex] v(t=3) = 3(3)^2 -18(3) +15=-12[/tex]

c) [tex] t =1s, t=5s[/tex]

d)  [tex] [0,1) \cup (5,\infty)[/tex]

e) [tex] D = [1 -9 +15] +[(5^3 -9* (5^2)+ 15*5)-(1-9+15)]+ [(6^3 -9(6)^2 +15*6)-(5^3 -9(5)^2 +15*5)] =7+ |32|+7 =46[/tex]

And we take the absolute value on the middle integral because the distance can't be negative.

f) [tex] a(t) = \frac{dv}{dt}= 6t -18[/tex]

g) The particle is speeding up [tex](1,3) \cup (5,\infty)[/tex]

And would be slowing down from [tex][0,1) \cup (3,5)[/tex]

Step-by-step explanation:

For this case we have the following function given:

[tex] f(t) = s = t^3 -9t^2 +15 t[/tex]

Part a: Find the velocity at time t.

For this case we just need to take the derivate of the position function respect to t like this:

[tex] \frac{ds}{dt}= v(t) = 3t^2 -18t +15[/tex]

Part b: What is the velocity after 3 s?

For this case we just need to replace t=3 s into the velocity equation and we got:

[tex] v(t=3) = 3(3)^2 -18(3) +15=-12[/tex]

Part c: When is the particle at rest?

The particle would be at rest when the velocity would be 0 so we need to solve the following equation:

[tex] 3t^2 -18 t +15 =0[/tex]

We can divide both sides of the equation by 3 and we got:

[tex] t^2 -6t +5=0[/tex]

And if we factorize we need to find two numbers that added gives -6 and multiplied 5, so we got:

[tex] (t-5)*(t-1) =0[/tex]

And for this case we got [tex] t =1s, t=5s[/tex]

Part d: When is the particle moving in the positive direction? (Enter your answer in interval notation.)

For this case the particle is moving in the positive direction when the velocity is higher than 0:

[tex] t^2 -6t +5 >0[/tex]

[tex] (t-5) *(t-1)>0[/tex]

So then the intervals positive are [tex] [0,1) \cup (5,\infty)[/tex]

Part e: Find the total distance traveled during the first 6 s.

We can calculate the total distance with the following integral:

[tex] D= \int_{0}^1 3t^2 -18t +15 dt + |\int_{1}^5 3t^2 -18t +15 dt| +\int_{5}^6 3t^2 -18t +15 dt= t^3 -9t^2 +15 t \Big|_0^1 + t^3 -9t^2 +15 t \Big|_1^5 + t^3 -9t^2 +15 t \Big|_5^6[/tex]

And if we replace we got:

[tex] D = [1 -9 +15] +[(5^3 -9* (5^2)+ 15*5)-(1-9+15)]+ [(6^3 -9(6)^2 +15*6)-(5^3 -9(5)^2 +15*5)] =7+ |32|+7 =46[/tex]

And we take the absolute value on the middle integral because the distance can't be negative.

Part f: Find the acceleration at time t.

For this case we ust need to take the derivate of the velocity respect to the time like this:

[tex] a(t) = \frac{dv}{dt}= 6t -18[/tex]

Part g and h

The particle is speeding up [tex](1,3) \cup (5,\infty)[/tex]

And would be slowing down from [tex][0,1) \cup (3,5)[/tex]

Final answer:

b) The velocity after 3 seconds is -12 feet per second. c) The particle is at rest when t = 1 and t = 5. d) The particle is moving in the positive direction between the critical points of the velocity function. e) The total distance traveled during the first 6 seconds can be found by integrating the absolute value of the velocity function. f) The acceleration at time t is given by the derivative of the velocity function. h) The particle is speeding up when its acceleration is positive and slowing down when its acceleration is negative.

Explanation:

b) To find the velocity after 3 seconds, we need to find the derivative of the function f(t). The derivative of f(t) is v(t), the velocity function. So, v(t) = f'(t), which is equal to 3t^2 - 18t + 15. Now, to find v(3), we substitute t = 3 into the velocity function:

v(3) = 3(3)^2 - 18(3) + 15

= 27 - 54 + 15

= -12 feet per second

c) The particle is at rest when its velocity is zero. So, to find when the particle is at rest, we need to find the time when v(t) = 0:

0 = 3t^2 - 18t + 15

Solving this quadratic equation, we find that the particle is at rest when t = 1 and t = 5

d) The particle is moving in the positive direction when its velocity is positive. So, we need to find the time intervals when v(t) > 0. We can do this by finding the critical points of the velocity function and determining the sign of v(t) in between those critical points. By analyzing the sign of v(t), we can determine the intervals when the particle is moving in the positive direction.

(e) To find the total distance traveled during the first 6 seconds, we need to find the definite integral of the absolute value of the velocity function from 0 to 6:

Distance = ∫06 |v(t)| dt

(f) The derivative of the velocity function v(t) gives us the acceleration function a(t), which is the rate of change of velocity. So, a(t) = v'(t), which is equal to 6t - 18.

(h) The particle is speeding up when its acceleration is positive, and slowing down when its acceleration is negative. So, we need to find the intervals when a(t) > 0 and a(t) < 0 to determine when the particle is speeding up and when it is slowing down.

Learn more about Motion of a particle here:

https://brainly.com/question/33561634

#SPJ3

It is known that 45% of senior citizens are deficient in vitamin D. Let Y be the number of vitamin D efficient individuals in a random sample of n = 15 senior citizens. (a) Calculate P(Y = 5). Also obtain an approximation for this probability using the normal approximation. (b) Calculate P(Y > 7). Also obtain normal approximations for this probability with and without using continuity correction. (c) Calculate P(4

Answers

Answer:

a ) 0.1403604645 and 0.1368

b) 0.3464961 and 0.3485

c) 0.802671982 and 0.8018

Step-by-step explanation:

Y~ B (15,0.45)

Y~ N (15*0.45, 15*0.45*0.55) = Y~ N (6.75, 3.7125)

a) P(Y=5) = 15C5 (0.45)^5 * (0.55)^10 = 0.1403604645

   For normal approximation

P(Y = 5 ) = P ( 4.5 < Y < 5.5 )  ......... continuity correction

Hence,

[tex]P ( 4.5 < Y < 5.5 ) = P ( \frac{4.5 - 6.75}{\sqrt{3.7125} } < Z < \frac{5.5 - 6.75}{\sqrt{3.7125} } ) = P ( -1.16775 < Z < -0.64875 )[/tex]

The probability P ( 4.5 < Y < 5.5 ) = 0.1368

b) P(Y>7) = 15C8 (0.45)^ 8 (0.55)^7 + 15C9 (0.45)^9 * (0.55)^6 + 15C10 (0.45)^10 * (0.55)^5 + 15C11 (0.45)^11 * (0.55)^4 + 15C12 (0.45)^12 * (0.55)^3 + 15C13 (0.45)^13 * (0.55)^2 + 15C14 (0.45)^14 * (0.55) + (0.45)^15

= 0.3464961

  For normal approximation

P(Y > 7 ) = P (Y > 7.5 )  ......... continuity correction

Hence,

[tex]P (Y > 7.5) = P (Z > \frac{7.5-6.75}{\sqrt{3.7125} } ) = P (Z > 0.389249)\\[/tex]

The probability P ( Y>7.5 ) = 0.3485

c) P (4 < Y < 10) = 15C5 (0.45)^5 (0.55)^10 + 15C6 (0.45)^ 6 (0.55)^9 + 15C7 (0.45)^7 (0.55)^8 + 15C8 (0.45)^ 8 (0.55)^7 + 15C9 (0.45)^9 * (0.55)^6

= 0.802671982

For normal approximation

P( 4 < Y < 10 ) = P (4.5< Y < 9.5 )  ......... continuity correction

Hence,

[tex]P ( 4.5 < Y < 9.5 ) = P ( \frac{4.5 - 6.75}{\sqrt{3.7125} } < Z < \frac{9.5 - 6.75}{\sqrt{3.7125} } ) = P ( -1.167748416 < Z < 1.427248064 )[/tex]

The probability P (4.5< Y < 9.5 ) = 0.8018

Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let a = 28 lb and b = 12 lb. Round your answers to one decimal place.)
a = 45 degree positive on x & y axis.
b = 30 degree below x-axis. I guess negative on y & x.

Answers

Final answer:

To calculate the resultant force and its direction given two forces at angles, you decompose each force into x and y components, sum these components separately to find the resultant vector, and then use Pythagorean theorem and inverse tangent to find magnitude and direction.

Explanation:

To find the magnitude of the resultant force and the angle it makes with the positive x-axis, given forces at 45 degrees and 30 degrees below the x-axis with magnitudes 28 lb and 12 lb respectively, we break each force into its x and y components. For force a at 45 degrees, the components are 28cos(45) in the x-direction and 28sin(45) in the y-direction. For force b at -30 degrees, the components are 12cos(-30) in the x-direction and 12sin(-30) in the y-direction, since it is below the x-axis.

To find the resultant force (Fres), we add the x-components and y-components separately: Fres,x = 28cos(45) + 12cos(-30) and Fres,y = 28sin(45) + 12sin(-30). The total magnitude is calculated using the Pythagorean theorem: |Fres| = sqrt(Fres,x² + Fres,y²). The angle θ with the positive x-axis is found using the inverse tangent of the y-component over the x-component (θ = atan(Fres,y/Fres,x)).

the circumference (C) of a swimming pool is 56 feet. which formula can you use to find the diameter (d) if you know that c=​

Answers

The formula used is: [tex]d = \frac{C}{ \pi }[/tex]

The diameter is 17.83 feet

Solution:

Given that,

Circumference of pool = C = 56 feet

To find: diameter (d)

The circumference of circle is given as:

[tex]C = 2 \pi r[/tex]

Where "r" is the radius of circle

We know, that diameter is twice the radius

[tex]d = 2r[/tex]

Thus the formula becomes,

[tex]C = \pi d[/tex]

Rearrange for "d"

[tex]d = \frac{C}{ \pi }[/tex]

Substituting the values we get,

[tex]d = \frac{56}{3.14} = 17.83[/tex]

Thus the diameter is 17.83 feet

Choose a method to solve the following system of equations. Explain why you chose that method.

Solve.

y = 2x + 7

y = -2x - 5

Answers

Y=2 addition because the X’s cancel out

Answer:

Step-by-step explanation:

The given simultaneous equations are expressed as

y = 2x + 7 - - - - - - - - - -1

y = -2x - 5 - - - - - - - - - - 2

We would apply the method of substitution.

The first step is to equate equation 1 to equation 2. It becomes

2x + 7 = - 2x - 5

Next step is to add 2x to the left hand side and the right hand side of the equation. It becomes

2x + 2x + 7 = - 2x - 2x - 5

4x + 7 = - 5

Next step is to subtract 7 from the left hand side and the right hand side of the equation. It becomes

4x + 7 - 7 = - 5 - 7

4x = - 12

Next step is to divide the left hand side and the right hand side of the equation by 4. It becomes

4x/4 = -12/4

x = - 3

Substituting x = - 3 into equation 1, it becomes

y = 2 × - 3 + 7 = - 6 + 7

y = 1

Nite Time Inn has a toll-free telephone number so that customers can call at any time to make a reservation. A typical call takes about 4 minutes to complete, and the time required follows an exponential distribution.
Find the probability that a call takes:
(a) 3 minutes or less.
(b) 4 minutes or less.
(c) 5 minutes or less.
(d) longer than 5 minutes.

Answers

Answer:

Step-by-step explanation:

Let X be the time for any customer to call at any time to make reservation in Nite Time Inn.

Given that X is exponential with mean = 4 minutes

We are to find the probability

(a) 3 minutes or less.

=[tex]P(X\leq 3)=1-e^{-3/4} =0.5276[/tex]

(b) 4 minutes or less.

[tex]=P(X\leq 4)\\=1-e^{-4/4} =0.6321[/tex]

(c) 5 minutes or less.

[tex]=P(X\leq 5)\\=1-e^{-5/4} =0.7135[/tex]

(d) longer than 5 minutes.

=1-P(X≤5) = 0.2865

What is the slope of the line ? Pls help .

Answers

let P(-2,0) & Q(0,2)

slope = 2-0/0+2

= 1

the slope is 1 which will be 45°

Answer: slope = 1

Step-by-step explanation:

The formula for finding slope is given as :

slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

[tex]x_{1}[/tex] = -5

[tex]x_{2}[/tex] = 3

[tex]y_{1}[/tex] = -3

[tex]y_{2}[/tex] = 5

substituting the values into the formula , we have :

slope = [tex]\frac{5-(-3)}{3-(-5)}[/tex]

slope = [tex]\frac{5+3}{3+5}[/tex]

slope = [tex]\frac{8}{8}[/tex] = 1

Therefore : the slope of the line is 1

A 0.320 ft3 sample of a certain soil has a weight of 38.9 lb., moisture content of 19.2%, and specific gravity of solids of 2.67. Find the void ratio, degree of saturation, and saturated unit weight.

Answers

Answer:

e = 0.6342

S = 0.808

γsat = 126.207 lb/ft³

Step-by-step explanation:

Given

VT = 0.320 ft³

WT = 38.9 lb

w = 19.2% = 0.192

Gs = 2.67

then we apply

γ = WT / VT

γ = 38.9 lb / 0.320 ft³

γ = 121.5625 lb/ft³

then we get γdry as follows

γdry = γ / (1 + w)

γdry = 121.5625 lb/ft³ / (1 + 0.192)

γdry = 101.982 lb/ft³

the void ratio (e) can be obtained applying this equation

γdry = Gs*γw / (1 + e)

101.982 = 2.67*62.42 / (1 + e)

⇒ e = 0.6342

We can get the degree of saturation (S) as follows

S*e = Gs*w

S = Gs*w / e

S = 2.67*0.192 / 0.6342

S = 0.808

The saturated unit weight (γsat) will be obtained applying this formula

γsat = (Gs + e)*γw / (1 + e)

γsat = (2.67 + 0.6342)*62.42 lb/ft³/ (1 + 0.6342)

γsat = 126.207 lb/ft³

An earthquake waves travels through 55 km of rock in 25 seconds. What is the constant of proportionality that represents shows the speed of the earthquake’s wave?

Answers

Answer:

d = (max distance / max time)t + 0.

Step-by-step explanation:

Earthquake travels 55km of rock in 25 seconds, the relationship between d, the distance traveled in km, and t, the time elapsed in seconds is:

d = (max distance / max time)t + 0

d = (55 km / 25 sec) * t

  = 2.2t

Answer:

2.2km/secs

Step-by-step explanation:

Speed = distance /time

= 55km/25secs

= 2.2km/secs

Problem A. Consider the following initial value problem for a damped driven linear oscillator: m 2 + b** + kx} = f sin(St); x(0) = a, x'(0) = C, where a,b,c, m, k, f, 12 are constants, and [m] = M, [t] = T, [2] = L. Find the dimensions of a,b,c, k, ſ, and 12.

Answers

Answer:

a = L

b = MT^(-1)

c = LT^(-1)

k = MT^(-2)

f = MLT^(-2)

S = T^(-1)

Step-by-step explanation:

x (0) = a

x is denoted by displacement in vibration analysis hence attains units of x.

Hence, a = L

b is the damping coefficient:

[tex]b = \frac{F}{\frac{dx}{dt} } \\= MLT^(-2) / LT^(-1)\\= MT^(-1)[/tex]

x'(0) = c

dx/dt = velocity hence c attains the units of velocity

c = LT^(-1)

Coefficient k is the stiffness:

[tex]k = \frac{F}{x} = \frac{MLT^(-2)}{L} = MT^(-2)[/tex]

Coefficient f is the magnitude of the exciting force

[tex]F = m*acceleration = MLT^(-2)[/tex]

Coefficient S is the angular frequency

angular frequency is displacement in radians per seconds; hence,

S = T^(-1)

Roll two fair dice separately. Each die has six faces. a. List the sample space. b. Let A be the event that either a three or four is rolled first, followed by an even number. Find P(A). c. Let B be the event that the sum of the two rolls is at most seven. Find P(B). d. In words, explain what "P(A|B)" represents. Find P(A|B). e. Are A and B mutually exclusive events? Explain your answer in one to three complete sentences, including numerical justification. f. Are A and B independent events? Explain your answer in one to three complete sentences, including numerical justification.

Answers

Answer:

Step-by-step explanation:

a) {(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)}

[tex]\Omega[/tex]=6*6=36

b)A=(2*3)=6

P(A)=6/36=1/6

c) B=6+5+4+3+2+1=21

P(B)=21/36

d) P(A|B) - an event where either a 3 or 4 is rolled first and is followed by an even number and their sum goes over 7

P(A|B)=3

e) Not always, not sure how to explain, I'm not good with English Math

f) Same as above

Final answer:

The sample space for rolling two die has 36 outcomes. The probability of rolling a three or four, followed by an even number is 1/6, while the probability of the sum of the rolls not exceeding seven is 7/12. These two events are not mutually exclusive, but they are independent.

Explanation:

a. The sample space for rolling two dice consists of 36 possible outcomes, as there are six possible outcomes for the first die and six for the second die, and 6*6=36.

b. Event A happens when we roll a three or four first, followed by an even number. There are 4 such outcomes: (3,2), (3,4), (3,6), (4,2), (4,4), and (4,6). The probability of event A occurring is therefore 6/36 = 1/6.

c. Event B happens when the sum of the two rolls is at most seven. There are 21 outcomes: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(5,1),(5,2),(6,1). So, the probability of event B is 21/36 = 7/12.

d. P(A|B) represents the probability of event A occurring given that event B has already occurred. There are 4 outcomes in B that are also in A: (3,2), (3,4), (4,2), (4,3). Hence, P(A|B) = 4/21.

e. Events A and B are not mutually exclusive, as they can both occur in the same trial (e.g., when the dice rolls are (3,2), (3,4), (4,2), or (4,3)).

f. A and B are independent because the probability of A doesn't change whether B occurs or not, and vice versa. The fact that P(A|B) = P(A) confirms this.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ2

Parking at a large university has become a very big problem. University administrators are interested in determining the average parking time (e.g. the time it takes a student to find a parking spot) of its students. An administrator inconspicuously followed 280 students and carefully recorded their parking times. Which of the following graphs should not be used to display information concerning the students parking times?a. Pie chartb. Stem-and-leaf displayc. Histogramd. Box plot

Answers

Answer:

a. Pie chart

This one is the correct option since we use a pie chart when we have categories in the data. And for this case we don't have any category defined at the begin so for this reason the pie chart would be not useful for this case.

Step-by-step explanation:

For this case our variable of interest is the average parking time of its students. And we have 280 values for these times. So then the variable of interest is quantitative.

Which of the following graphs should not be used to display information concerning the students parking times?

a. Pie chart

This one is the correct option since we use a pie chart when we have categories in the data. And for this case we don't have any category defined at the begin so for this reason the pie chart would be not useful for this case.

b.Stem-and-leaf display

That incorrect since the Stem and leaf plot is useful when we want to plot quantitative data.

c. Histogram

That incorrect since the Histogram is ideal when we want to plot quantitative data and analyze the distribution of the data.

d. Box plot

That incorrect since the Box plot is ideal and useful when we want to plot quantitative data and see central tendency measures.

Final answer:

A pie chart should not be used to display the average parking times of students because it cannot effectively represent the distribution or variability of parking times, unlike a histogram, box plot, or stem-and-leaf display.

Explanation:

The question revolves around determining which graph would be inappropriate for displaying the average parking times of students at a university. The options are: a Pie chart, a Stem-and-leaf display, a Histogram, and a Box plot. To assess the suitability of each graph, we need to understand what type of data we have and what information we wish to convey with the graph.

A pie chart is typically used to show parts of a whole. However, in this scenario, we're interested in the distribution of parking times, not how a single parking time compares as a fraction of the total. Therefore, a pie chart would not effectively represent the variability or distribution of parking times.

Both a histogram and a box plot are well-suited for displaying the distribution of quantitative data such as parking times, making them good choices for this context. A stem-and-leaf display is also a valid option, especially for providing a quick visual summary that includes actual data points, which can be useful for identifying specific patterns or outliers.

In conclusion, the pie chart is the graph that should not be used to display information concerning the students' parking times. It simply doesn't align with the objective of analyzing the distribution or average of the parking times, which is best visualized through the other mentioned graphical methods.

Check all statements that are equivalent to If the sky is not clear, then you don't see the stars ? a. Clear sky is necessary and sufficient for seeing the stars. ? b. If the sky is clear, then you see the stars. c. You don't see the stars unless the sky is clear. ? d. Clear sky is necessary to see the stars. e. The sky is clear only if you see the stars. f. Clear sky is sufficient to see the stars. g. If you don't see the stars, then the sky is not clear. h. If you see the stars, then the sky is clear. i. You see the stars only if the sky is clear.

Answers

Final answer:

The equivalent statements to 'If the sky is not clear, then you don't see the stars' are 'You don't see the stars unless the sky is clear', 'Clear sky is necessary to see the stars', and 'You see the stars only if the sky is clear'. Other statements make assumptions that are not present in the original.

Explanation:

The original statement, 'If the sky is not clear, then you don't see the stars' is a conditional statement that refers to the necessary conditions for seeing the stars. In this logic, the clear sky is a necessity to see the stars.

There are several statements equivalent to the original one, according to the principles of logic namely:

'You don't see the stars unless the sky is clear' - This statement implies the same as the original by asserting that seeing the stars is dependent on the clarity of the sky. 'Clear sky is necessary to see the stars' - This statement also implies the same as the original. It plainly states the necessity of a clear sky for star viewing. 'You see the stars only if the sky is clear' - This statement is also equivalent to the original, insisting that the only condition under which stars can be seen is if the sky is clear.

However, the statements 'Clear sky is necessary and sufficient for seeing the stars' and 'Clear sky is sufficient to see the stars' are not necessarily equivalent to the original because they assume that a clear sky is all that's needed to see the stars, ignoring the other conditions like absence of light pollution or the time of the day. Whereas, the original statement does not make this assumption.

Learn more about Conditional Statements here:

https://brainly.com/question/19222807

#SPJ12

A closed cylindrical can of fixed volume V has radius r.a) Find the surface area, S, as a function of r.b) What happens to the value of S as r approaches infinity? 0,1, or infinity

Answers

a) The surface area, S, as a function of radius r is given by S = 2πrh + 2πr².

b) The value of S (surface area) approaches infinity as r approaches infinity.

a) The surface area of a closed cylindrical can consists of two parts: the lateral surface area and the two circular base areas.

Let's denote the height of the cylinder as 'h'.

The volume V of the cylinder is given by:

V = πr²h.

We want to express the surface area S in terms of the radius r.

The lateral surface area is given by:

Lateral Surface Area = 2πrh.

Each circular base has an area of πr².

So, the total surface area S is:

S = 2πrh + 2πr².

Hence,  the total surface area S is S = 2πrh + 2πr².

b) As r approaches infinity, let's analyze the behavior of the surface area S:

S = 2πrh + 2πr².

As r gets larger and larger, the term 2πr² dominates the expression.

This is because the term 2πrh (the lateral surface area) is proportional to both 'r' and 'h', whereas the term 2πr² (the circular base areas) is solely proportional to 'r²'.

So, as 'r' approaches infinity, the value of 2πr² will also approach infinity, and this will greatly outweigh the influence of the term 2πrh.

Therefore, the value of S will tend toward infinity as 'r' approaches infinity.

To learn more on Three dimensional figure click:

https://brainly.com/question/2400003

#SPJ12

a) S(r) = 2πr^2 + (2V/r)

b) As r→∞, S(r)→∞, the surface area increases without bound, so it approaches infinity.

a) To find the surface area, S, of a closed cylindrical can as a function of its radius r, you can use the formula for the surface area of a closed cylinder:

S = 2πr^2 + 2πrh

Where:

S is the surface area,

π (pi) is a mathematical constant approximately equal to 3.14159,

r is the radius of the cylinder,

and h is the height (or length) of the cylinder.

However, you mentioned that the volume V is fixed, so we can express the height (h) of the cylinder in terms of its radius (r) and fixed volume (V). The volume of a cylinder is given by:

V = πr^2h

Solving for h:

h = V / (πr^2)

Now, substitute this expression for h into the formula for the surface area:

S = 2πr^2 + 2πr(V / (πr^2))

Simplify:

S = 2πr^2 + 2V/r

So, the surface area, S, as a function of the radius r for a closed cylindrical can with a fixed volume V is:

S(r) = 2πr^2 + 2V/r

b) As r approaches infinity, let's analyze what happens to the value of S(r):

S(r) = 2πr^2 + 2V/r

The first term, 2πr^2, is a quadratic term in r. As r becomes very large (approaching infinity), this term dominates the expression, and S(r) grows without bound. In other words, it approaches infinity.

The second term, 2V/r, is inversely proportional to r. As r becomes very large, this term approaches zero. However, the first term dominates the behavior of S(r), so the overall behavior is dominated by the growth of the quadratic term.

So, as r approaches infinity, the value of S(r) approaches infinity (i.e., S(r) tends toward infinity).

for such more question on surface area

https://brainly.com/question/16519513

#SPJ3

Population A and Population B both have a mean height of 70.0 inches with an SD of 6.0. A random sample of 50 people is picked from population A, and random sample of 20 people is selected from Population B. Which sample mean will probably yield a more accurate estimate of its population mean? Why?

Answers

Answer:

Sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.

Step-by-step explanation:

To yield a more accurate estimate of the population mean, margin of error should be minimized.

margin of error (ME) of the mean can be calculated using the formula

ME=[tex]\frac{z*s}{\sqrt{N} }[/tex] where

z is the corresponding statistic in the given confidence level(z-score or t-score) s is the standard deviation of the sample (or of the population if it is known) N is the sample size

for a given confidence level, and the same standard deviation, as the sample size increases, margin of error decreases.

Thus, random sample of 50 people from population A, has smaller margin of error than the sample of 20 people from population B.

Therefore, sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.

Final answer:

In statistics, a larger sample size generally leads to a more accurate estimate of the population mean.

Explanation:

Population A: Sample size = 50, SD = 6.0

Population B: Sample size = 20, SD = 6.0

In this case, the sample mean from Population A (larger sample size) will likely yield a more accurate estimate of its population mean compared to Population B (smaller sample size) due to the larger sample size resulting in a more reliable estimation.

In a survey of 100 U.S. residents with a high school diploma as their highest educational degree (Group 1) had an average yearly income was $35,621. Another 120 U.S. residents with a GED (Group 2) had an average yearly income of $33,498. The population standard deviation for both populations is known to be $4,310. At a 0.01 level of significance, can it be concluded that U.S. residents with a high school diploma make significantly more than those with a GED

Answers

Answer:

[tex]z=\frac{(35621-33498)-0}{\sqrt{\frac{4310^2}{100}+\frac{4310^2}{120}}}}=3.637[/tex]  

[tex]p_v =P(z>3.637)=0.000138[/tex]  

Comparing the p value with the significance level [tex]\alpha=0.01[/tex] we see that [tex]p_v<<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and the mean for the US residents with High school diplome is significantly higher than those with GED.  

Step-by-step explanation:

Data given and notation

[tex]\bar X_{1}=35621[/tex] represent the mean for sample 1  

[tex]\bar X_{2}=33498[/tex] represent the mean for sample 2  

[tex]\sigma_{1}=4310[/tex] represent the population standard deviation for 1  

[tex]\sigma_{2}=4310[/tex] represent the population standard deviation for 2

[tex]n_{1}=100[/tex] sample size for the group 2  

[tex]n_{2}=120[/tex] sample size for the group 2  

[tex]\alpha=0.01[/tex] Significance level provided

z would represent the statistic (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to check if the mean for US residents (sample 1) is higher than the mean for sample 2, the system of hypothesis would be :  

Null hypothesis:[tex]\mu_{1}-\mu_{2}\leq0[/tex]  

Alternative hypothesis:[tex]\mu_{1} - \mu_{2}> 0[/tex]  

We have the population standard deviation's, so for this case is better apply a z test to compare means, and the statistic is given by:  

[tex]z=\frac{(\bar X_{1}-\bar X_{2})-\Delta}{\sqrt{\frac{\sigma^2_{1}}{n_{1}}+\frac{\sigma^2_{2}}{n_{2}}}}[/tex] (1)  

z-test: Is used to compare group means. Is one of the most common tests and is used to determine whether the means of two groups are equal to each other.  

With the info given we can replace in formula (1) like this:  

[tex]z=\frac{(35621-33498)-0}{\sqrt{\frac{4310^2}{100}+\frac{4310^2}{120}}}}=3.637[/tex]  

P value  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>3.637)=0.000138[/tex]  

Comparing the p value with the significance level [tex]\alpha=0.01[/tex] we see that [tex]p_v<<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and the mean for the US residents with High school diplome is significantly higher than those with GED.  

Is (5, 2) a solution to this system of equations?

16x + y = 9
17x + 3y = 20

Answers

No if you plug in x=5 and y=2 it doesn’t match the answer ( both sides of the equation aren’t equal)
Other Questions
who were john ross and john ridge PLEASE HELP! Need correct answer ASAP The iliacus and the psoas major muscles are collectively known as the ____________ muscle because they share a common insertion on the __________ of the femur. A- iliopsoas; lesser trochanter B- iliopsoas; greater trochanter C- psoasiliacus; greater trochanter D- psoasiliacus; lesser trochanter When do dorbitals start getting filled?A. After the s orbital of the next highest energy levelB. After the sorbital of the same energy levelc. After the p orbitals of the next highest energy levelD. After the porbitals of the same energy level All of the sentences in this quiz are either in passive voice, or they begin with the word there. Some of them do both. Change them to active voice and/or remove the word there. In some cases, you will need to invent a subject.1. That pass was thrown very poorly. 2. The advertisement was played on that radio station every hour of the day.3. Mistakes were made in the way your claim was handled.4. There are many techniques that can be used to improve sentence fluency. 5. My computer was used for work every day I was supposed to be on my vacation. help me solve for 1,2,3,and 4 PLEASE An object at the surface of the Earth (thus, a distance R from the center of the Earth) weighs 180 N. Its weight at a distance 3R from the center of the Earth is: The sans-culottes wanted, above all else, ______. A. a constitutional monarchy. B. relief from food shortages and high prices. C. tax relief. D. democracy. 8(5s-13)-16(2s+6)=0 How to solve 8(3p-1)+9=3(p+2)-1 ? This organization is the largest developer of international standards in the world for a wide variety of products and services. It is known for its Open System Interconnection (OSI) reference model. We are given that when = 38.7, the angle of refraction in the liquid is = 26.3. Thus, from Snell's law, the index of refraction of the liquid is AD corporation had sales of $750,000 and costs of goods sold of $350,000. Inventory at year end was $87,500. What is the inventory turnover? Surveys indicate that 5% of the students who took the SATs had enrolled in an SAT prep course. 30% of the SAT prep students were admitted to their first choice college, as were 20% of the other students. You overhear a high school student say he got into the college he wanted. What is the probability he didn't take an SAT prep course? why 2+2=4 and not 2+2=22 ? Three listed authors are listed for an article (in this order): Philip J. Landrigan, Paul J. Lioy, and Panos G. Georgopoulos. How should their names be presented in the Works Cited entry? In MLA formatA.Panos G. Georgopoulos, Paul J. Lioy, and Philip J. LandriganB.Georgopoulos, Panos G., Philip J. Landrigan, and Paul J. LioyC.Landrigan, Philip J., et al. D.Philip J. Landrigan, Paul J. Lioy, and Panos G. Georgopoulos Read the poem. Then, select the correct answer.excerpt adapted fromI Wandered Lonely as a Cloudby William WordsworthI wandered lonely as a cloudThat floats on high o'er vales and hills,When all at once I saw a crowd,A host, of golden daffodils;Beside the lake, beneath the trees,Fluttering and dancing in the breeze.Continuous as the stars that shineAnd twinkle on the milky way,They stretched in never-ending lineAlong the margin of a bay:Ten thousand saw I at a glance,Tossing their heads in sprightly dance.For oft, when on my couch I lieIn vacant or in pensive mood,They flash upon that inward eyeWhich is the bliss of solitude;And then my heart with pleasure fills,And dances with the daffodils.Which word best describes the authors tone? A. admiring B. desperate C. somber D. playful The people who were most important in spreading Christianity throughout Europe were a. the monks, missionaries, and knights. b. Saint Benedict, Saint Patrick, and the monks. c. Saint Patrick, Saint Benedict, and Charlemagne. d. the popes, missionaries, and monks. For any nonempty set $T$ whose elements are positive integers, define $f(T)$ to be the square of the product of the elements of $T$. For example, if $T=\{1,3,6\}$, then $f(T)=(1\cdot 3\cdot 6)^2 = 18^2 = 324$. Consider the nonempty subsets $T$ of $\{1,2,3,4,5,6,7\}$ that do not contain two consecutive integers. If we compute $f(T)$ for each such set, then add up the resulting values, what do we get? Id your percent discount is 25% and your sales price is $40, how do you find the original price Steam Workshop Downloader