A local movie theater charges $12 for an adult ticket and $10 for a child’s ticket. A group of eight people spent a total of $86 on tickets to a movie. How many adults and how many children were in the group? a. Write a system of linear equations based on the description. Use x to represent the number of adults and y to represent the number of children. b. Solve the system using the elimination method. Show all the steps leading to your answer. c. Write 1-2 sentences to explain what the solution means for this situation.

Answers

Answer 1

Answer:

Number of adult tickets = 3 tickets

Number of children tickets = 5 tickets

Step-by-step explanation:

A- The system of equations:

Assume that the number of adult tickets is x and that the number of children tickets is y

We are given that:

i. The total number of people in the group is 8, which means that the total number of tickets bought is 8. This means that:

x + y = 8 ..................> equation I

ii. The price of an adult ticket is $12 and that of a child ticket is $10. We know that the group spent a total of $86. This means that:

12x + 10y = 86 ...............> equation II

From the above, the systems of equation is:

x + y = 8

12x + 10y = 86

B- Solving the system using elimination method:

Start by multiplying equation I by -10

This gives us:

-10x - 10y = -80 .................> equation III

Now, taking a look at equations II and III, we can note that coefficients of the y have equal values and different signs.

Therefore, we will add equations II and III to eliminate the y

    12x + 10y = 86

+( -10x - 10y = -80)

Adding the two equations, we get:

2x = 6

x = 3

Finally, substitute with x in equation I to get the value of y:

x + y = 8

3 + y = 8

y = 8 - 3 = 5

Based on the above:

Number of adult tickets = x = 3 tickets

Number of children tickets = y = 5 tickets

C- Explanation of the meaning of the solution:

The above solution means that for a group of 8 people to be able to spend $86 in a theater having the price of $12 for an adult ticket and $10 for a child' one, this group must be composed of 3 adults and 5 children

Hope this helps :)


Related Questions

The pep squad sold c, cheeseburgers and h, hothogs at the friday night football game. A total of 220 were sold. There were 3 times more hotdogs sold than cheeseburgers. Write a system of equations for this situation.

Answers

Answer:

c + h = 220h = 3c

Step-by-step explanation:

The total sold is the sum of the individual numbers sold, hence c+h.

We assume "3 times more" means "3 times as many", so the number of hotdogs sold (h) is 3 times the number of cheeseburgers sold (c), hence 3c.

  c + h = 220

  h = 3c

_____

55 cheeseburgers and 165 hotdogs were sold.

Sketch the graph of y=2(x-2)2+5 and identify the axis of symmetry.

Answers

Answer:

x=2

Step-by-step explanation:


The lengths of two sides of a parallelogram are 24 cm and 15 cm. One angle measures 120°. Find the length of the longer diagonal.
A) 13.3 cm
B) 34.1 cm
C) 177.5 cm
D) 1161 cm

Answers

Answer:

B) 34.1 cm

Step-by-step explanation:

The longer diagonal is longer than either side, but shorter than their sum. The only answer choice in the range of 24–39 cm is choice B.

_____

You are given sufficient information to use the Law of Cosines to find the diagonal length. If we call it "c", then the angle opposite that diagonal is the larger of the angles in the parallelogram: 120°. The law of cosines tells you ...

c^2 = a^2 +b^2 -2ab·cos(C)

Here, we have a=24, b=15, C=120°, so ...

c^2 = 24^2 +15^2 -2·24·15·cos(120°) = 576 +225 +360 = 1161

c = √1161 ≈ 34.073 . . . . cm

Rounded to tenths, the diagonal length is 34.1 cm.

An ice cream store offers a bowl with one giant scoop or two
regular scoops of ice cream for $2.75. A giant scoop is a sphere with a diameter of 6 centimeters. A regular scoop is a
sphere with a diameter of 4 centimeters. Which is closest to
the greatest volume of ice cream that can be purchased for $2.75?

A 67 cm
B 113 cm
C 536
D 905 cm​

Answers

Answer:

B

Step-by-step explanation:

The volume of a sphere is given by

[tex]V=\frac{4}{3}\pi r^3[/tex]

where r is the radius

For $2.75, we can get 1 large  OR  2 small scoops.

Giant scoop has diameter 6, so radius is half of that, which is 3, hence the volume is:

[tex]V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi (3)^3\\V=113.1[/tex]

Regular scoop's diameter is 4, hence radius is 2. So volume of 1 regular scoop is:

[tex]V=\frac{4}{3}\pi r^3\\V=\frac{4}{3}\pi (2)^3\\V=33.51[/tex]

We can get 2 of those, so total volume is 33.51 + 33.51 = 67.02

Hence, the max volume for $2.75 is around 113, answer choice B.

A football stadium has an attendance of 4997 people. Of​ these, 2118 are cheering for Team A and 2568 are female. Of the people cheering for Team​ A, 982 are female. Find the probability that a randomly selected attendee is female or cheers for Team A. ​(a) Are the events​ "cheering for Team​ A" and​ "being a​ female" mutually​ exclusive? No Yes ​(b) What is the probability that a randomly selected attendee is female or cheers for Team​ A? nothing ​(Type an integer or decimal rounded to three decimal places as​ needed.)

Answers

Final answer:

The events “cheering for Team A” and “being a female” are not mutually exclusive. The probability that a randomly selected attendee is female or cheers for Team A is approximately 0.741.

Explanation:

(a) No, the events “cheering for Team A” and “being a female” are not mutually exclusive. This is because there are females who are cheering for Team A. Mutually exclusive events cannot happen at the same time.

(b) To find the probability that a randomly selected attendee is female or cheers for Team A, we need to add the probabilities of each event happening and subtract the probability of both events happening at the same time. We can use the formula:

P(A or B) = P(A) + P(B) - P(A and B)

In this case, P(A) is the probability of cheering for Team A, P(B) is the probability of being female, and P(A and B) is the probability of being a female who cheers for Team A.

Given the numbers provided, the probability of cheering for Team A is 2118/4997 and the probability of being female is 2568/4997. The probability of being a female who cheers for Team A is 982/4997. Plugging these values into the formula, we get:

P(Female or Team A) = P(Team A) + P(Female) - P(Female and Team A) = 2118/4997 + 2568/4997 - 982/4997 = 3704/4997 ≈ 0.741

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ

The water tank in the diagram is in the shape of an inverted right circular cone. The radius of its base is 16 feet, and its height is 96 feet. What is the height, in feet, of the water in the tank if the amount of water is 25% of the tank’s capacity?

Answers

Answer:

6433.98 ft

Step-by-step explanation:

In order to find what 25% of the tank's capacity is, we know to know the full capacity of the tank then take 25% of that.  The volume formula for a right circular cone is

[tex]V=\frac{1}{3}\pi r^2h[/tex]

We have all the values we need for that:

[tex]V=\frac{1}{3}\pi (16)^2(96)[/tex]

This gives us a volume of 25735.93 cubic feet total.

25% of that:

.25 × 25735.93 = 6433.98 ft

Answer:

The height of the water is [tex]60.5\ ft[/tex]

Step-by-step explanation:

step 1

Find the volume of the tank

The volume of the inverted right circular cone is equal to

[tex]V=\frac{1}{3}\pi r^{2} h[/tex]

we have

[tex]r=16\ ft[/tex]

[tex]h=96\ ft[/tex]

substitute

[tex]V=\frac{1}{3}\pi (16)^{2} (96)[/tex]

[tex]V=8,192\pi\ ft^{3}[/tex]

step 2

Find the 25% of the tank’s capacity

[tex]V=(0.25)*8,192\pi=2,048\pi\ ft^{3}[/tex]

step 3

Find the height, of the water in the tank  

Let

h ----> the height of the water  

we know that

If two figures are similar, then the ratio of its corresponding sides is proportional

[tex]\frac{R}{H}=\frac{r}{h}[/tex]

substitute

[tex]\frac{16}{96}=\frac{r}{h}\\ \\r= \frac{h}{6}[/tex]

where

r is the radius of the smaller cone of the figure

h is the height of the smaller cone of the figure

R is the radius of the circular base of tank

H is the height of the tank

we  have

[tex]V=2,048\pi\ ft^{3}[/tex] -----> volume of the smaller cone

substitute

[tex]2,048\pi=\frac{1}{3}\pi (\frac{h}{6})^{2}h[/tex]

Simplify

[tex]221,184=h^{3}[/tex]

[tex]h=60.5\ ft[/tex]

Solve this gear problem.

Gear 1 = 30 teeth
Speed, gear 1 = 150 r.p.m.
Speed, gear 2 = 50 r.p.m.
Teeth, gear 2 = ?

Answers

Hello!

The answer is:

The number of teeth of Gear 2 is 90 teeth.

[tex]N_{2}=90teeth[/tex]

Why?

To calculate the number of teeth for the Gear 2, we need to use the following formula that establishes a relation between the number of RPM and the number of teeth of two or more gears.

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

Where,

N, are the rpm of the gears

Z, are the teeth of the gears.

We are given the following information:

[tex]Z_{1}=30teeth\\N_{1}=150RPM\\N_{2}=50RPM[/tex]

Then, substituting and calculating we have:

[tex]N_{1}Z_{1}=N_{2}Z_{2}[/tex]

[tex]150RPM*30teeth=N_{2}50RPM[/tex]

[tex]N_{2}=\frac{150RPM*30teeth}{50RPM}=90teeth[/tex]

[tex]N_{2}=90teeth[/tex]

Hence, we have that the number of teeth of Gear 2 is 90 teeth.

Have a nice day!

rowan wants to justify that f(x) 3x-7 is a linear function. If she evaluates f(x) for consecutive integer values, which statement justices the claim that f is a linear function?
a. there is a common difference of -7 for f(x) when x increase by 1
b. there is a common factor of -7 for f(x) when x increase by 1
c. there is a common different of 3 for f(x) when x increase by 1
d. there is a common factor of 3 for f(x) when x increase by 1

Answers

Answer:

C. there is a common difference of 3 for f(x) when x increases by 1

Step-by-step explanation:

As 3 is the slope of this function, there will be a common difference of 3 when x increases by 1.

f(x) = 3x  - 7

Let's think, whenever we add 1 to x it i'll increase 3 in the result

f(0) = 3.0 - 7 = 0 - 7 = -7

f(1) = 3.1 - 7 = 3 - 7 = -4

f(2) = 3.2 - 7 = 6 - 7 = -1

So we can know that there's a common difference of 3 for f(x) when x increase by 1.

What is the value when c =6 and d= 10 5c2 - 3d + 15​

Answers

Answer:

165

Step-by-step explanation:

[tex]5c^{2} -3d+15[/tex]

c = 6 and d = 10

[tex]5c^{2}[/tex] = 5 × 6² = 5 × 36 = 180

[tex]5c^{2}[/tex] - ( 3 d ) = 180 - ( 3 × 10 ) = 180 - 30 = 150

[tex]5c^{2}[/tex] -  3 d  ( + 15 ) = 150 + 15 = 165

Answer:

165

Step-by-step explanation:

Substitutet 6 for c and 10 for d in  5c^2 - 3d + 15​ .

Note that " ^ " is used here to denote exponentiation; c2 is meaningless.

Then we have 5(6)^2 - 3(10) + 15, or   180 - 30 + 15, or 165.

Given: K=2∙33∙11∙172and M=3∙11∙173

Evaluate 18·M÷K.

Answers

Answer:

  1557/1892

Step-by-step explanation:

Your calculator can do this:

[tex]\dfrac{18M}{K}=\dfrac{18\cdot 3\cdot 11\cdot 173}{2\cdot 33\cdot 11\cdot 172}=\dfrac{18\cdot 173}{2\cdot 11\cdot 172}\\\\=\dfrac{1557}{1892}[/tex]

Which of the following statements reflects the principles of avoiding distractions and being other-oriented?
a.
“Let’s go outside. It’s really noisy in here and I can’t really hear what you are saying.”
b.
“I’ll just get this call and then we can talk.”
c.
“I think you should just quit. There’s no sense in being miserable, I always say.”
d.
None of the above

Answers

Answer: A

Step-by-step explanation:

Answer:

a.

“Let’s go outside. It’s really noisy in here and I can’t really hear what you are saying.”

Step-by-step explanation:

Which of the following statements reflects the principles of avoiding distractions and being other-oriented?

a. “Let’s go outside. It’s really noisy in here and I can’t really hear what you are saying.”

This is clear from option A - the person is saying that its noisy here and he cannot listen to the other person.

There were 3 bananas, 4 apples, and 3 oranges in a basket. What is the probability that Ace will pick a banana from the basket?

Answers

0.3 or 30%. The probability that Ace pick a banana from a basket that content others fruits is 0.3.

The key to solve this problem is using the equation of probability [tex]P(A)=\frac{n(A)}{n}[/tex] where n(A) the numbers of favorables outcomes and n the numbers of possible outcomes.

There are in the basket 10 fruits in total (3 bananas + 4 apples + 3 oranges = 10fruits). Then, extract a fruit can occur in 10 ways, this is n. There is only 3 bananas in the basket, so the fruit that ACE will pick be a banana can occur in 3 ways out of 10,  so 3 is n(A).

Solving the equation:

[tex]P(A)=\frac{3}{10}=0.3[/tex]

The probability that Ace will pick a banana from the basket is 3/10, as there are 3 bananas out of a total of 10 pieces of fruit.

The question asks for the probability that Ace will pick a banana from a basket containing 3 bananas, 4 apples, and 3 oranges. To calculate this, you sum up the total number of pieces of fruit, which is 3 bananas + 4 apples + 3 oranges = 10 pieces of fruit. The probability is then the number of desired outcomes (bananas) over the total number of possible outcomes (all pieces of fruit), which is 3 bananas / 10 pieces of fruit = 3/10 or 30%.

please help me asap 12 PTS

Answers

Answer:

D.

Step-by-step explanation:

I also haven't learned this yet but i could tell that in the second image if A.F = 1/2AC and DE = A.F, therefore DE = 1/2AC. The problem is that i don't know if it is B or D.

Sorry .-.

what property does the following expression demonstrate 9(3x)=27(x)

Answers

Answer:

Associative property of multiplication

Step-by-step explanation:

To show that 9(3x) = 27(x), we need to show that 9(3x) = (9 * 3)x.

The APM does just that. By this property, in multiplication, the order of which numbers are multiplied do not matter.

So, 9(3x) = (9 * 3)x.

And by multiplication, (9 * 3)x = 27x.

So 9(3x) = 27x

Given: LMNB is a square, LM = 20cm, P∈ LM , K ∈ PN , PK = 1 5 PN, LP = 4 cm Find: Area of LPKB

Answers

Answer:

  80 cm²

Step-by-step explanation:

Trapezoid LPKB has area ...

  A = (1/2)(b1 +b2)h = (1/2)(4 +20)(20) = 240 . . . . cm²

Triangle BPN has area ...

  A = (1/2)bh = (1/2)(20)(20) = 200 . . . . cm²

Triangle BKN has a height that is 4/5 the height of triangle BPN, so will have 4/5 the area:

  ΔBKN = (4/5)(200 cm²) = 160 cm²

The area of quadrilateral LPKB is that of trapezoid LPNB less the area of triangle BKN, so is ...

  240 cm² - 160 cm² = 80 cm²

Casie jumped off of a cliff into the ocean while on vacation. Her height as a function of time is modeled by the equation h = −16t2 +16t + 140, where t is the time in seconds and h is the height in feet. How long does it take Casie to hit the water?
A) 3 seconds
B) 3.5 seconds
C) 4 seconds
D) 4.5 seconds

Answers

Answer:

3.5 seconds, B

Step-by-step explanation:

This is an upside down parabola, a function that is extremetly useful in helping us to understand position and velocity and time and how they are all related.  Her upwards velocity is 16 ft/sec and she starts from a height of 140 feet, according to the problem.  The h is the height she ends up at after a certain amount of time has gone by.  You want to know how long it will take her to hit the water.  When she hits the water, she has no more height.  Therefore, her height above the water when she hits the water is 0.  Plug in a 0 for h and factor the quadratic to get t = -2.5 seconds and t = 3.5 seconds.  The only two things in math that will never ever be negative is a distance measure and time, so we can disregard the -2.5 and go with 3.5 seconds as our answer.

Answer:

B

Step-by-step explanation:

Use the quadratic formula to solve the equation.
4x^2 - 10x + 5 = 0
Enter your answers, in simplified radical form.

X=_____ or X=_____​

Answers

ANSWER

[tex]x = \frac{ 5 - \sqrt{ 5} }{4} \: or \: \: x = \frac{ 5 + \sqrt{ 5} }{4} [/tex]

EXPLANATION

The given quadratic equation is

[tex]4 {x}^{2} - 10x + 5 = 0[/tex]

We compare this to

[tex]a {x}^{2} + bx + c = 0[/tex]

to get a=4, b=-10, and c=5.

The quadratic formula is given by

[tex]x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]

We substitute these values into the formula to get:

[tex]x = \frac{ - - 10 \pm \sqrt{ {( - 10)}^{2} - 4(4)(5)} }{2(4)} [/tex]

This implies that

[tex]x = \frac{ 10 \pm \sqrt{ 100 - 80} }{8} [/tex]

[tex]x = \frac{ 10 \pm \sqrt{ 20} }{8} [/tex]

[tex]x = \frac{ 10 \pm2 \sqrt{ 5} }{8} [/tex]

[tex]x = \frac{ 5 \pm \sqrt{ 5} }{4} [/tex]

The solutions are:

[tex]x = \frac{ 5 - \sqrt{ 5} }{4} \: or \: \: x = \frac{ 5 + \sqrt{ 5} }{4} [/tex]

Answer:

[tex]\large\boxed{x=\dfrac{5-\sqrt5}{4},\ x=\dfrac{5+\sqrt5}{4}}[/tex]

Step-by-step explanation:

[tex]\text{The quadratic formula for}\ ax^2+bx+c=0\\\\\text{if}\ b^2-4ac<0,\ \text{then the equation has no real solution}\\\\\text{if}\ b^2-4ac=0,\ \text{then the equation has one solution:}\ x=\dfrac{-b}{2a}\\\\\text{if}\ b^2-4ac,\ ,\ \text{then the equation has two solutions:}\ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\==========================================[/tex]

[tex]\text{We have the equation:}\ 4x^2-10x+5=0\\\\a=4,\ b=-10,\ c=5\\\\b^2-4ac=(-10)^2-4(4)(5)=100-80=20>0\\\\x=\dfrac{-(-10)\pm\sqrt{20}}{2(4)}=\dfrac{10\pm\sqrt{4\cdot5}}{8}=\dfrac{10\pm\sqrt4\cdot\sqrt5}{8}=\dfrac{10\pm2\sqrt5}{8}\\\\=\dfrac{2(5\pm\sqrt5)}{8}=\dfrac{5\pm\sqrt5}{4}[/tex]

Eric, George, and Denzel have invested $400,000, $300,000, and $300,000, respectively, in a business venture. They have decided that they will divide the profits among themselves in the ratio of their respective investments. If their business makes a profit of $75,000, what would be Eric’s share in the profit? A. $22,500 B. $30,000 C. $32,500 D. $45,000

Answers

Answer:

Eric’s share in the profit is $30,000 ⇒ answer B

Step-by-step explanation:

* We will use the ratio to solve this problem

- At first lets find the ratio between their invested

∵ Eric has invested $400,000

∵ George has invested $300,000

∵ Denzel has invested $300.000

- To find the ratio divide each number by 100,000

∴ Eric : George : Denzel = 4 : 3 : 3

- They will divide the profits among themselves in the ratio of their

  respective investments

- The total profit will divided by the total of their ratios

∵ The total of the ratios = 4 + 3 + 3 = 10

∴  Eric : George : Denzel : Sum = 4 : 3 : 3 : 10

- That means the profit will divided into 10 equal parts

- Eric will take 4 parts, George will take 3 parts and Denzel will take

 3 parts

∵ The profit = $75,000

- Divide the profit by the sum of the ratio

∴ Each part of the profit = 75,000 ÷ 10 = $7,500

- Now lets find the share of each one

∴ The share of Eric = 4 × 7,500 = $30,000

∴ The share of George = 3 × 7,500 = $22,500

∴ The share of Denzel = 3 × 7,500 = $22,500

* Eric’s share in the profit is $30,000

# If you want to check your answer add the shares of them, the answer

  will be the total profit (30,000 + 22,500 + 22,500 = $75,000), and if

  you find the ratio between their shares it will be equal the ratio

  between their investments (divide each share by 7,500 to simplify

  them the answer will be 4 : 3 : 3)

Answer:

B

Step-by-step explanation:

Verify that the given differential equation is not exact. (−xy sin(x) + 2y cos(x)) dx + 2x cos(x) dy = 0 If the given DE is written in the form M(x, y) dx + N(x, y) dy = 0, one has My = Nx = . Since My and Nx equal, the equation is not exact. Multiply the given differential equation by the integrating factor μ(x, y) = xy and verify that the new equation is exact. If the new DE is written in the form M(x, y) dx + N(x, y) dy = 0, one has My = Nx = . Since My and Nx equal, the equation is exact. Solve.

Answers

The ODE

[tex]M(x,y)\,\mathrm dx+N(x,y)\,\mathrm dy=0[/tex]

is exact if

[tex]\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}[/tex]

We have

[tex]M=-xy\sin x+2y\cos x\implies M_y=-x\sin x+2\cos x[/tex]

[tex]N=2x\cos x\implies N_x=2\cos x-2x\sin x[/tex]

so the ODE is indeed not exact.

Multiplying both sides of the ODE by [tex]\mu(x,y)=xy[/tex] gives

[tex]\mu M=-x^2y^2\sin x+2xy^2\cos x\implies(\mu M)_y=-2x^2y\sin x+4xy\cos x[/tex]

[tex]\mu N=2x^2y\cos x\implies(\mu N)_x=4xy\cos x-2x^2y\sin x[/tex]

so that [tex](\mu M)_y=(\mu N)_x[/tex], and the modified ODE is exact.

We're looking for a solution of the form

[tex]\Psi(x,y)=C[/tex]

so that by differentiation, we should have

[tex]\Psi_x\,\mathrm dx+\Psi_y\,\mathrm dy=0[/tex]

[tex]\implies\begin{cases}\Psi_x=\mu M\\\Psi_y=\mu N\end{cases}[/tex]

Integrating both sides of the second equation with respect to [tex]y[/tex] gives

[tex]\Psi_y=2x^2y\cos x\implies\Psi=x^2y^2\cos x+f(x)[/tex]

Differentiating both sides with respect to [tex]x[/tex] gives

[tex]\Psi_x=-x^2y^2\sin x+2xy^2\cos x=2xy^2\cos x-x^2y^2\sin x+\dfrac{\mathrm df}{\mathrm dx}[/tex]

[tex]\implies\dfrac{\mathrm df}{\mathrm dx}=0\implies f(x)=c[/tex]

for some constant [tex]c[/tex].

So the general solution to this ODE is

[tex]x^2y^2\cos x+c=C[/tex]

or simply

[tex]x^2y^2\cos x=C[/tex]

We are to verify and confirm if the given differential equations are exact or not. Then solve for the exact equation.

The first differential equation says:

[tex]\mathbf{(-xy \ sin x + 2y \ cos x) dx + 2(x \ cos x) dy = 0 }[/tex]

Recall that:

A differential equation that takes the form [tex]\mathbf{M(x,y)dt + N(x, y)dy = 0 }[/tex] will be exact if and only if:

[tex]\mathbf{\dfrac{\partial M }{\partial y} = \dfrac{\partial N }{\partial x}}[/tex]

From equation (1), we can represent M and N as follows:

[tex]\mathbf{M = (-xy \ sin x + 2y \ cos x)}[/tex][tex]\mathbf{N = (2x \ cos x)}[/tex]    

Thus, taking the differential of M and N, we have:

[tex]\mathbf{ \dfrac{\partial M}{\partial y }= M_y = -x sin x + 2cos x}[/tex]

[tex]\mathbf{ \dfrac{\partial N}{\partial x }= N_x = 2 cos x + 2x sin x}[/tex]

From above, it is clear that:

[tex]\mathbf{\dfrac{\partial M }{\partial y} \neq \dfrac{\partial N }{\partial x}}[/tex]

We can conclude that the equation is not exact.

Now, after multiplying the given differential equation in (1) by the integrating factor μ(x, y) = xy, we have:

[tex]\mathbf{ = \mathsf{(-x^2y^2 sin x + 2xy^2cos x ) dx +(2x^2ycos x ) dy = 0 --- (2)}}[/tex]

Representing the equation into form M and N, then:

[tex]\mathbf{M = -x^22y^2 sin x +2xy^2 cos x}[/tex]

[tex]\mathbf{N = 2x^2y cos x}[/tex]

Taking the differential, we have:

[tex]\mathbf{\dfrac{\partial M}{\partial y }= M_y = -2x^2y sin x + 4xy cos x }[/tex]

[tex]\mathbf{\dfrac{\partial N}{\partial x} =N_x= 4xycos \ x -2x^2 y sin x}[/tex]

Here;

[tex]\mathbf{\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x} }[/tex]

Therefore, we can conclude that the second equation is exact.

Now, the solution of the second equation is as follows:

[tex]\int_{y } M dx + \int (not \ containing \ 'x') dy = C[/tex]

[tex]\rightarrow \int_{y } (-x^2y^2 sin(x) +2xy^2 cos (x) ) dx + \int(0)dy = C[/tex]

[tex]\rightarrow-y^2 \int x^2 sin(x) dx +2y ^2 \int x cos (x) dx = C[/tex]    ---- (3)

Taking integrations by parts:

[tex]\int u v dx = u \int v dx - \int (\dfrac{du}{dx} \int v dx) dx[/tex]

[tex]\int x^2 sin (x) dx = x^2 \int sin(x) dx - \int (\dfrac{d}{dx}(x^2) \int (sin \ (x)) dx) dx[/tex]

[tex]\to x^2 (-cos (x)) \ - \int 2x (-cos \ (x)) \ dx[/tex]

[tex]\to -x^2 (cos (x)) \ + \int 2x \ cos \ (x) \ dx[/tex]   ----- replace this equation into (3)

[tex]\rightarrow-y^2( -x^2 cos (x) \ + \int 2x \ cos \ (x) \ dx) +2y ^2 \int x cos (x) dx = C[/tex]

[tex]\mathbf{\rightarrow -x^2 y^2 cos (x) \ -2y ^2 \int x \ cos \ (x) \ dx +2y ^2 \int x cos (x) dx = C}[/tex]

[tex]\mathbf{x^2y^2 cos (x) = C\ \text{ where C is constant}}[/tex]

Therefore, from the explanation, we've can conclude that the first equation is not exact and the second equation is exact.

Learn more about differential equations here:

https://brainly.com/question/353770?referrer=searchResults

The data table represents the distance between a well-known lighthouse and a cruise ship over time. The cruise ship is travelling at uniform speed. What will be the distance between the cruise ship and the lighthouse after 5 hours?

Number of Hours

Distance from Lighthouse (in oceanic miles)

2 53
4 95.5
6 138
8 180.5
10 223
12 265.5
14 308
16 350.5

84.50 oceanic miles
89.75 oceanic miles
116.75 oceanic miles
128.50 oceanic miles
223.00 oceanic miles

Answers

Answer:

116.75 oceanic miles

Step-by-step explanation:

A graph of the data shows the distance to be between 110 and 120 miles (closer to 120). There is only one answer choice in that range.

In 2 hours, the ship travels 42.5 miles, so in 1 hour will travel 21.25 miles. Adding that distance to the distance at 4 hours gives the distance at 5 hours, ...

  95.5 +21.25 = 116.75 . . . . "oceanic" miles

_____

In order for the distance from the lighthouse to be uniformly increasing, the ship must be traveling directly away from the lighthouse. Traveling at any other angle, the distances will not fall on a straight line. (That is one reason I wanted to graph the data.)

Write the ordered pair that represents yz. Then find the magnitude of yz . y(-2,5),z(1,3)

Answers

ANSWER

[tex]|^{ \to} _{YZ}| = \sqrt{13} [/tex]

EXPLANATION

Given the points, y(-2,5),z(1,3)

[tex] ^{ \to} _{YZ} = \binom{1}{3} - \binom{ - 2}{5} = \binom{3}{ - 2} [/tex]

Therefore the ordered pair is <3,-2>

The magnitude is

[tex] |^{ \to} _{YZ}| = \sqrt{ {3}^{2} + ( - 2)^{2} } [/tex]

[tex] |^{ \to} _{YZ}| = \sqrt{ 9 +4} [/tex]

[tex]|^{ \to} _{YZ}| = \sqrt{13} [/tex]

Answer: AAAAAAAAAAAAAAAAAAAAAAAAAAa

105. Suppose that the probability that an adult in America will watch the Super Bowl is 40%. Each person is considered independent. We are interested in the number of adults in America we must survey until we find one who will watch the Super Bowl. a. In words, define the random variable X. b. List the values that X may take on. c. Give the distribution of X. X ~ _____(_____,_____) d. How many adults in America do you expect to survey until you find one who will watch the Super Bowl? e. Find the probability that you must ask seven people. f. Find the probability that you must ask three or four people.

Answers

Answer:

a. X is the number of adults in America that need to be surveyed until finding the first one that will watch the Super Bowl.

b. X can take any integer that is greater than or equal to 1. [tex]\rm X\in \mathbb{Z}^{+}[/tex].

c. [tex]\rm X \sim NB(1, 0.40)[/tex].

d. [tex]E(\rm X) = 2.5[/tex].

e. [tex]P(\rm X = 7) = 0.0187[/tex].

f. [tex]P(\text{X} = 3) +P(\text{X} = 4) = 0.230[/tex].

Step-by-step explanation:

a.

In this setting, finding an adult in America that will watch the Super Bowl is a success. The question assumes that the chance of success is constant for each trial. The question is interested in the number of trials before the first success. Let X be the number of adults in America that needs to be surveyed until finding the first one who will watch the Super Bowl.

b.

It takes at least one trial to find the first success. However, there's rare opportunity that it might take infinitely many trials. Thus, X may take any integer value that is greater than or equal to one. In other words, X can be any positive integer: [tex]\rm X\in \mathbb{Z}^{+}[/tex].

c.

There are two discrete distributions that may model X:

The geometric distribution. A geometric random variable measures the number of trials before the first success. This distribution takes only one parameter: the chance of success on each trial. The negative binomial distribution. A negative binomial random variable measures the number of trials before the r-th success. This distribution takes two parameters: the number of successes [tex]r[/tex] and the chance of success on each trial [tex]p[/tex].

[tex]\rm NB(1, p)[/tex] (note that [tex]r=1[/tex]) is equivalent to [tex]\sim Geo(p)[/tex]. However, in this question the distribution of [tex]\rm X[/tex] takes two parameters, which implies that [tex]\rm X[/tex] shall follow the negative binomial distribution rather than the geometric distribution. The probability of success on each trial is [tex]40\% = 0.40[/tex].

[tex]\rm X\sim NB(1, 0.40)[/tex].

d.

The expected value of a negative binomial random variable is equal to the number of required successes over the chance of success on each trial. In other words,

[tex]\displaystyle E(\text{X}) = \frac{r}{p} = \frac{1}{0.40} = 2.5[/tex].

e.

[tex]P(\rm X = 7) = 0.0187[/tex].

Some calculators do not come with support for the negative binomial distribution. There's a walkaround for that as long as the calculator supports the binomial distribution. The r-th success occurs on the n-th trial translates to (r-1) successes on the first (n-1) trials, plus another success on the n-th trial. Find the chance of (r-1) successes in the first (n-1) trials and multiply that with the chance of success on the n-th trial.

f.

[tex]P(\text{X} = 3)+P(\text{X} = 4) = 0.230 [/tex].

Which of the following is not an equation of a simple, even polynomial function? y = | x | y = x2 y = x3 y = -x2

Answers

Answer:

y = | x |y = x^3

Step-by-step explanation:

The absolute value function prevents the expression from being a polynomial. The degree of 3 in y^3 is an odd number so that polynomial function will not be even.

Answer:

The equation [tex]y=x^3[/tex] is not an equation of a simple , even polynomial function.

Step-by-step explanation:

Even  function : A function  is even when its graph is symmetric with respect to y-axis.

Algebrically , the function f is even if and only if

f(-x)=f(x) for all x in the domain of f.

When the function does not satisfied the above condition then the function is called non even function.

f(x)[tex]\neq[/tex] f(-x)

Now , we check given function is even or not

A. y= [tex]\mid x\mid[/tex]

If x is replaced by -x

Then we get the function

f(-x)=[tex]\mid -x \mid[/tex]

f(-x)=[tex]\mid x \mid[/tex]

Hence, f(-x)=f(x)

Therefore , it is even  polynomial function.

B. [tex]y=x^2[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^2[/tex]

f(-x)=[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

C. [tex]y=x^3[/tex]

If x is replace by -x

Then we get

f(-x)=[tex](-x)^3[/tex]

f(-x)=[tex]-x^3[/tex]

Hence, f(-x)[tex]\neq[/tex] f(x)

Therefore, it is not even polynomial function.

D.[tex]y= -x^2[/tex]

If x is replace by -x

Then we get

f(-x)= - [tex](-x)^2[/tex]

f(-x)=-[tex]x^2[/tex]

Hence, f(-x)=f(x)

Therefore, it is even polynomial function.

Answer: C. [tex]y=x^3[/tex] is not simple , even polynomial function.

Find an equation of the tangent to the curve x =5+lnt, y=t2+5 at the point (5,6) by both eliminating the parameter and without eliminating the parameter.

Answers

ANSWER

[tex]y = 2x -4[/tex]

EXPLANATION

Part a)

Eliminating the parameter:

The parametric equation is

[tex]x = 5 + ln(t) [/tex]

[tex]y = {t}^{2} + 5[/tex]

From the first equation we make t the subject to get;

[tex]x - 5 = ln(t) [/tex]

[tex]t = {e}^{x - 5} [/tex]

We put it into the second equation.

[tex]y = { ({e}^{x - 5}) }^{2} + 5[/tex]

[tex]y = { ({e}^{2(x - 5)}) } + 5[/tex]

We differentiate to get;

[tex] \frac{dy}{dx} = 2 {e}^{2(x - 5)} [/tex]

At x=5,

[tex] \frac{dy}{dx} = 2 {e}^{2(5 - 5)} [/tex]

[tex]\frac{dy}{dx} = 2 {e}^{0} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5)[/tex]

[tex]y = 2x - 10 + 6[/tex]

[tex]y = 2x -4[/tex]

Without eliminating the parameter,

[tex] \frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } [/tex]

[tex]\frac{dy}{dx} = \frac{ 2t}{ \frac{1}{t} } [/tex]

[tex]\frac{dy}{dx} = 2 {t}^{2} [/tex]

At x=5,

[tex]5 = 5 + ln(t) [/tex]

[tex] ln(t) = 0[/tex]

[tex]t = {e}^{0} = 1[/tex]

This implies that,

[tex]\frac{dy}{dx} = 2 {(1)}^{2} = 2[/tex]

The slope of the tangent is 2.

The equation of the tangent through

(5,6) is given by

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y - 6 = 2(x - 5) =[/tex]

[tex]y = 2x -4[/tex]

The equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

To find the equation of the tangent to the curve given by the parametric equations [tex]\(x = 5 + \ln(t)\)[/tex] and [tex]\(y = t^2 + 5\)[/tex] at the point (5,6), we can approach this problem in two ways: by eliminating the parameter \(t\) and without eliminating the parameter.

Method 1: Eliminating the Parameter

Step 1: Express (t) in terms of (x)

[tex]\[ x = 5 + \ln(t) \implies \ln(t) = x - 5 \implies t = e^{x-5} \][/tex]

Step 2: Substitute (t) into (y)

[tex]\[ y = t^2 + 5 \implies y = (e^{x-5})^2 + 5 \implies y = e^{2(x-5)} + 5 \][/tex]

Step 3: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ y = e^{2(x-5)} + 5 \][/tex]

[tex]\[ \frac{dy}{dx} = 2e^{2(x-5)} \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (x = 5)

[tex]\[ \frac{dy}{dx}\bigg|_{x=5} = 2e^{2(5-5)} = 2e^0 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Method 2: Without Eliminating the Parameter

Step 1: Find [tex]\(\frac{dx}{dt}\)[/tex] and [tex]\(\frac{dy}{dt}\)[/tex]

[tex]\[ x = 5 + \ln(t) \implies \frac{dx}{dt} = \frac{1}{t} \][/tex]

[tex]\[ y = t^2 + 5 \implies \frac{dy}{dt} = 2t \][/tex]

Step 2: Find [tex]\(\frac{dy}{dx}\)[/tex]

[tex]\[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{\frac{1}{t}} = 2t^2 \][/tex]

Step 3: Find (t) at the point (5,6)

From [tex]\(x = 5 + \ln(t)\)[/tex]:

[tex]\[ 5 = 5 + \ln(t) \implies \ln(t) = 0 \implies t = e^0 = 1 \][/tex]

Step 4: Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at (t = 1)

[tex]\[ \frac{dy}{dx}\bigg|_{t=1} = 2(1)^2 = 2 \][/tex]

Step 5: Equation of the tangent line

The slope (m = 2). The tangent line at (5,6) is:

[tex]\[ y - 6 = 2(x - 5) \][/tex]

[tex]\[ y = 2x - 10 + 6 \][/tex]

[tex]\[ y = 2x - 4 \][/tex]

Thus, using both methods, the equation of the tangent to the curve at the point (5,6) is [tex]\(y = 2x - 4\)[/tex].

Convert 88 square yards to square meters (to the nearest tenth).

Answers

Final answer:

To convert 88 square yards to square meters, we use the conversion factor 1 square yard = 1.196 square meters. By multiplying 88 by 1.196, we find that 88 square yards is approximately 105.3 square meters.

Explanation:

The question is part of the mathematics subject, specifically in the area of unit conversion. We have a conversion factor to use, which is 1 square yard = 1.196 square meters, based on the provided reference information.

So to convert 88 square yards to square meters, you multiply 88 by 1.196.

88 yards2 * 1.196 m2/yard2 = 105.3 m2.

so 88 square yards is approximately = 105.3 square meters.

Learn more about Unit Conversion here:

https://brainly.com/question/19420601

#SPJ3

Can someone plz help me and show your work I WILL MARK AS BRAINLIEST!!!! Plzzz someone!

Answers

By Pythagoras' Theorem:

Sum of the squares of the two side  = Square of longest side

a² + b² = c²

a)

So let's check 7, 24, 25

Is 7² + 24² = 25²  ?

7*7 + 24*24

49 + 576  

=625.

Let us perform the other side 25²

25² = 25 * 25 = 625

Therefore the left hand side = Right hand side.

Therefore 7, 24, 25 is a Pythagorean Triple

b)

Let's check 9, 40, 41

Is 9² + 40² = 41²  ?

9² + 40²

9*9+ 40*40  

81 + 1600

=1681

Let us perform the other side 41²

41² = 41 * 41 = 1681

Therefore the left hand side = Right hand side.

Therefore 9, 40, 41 is a Pythagorean Triple.

The function f(x) = 0.11x + 43 relates how much Derek pays for phone service, f(x), to the number of minutes, x, used for international calls in a month. What is the value and meaning of f(320)?

Answers

Explanation:

To find the value, put 320 where x is and do the arithmetic.

f(320) = 0.11·320 +43 = 35.20 +43 = 78.20

The meaning is described by the problem statement:

"how much Derek pays for phone service" for "the number of minutes, [320], used for international calls in a month."

Derek pays 78.20 for 320 minutes of international calls in a month.

__

The units (dollars, rupees, euros, pounds, ...) are not specified.

Answer:

Given the function f(x) = 0.11x + 43, this shows the relationship between how much Derek has to pay for phone service for the amount of minutes he uses on international calls a month.  f(320) can be solved by substituting x = 320, and this is shown below: f(x) = 0.11x + 43 f(320) = 0.11(320) + 43 f(320) = 78.2 This means that Derek has to pay $78.20 for the 320 minutes of calls. Among the choices, the correct answer is B.

find 2(cos 240+isin 240) ^4 (answer choices below)

Answers

1. C. -512√3+512i

2. B. 16(cos240°+i sin240°)

3. D. 3√2+3√6i, -3√2-3√6i

4. A. cos60°+i sin60°, cos180°+i sin180°, cos300°+i sin300°

5. D. 2√3(cos π/6+i sin π/6), 2√3(cos 7π/6+i sin 7π/6)

We will see that the equivalent expression is:

[tex]8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

How to rewrite the given expression?

We have the expression:

[2*(cos(240°) + i*sin(240°))]^4

Remember that Euler's formula says that:

[tex]e^{ix} = cos(x) + i*sin(x)[/tex]

Then we can rewrite our expression as:

[tex][2*(cos(240\°) + i*sin(240\°)]^4 = [2*e^{i*240\°}]^4[/tex]

Now we distribute the exponent:

[tex]2^4*e^{4*i*240\°} = 8*e^{i*960\°}[/tex]

Now, we need to find an angle equivalent to 960°.

Remember that the period of the trigonometric functions is 360°, then we can rewrite:

960° - 2*360° = 240°

This means that 960° is equivalent to 240°. Then we can write:

[tex]8*e^{i*960\°} = 8*e^{i*240\°} = 8*(cos(240\°) + i*sin(240\°))[/tex]

So the correct option is the first one.

If you want to learn more about complex numbers, you can read:

https://brainly.com/question/10662770

Find the value of x in the figure below. Show all your work.

Answers

Answer:

x = 52/9

Step-by-step explanation:

The exterior angle is half the difference of the intercepted arcs, so we have ...

9x -5 = (158 -64)/2

9x = 52 . . . . . . . . . . . add 5

x = 52/9 = 5 7/9

How do you simplify this expression step by step?

Answers

[tex]\bf \textit{Pythagorean Identities} \\\\ sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{csc(\theta )-sin(\theta )}{cos(\theta )}\implies \cfrac{~~\frac{1}{sin(\theta )}-sin(\theta )~~}{cos(\theta )}\implies \cfrac{~~\frac{1-sin^2(\theta )}{sin(\theta )}~~}{cos(\theta )}[/tex]

[tex]\bf \cfrac{1-sin^2(\theta )}{sin(\theta )}\cdot \cfrac{1}{cos(\theta )}\implies \cfrac{\stackrel{cos(\theta )}{\begin{matrix} cos^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}} }{sin(\theta )}\cdot \cfrac{1}{\begin{matrix} cos(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix} }\implies \cfrac{cos(\theta )}{sin(\theta )}\implies cot(\theta )[/tex]

Answer:

cot Ф

Step-by-step explanation:

Recall that sin²Ф + cos²Ф = 1, (which also says that cos²Ф - 1 = sin²Ф).

Also recall the definitions of the csc, sin and cos functions.

Your expression is equivalent to:

   1               sin Ф

----------  -  -------------

sin Ф              1

===================

           cos Ф

There are three terms in your expression:  csc, sin and cos.  Multiply all of them by sin Ф.  The result should be:

 1 - sin²Ф

---------------

sin Ф · cos Ф

Using the Pythagorean identity (see above), this simplifies to

  cos²Ф

------------------

sin Ф·cos Ф

and this whole fraction reduces to

   cos Ф

--------------   and this ratio is the definition of the cot function.

   sin Ф

Thus, the original expression is equivalent to cot Ф

Other Questions
Once your rocket reaches space, the captain adjusts the speed. your captain goes from 24,000 km/hr to 17,000 km/hr over 90 seconds. what is your acceleration? Use the table below to find (f o g)(1) Where should you park when you need help after your tire suddenly deflates while driving on a highway? NEED HELP FOR 25 POINTSWhy was the cost of an automobile so excessive?It cost to pay all the assembly line workers.The developers were wealthy monopolists.They were assembled by individual workers.They government charged high tariffs. Brainliest will be granted to the correct answer so please don't guess! What is the central idea of this poem? Women are mysterious creatures that must be protected from harm. Legally and culturally, women must be treated with respect and should have equal opportunities. While walls and veils may appear to protect women, they deny women freedom and happiness. A woman's life is filled with secrets that can never be discovered.How does the personification in the lines Time lifts the curtain unawares, / And Sorrow looks into her face affect meaning? Sorrow is a necessary contrast to joy since it shows the range of the womans emotions. By making sorrow a character, the distress caused by exposure is clear. Time causes the womans tears when it lifts the curtain because she is put on display. When time lifts the curtain, the sadness caused by pardah is revealed.What is the speakers view of the custom of seclusion? It is a relic from an ancient people that should be studied. It is necessary to protect women from the ravages of time. It celebrates the natural beauty and power of women. It oppresses women and leaves them powerless and lonely.In the first stanza of the poem, the woman is portrayed as someone who is beautiful and otherworldly. Why does the poet choose to describe the woman in this manner? The portrayal of the woman in this stanza expresses how some Hindu or Muslim communities would view this practice; it contrasts the speakers views expressed in the final stanza. As the poem is meant to describe the poet, she includes this stanza to portray herself as beautiful and desirable. The poem focuses on the speakers culture and religious beliefs; the beauty of the woman reflects how the speaker feels about her culture. Because the poem is a cry against injustice and inequality, this stanza expresses how beautiful the woman is when she is free and supports the speakers views of womens rights.Sarojini Naidu was politically active during Indias struggle to gain independence from British rule. She was also dedicated to bringing equal rights to women who were treated as a second class in Indian society.How does the poets political work and the historical events that took place in India influence meaning in The Pardah Nashin? The poet is working to become a political leader; this poem expresses her sorrow at being cut off from the political process in India. The Pardah Nashin expresses the pride that the poet feels toward her country as it fights for independence; the subject in the poem rises to power just as the poet does. During this time, India is caught between the past and the future; the poem expresses this struggle by showing how the subject of the poem moves from the joy of the past into the sorrow and uncertainty of the future. The speaker of the poem argues against oppression and for freedom; this aligns with the poet's political work to win freedom for India and to empower women. Which phrase best completes the conversation? William: Am Ende des Monats habe ich immer 100 Euro zustzlich. Was soll ich machen? Felix: Du sollst ____________.A. Rechnung bezahlenB. Geld verdienenC. ein Konto erffnenD. Geld ausgeben Analiza la sigientes preguntas y subraya la respuesta correcta segun corresponda a al resolver el sistema Tickets for a school football game cost 1.00 if purchased before the day of the game. They cost 1.50. They cost 1.50 each if bought at the gate. For the homecoming game, 600 tickets were sold, with receipts of 700. How many tickets were sold at the gate Is the underlined verb in the sentence an action verb or a being verb? I have been hungry all morning.A. Action Verb B. Being Verb(The underlined words are Have Been) Write the rule for the translation In early media, racial minorities in leading roles were often represented by white actors who used makeup to represent a character of another race. How did white audiences react to this, and what message did this send? (5 points) NEED HELP ASAP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~what is the value of x assume that the line is tangent to the circle proof that Oscar Schindler was a hero Write the equation of the line passing through (1, 0) and (0, 3).A)3x - y = 3B)x - 3y = 3C)3x + y = 3D)x + 3y = 3 Write a formula for quadratic function if its graph has the vertex at point ( 1/3 ,3) and passes through the point (1,1). In this sentence, the linking verb is underlined. What is the simple subject, and what is the adjective after the verb that tells more about the subject? His shirt with the bright red stripes is really comfortable. Simple subject: stripes Adjective: red Simple subject: shirt Adjective: comfortable Simple subject: His Adjective: bright treatment of psychological disorders: A) often makes the problem worse B) can offer significant relief. C) is rarely helpful. D) is often unclear. I need the solution and the work for it... for each of the multiple choices. What would be the complementary sequence of nucleotides for the following DNA sequence: GCTAATTGCATCCGA? Steam Workshop Downloader