A major leaguer hits a baseball so that it leaves the bat at a speed of 31.3 m/s and at an angle of 36.7 ∘ above the horizontal. You can ignore air resistance.

A) At what two times is the baseball at a height of 9.00 m above the point at which it left the bat?
t1,2 = _____ s
B) Calculate the horizontal component of the baseball's velocity at each of the two times you found in part (a).
vh1,2 = _____ m/s
C) Calculate the vertical component of the baseball's velocity at each of the two times you found in part (a).
v v1,2 = _____ m/s
D) What is the magnitude of the baseball's velocity when it returns to the level at which it left the bat?
v = ____ m/s
E) What is the direction of the baseball's velocity when it returns to the level at which it left the bat?
= ______ degrees below the horizontal

Answers

Answer 1

Answer:

A) t₁ = 0.56 s t₂ =3.26 s

B) vh₁=vh₂ = 25.1 m/s

C) v₁ = 13.2 m/s  v₂ = -13.2 m/s

D) v = 31. 3 m/s

E) 36.7º below horizontal.  

Explanation:

A) As the only acceleration of the baseball is due to gravity, as it is constant, we can apply the kinematic equations in order to get times.

First, we can get the horizontal and vertical components of the velocity, as the movements  along these directions are independent each other.

v₀ₓ = v* cos 36.7º = 31.3 m/s * cos 36.7º = 25.1 m/s

v₀y = v* sin 36.7º =  31.3 m/s * sin 36.7º = 18.7 m/s

As in the horizontal direction, movement is at constant speed, the time, at any point of the trajectory, is defined by the vertical direction.

We can apply to this direction the kinematic equation that relates the displacement, the initial velocity and time, as follows:

Δy = v₀y*t -1/2*g*t²

We can replace Δy, v₀y and g for the values given, solving a quadratic equation for t, as follows:

4.9*t²-18.7t + 9 = 0

The two solutions for  t, are just the two times at which the baseball is at a height of 9.00 m above the point at which it left the bat:

t = 1.91 sec +/- 1.35 sec.

t₁ = 0.56 sec   t₂= 3.26 sec.

B) As we have already told, in the horizontal direction (as gravity is always downward) the movement is along a straight path, at a constant speed, equal to the x component of the initial velocity.

⇒ vₓ = v₀ₓ = 25.1 m/s

C) In order to get the value of  the vertical components at the two times that we have just found, we can apply the definition of acceleration (g in this case), solving for vfy, as follows:

vf1 = v₀y - g*t₁ = 18.7 m/s - (9.8m/s²*0.56 sec) = 13.2 m/s

vf₂ = v₀y -g*t₂ = 18.7 m/s - (9.8 m/s²*3.26 sec) = -13.2 m/s

D) In order to get the magnitude of  the baseball's velocity when it returns to the level at which it left the bat, we need to know the value of the vertical component at this time.

We could do in different ways, but the easiest way is using the following kinematic equation:

vfy² - v₀y² = 2*g*Δh

If we take the upward path, we know that at the highest point, the baseball will come momentarily to an stop, so at this point, vfy = 0

We can solve for Δh, as follows:

Δh = v₀y² / (2*g) = (18.7m/s)² / 2*9.8 m/s² = 17.8 m

Now, we can use the same equation, for the downward part, knowing that after reaching to the highest point, the baseball will start to fall, starting from rest:

vfy² = 2*g*(-Δh) ⇒ vfy = -√2*g*Δh = -√348.9 = -18. 7 m/s

The horizontal component is the same horizontal component of the initial velocity:

vx = 25.1 m/s

We can get the magnitude of the baseball's velocity when it returns to the level at which it left the bat, just applying Pythagorean Theorem, as follows:

v = √(vx)² +(vfy)² = 31.3 m/s

E) The direction below horizontal of the velocity vector, is given by the tangent of the angle with the horizontal, that can be obtained as follows:

tg Ф = vfy/ vx = -18.7 / 25. 1 =- 0.745

⇒ Ф = tg⁻¹ (-0.745) = -36.7º

The minus sign tell us that the velocity vector is at a 36.7º angle below the horizontal.

Answer 2
Final answer:

A major leaguer hits a baseball and the question asks for the time, velocity components, velocity magnitude, and direction at different points of the ball's trajectory when it reaches a certain height.

Explanation:

A) Let's consider the vertical motion of the baseball. The equation to determine the time it takes for an object to reach a certain height is:

h = v0t + 0.5gt2

Where:

h is the height = 9.00 mv0 is the initial vertical velocity = 31.3 m/s * sin(36.7º)g is the acceleration due to gravity = 9.8 m/s2

By rearranging the equation, we can solve for t:

t2 + (2v0/g)t - (2h/g) = 0

Using the quadratic formula, we can plug in the values and solve for t. The two possible values of t will correspond to the two times when the ball is at a height of 9.00 m above the point at which it left the bat.

B) The horizontal component of velocity remains constant throughout the motion. Therefore, the horizontal component of velocity at each of the two times found in part (a) will be the same as the initial horizontal velocity, which is 31.3 m/s * cos(36.7º).

C) The vertical component of velocity changes due to the acceleration of gravity. At each of the two times found in part (a), the vertical component of velocity can be found using the equation:

vv1,2 = v0 + gt

Where:

v0 is the initial vertical velocity = 31.3 m/s * sin(36.7º)g is the acceleration due to gravity = 9.8 m/s2t is the time at each height, which were found in part (a)

D) When the baseball returns to the level at which it left the bat, its vertical velocity will be -v0, which means it will be moving downward with the same magnitude as the initial velocity but in the opposite direction. The horizontal component of velocity remains unchanged. Therefore, the magnitude of the baseball's velocity when it returns to the level at which it left the bat will be the square root of the sum of the squares of the horizontal and vertical components, which can be calculated using the formula:

v = √(vh2 + vv2)

Where:

vh is the horizontal component of velocity, which was found in part (b)vv is the vertical component of velocity when the ball returns to the level of the bat, which is -v0

E) The direction of the baseball's velocity when it returns to the level at which it left the bat can be determined using trigonometry. The angle below the horizontal can be found as:

θ = tan-1(vv/vh)

Where:

vv is the vertical component of velocity when the ball returns to the level of the bat, which is -v0vh is the horizontal component of velocity, which was found in part (b)


Related Questions

Verify that for values of n less than 8, the system goes to a stable equilibrium, but as n passes 8, the equilibrium point becomes unstable, and a stable oscillation is created.

Answers

Answer:

Biological system is one of the major causes of oscillation due to sensitive negative feedback loops. For instance, imagine a father teaching his son how to drive, the teen is trying to keep the car in the centre lane and his father tell him to go right or go left as the case may be. This is a example of a negative feedback loop of a biological system. If the father's sensitivity to the car's position on the road is reasonable, the car will travel in a fairly straight line down the centre of the road. On the other hand, what happens if the father raise his voice at the son "go right" or when the car drifts a bit to the left? The startled the son will over correct, taking the car too far to the right. The father will then starts yelling "go left" then the boy will over correct again and the car will definitely oscillate back and forth. A scenario that indicates the behavior of a car driver under a very steep feedback control mechanism. Since the driver over corrects in each direction. Therefore causes oscillations.

Explanation:

Final answer:

In physics, a system's equilibrium point is considered stable if the system returns to that point after being slightly disturbed. For an n value less than 8, the system remains in stable equilibrium; once n exceeds 8, stable oscillations indicate an unstable equilibrium. This concept can be visualized by the marble in a bowl analogy, where the bowl's orientation determines the stability of the marble's equilibrium.

Explanation:

The stability of an equilibrium point is determined by the response of a system to a disturbance. If an object at a stable equilibrium point is slightly disturbed, it will oscillate around that point. The stable equilibrium point is characterized by forces that are directed toward it on either side. On the contrary, an unstable equilibrium point will not allow the object to return to its initial position after a slight disturbance, since the forces are directed away from that point. For values of n less than 8, the system finds a stable equilibrium. However, when n surpasses 8, the system exhibits unstable equilibrium, leading to stable oscillations.

As an example, consider a marble in a bowl. When the bowl is right-side up, the marble represents a stable equilibrium; when disturbed, it returns to the center. If the bowl were inverted, the marble on top would be at an unstable equilibrium point; any disturbance would cause it to roll off, as the forces on either side would be directed outwards. Extending this concept to potential energy, n in a potential energy function acts as an adjustable parameter. For n=<8, the system remains in stable equilibrium, as with NaCl, which has an n value close to 8. Beyond this value, the equilibrium becomes unstable, giving rise to oscillatory behavior.

Stability also depends on the nature of damping in the system. An overdamped system moves slowly towards equilibrium without oscillations, an underdamped system quickly returns but oscillates, and a critically damped system reaches equilibrium as quickly as possible without any oscillations.

Imagine you can take all the atoms in a single drop of water and put them on a single line as closely packed as they can be. How long would that line be in meters? There are approximately 1022 atoms in a droplet of water.a) 10^12 meters which is bigger than the distance between Sun and Earth.b) 10^20 meters, the size of a galaxy.c) 10^3 meters, this is one kilometer.d) 10^7 meters which is about the circumference of the Earth.

Answers

Answer:

option a

Explanation:

Size of an atom (diameter) = 10⁻¹⁰ m

There are approximately 10²² atoms in a single drop of water. If they are put in  a straight line, the length would be

l = diameter of an atom × number of atoms

l = 10²²×  10⁻¹⁰ m = 10¹² m

Distance between the Sun and the Earth is 1.47 × 10¹¹ m. The calculated length is greater than the distance between the Sun and the Earth.

Thus, option a is correct.

A 11.8-m-long steel [E = 206 GPa] pipe column has an outside diameter of 202 mm and a wall thickness of 5 mm. The column is supported only at its ends and it may buckle in any direction. Calculate the critical load Pcr for the following end conditions:

Answers

Answer:

A

Explanation:

i took the test pimp

On a dry day, a balloon is rubbed against a wool sweater. When the balloon is then brought close to a wood wall, the balloon is attracted to the wall. Which of the following statements is true about this process? Select the correct answer
Only new negative charges were created by rubbing the balloon, giving it a net negative charge
only new positive charges were created by rubbing the balloon, giving it a net positive charge.
The wood wall must be covering a metal wall behind it.
The balloon has a net charge on it, but the wall may be neutral (have no net charge).
Net charge must be transferred from the balloon to the wall in order for them to stick together

Answers

Answer: For the given process it is true that the balloon has a net charge on it, but the wall may be neutral (have no net charge).

Explanation:

When we tend to rub a balloon against a woolen sweater then it is possible that the balloon might stick to the wall. This might be due to the increase in number of electrons on the balloon and the wall gets positively charged.

Since, opposite charges tend to attract each other hence, the balloon will stick to the wall.

A neutral object also tends to acquire a certain charge when it is rubbed by a charged object.

Therefore, we can conclude that the balloon has a net charge on it, but the wall may be neutral (have no net charge).

Final answer:

The balloon acquires a net negative charge after being rubbed against the wool sweater, then it attracts to a possibly neutral wall due to polarization, not because of new charges being created or requiring a net transfer of charge to the wall.

Explanation:

When a balloon is rubbed against a wool sweater, electrons are transferred from the sweater to the balloon, giving the balloon a net negative charge. The correct statement regarding the interaction of the balloon with the wood wall is that the balloon has a net charge on it, but the wall may be neutral (have no net charge). This is because the negatively charged balloon can induce a polarization in the neutral wall, where the positive charges in the wall are slightly attracted towards the balloon, causing an attractive force. No new charges are created during this process; instead, electrons are simply transferred from one material to another, and the overall charge in the system remains constant.

A person standing a certain distance from an airplane with four equally noisy jet engines is experiencing a sound level of 145 dB . What sound level would this person experience if the captain shut down all but one engine?

Answers

Answer:

The sound level is 138.97 dB.

Explanation:

Given that,

Sound level L= 145 dB

We need to calculate the intensity

Using formula of sound intensity

[tex]L=10\log(\dfrac{I}{I_{0}})[/tex]

Put the value into the formula

[tex]145=10\log(\dfrac{I}{I_{0}})[/tex]

[tex]\log(\dfrac{I}{I_{0}})=\dfrac{145}{10}[/tex]

[tex]\log(\dfrac{I}{I_{0}})=14.5[/tex]

[tex]\dfrac{I}{I_{0}}=10^{14.5}[/tex]

[tex]I=10^{14.5}\times I_{0}[/tex]

[tex]I=10^{14.5}\times10^{-12}[/tex]

[tex]I=316.2[/tex]

We need to calculate the noise of one engine

Using formula of intensity

[tex]I'=\dfrac{I}{4}[/tex]

Put the value into the formula

[tex]I'=\dfrac{316.2}{4}[/tex]

[tex]I'=79.05[/tex]

We need to calculate the intensity level due to one engine

Using formula of sound intensity

[tex]L'=10\log(\dfrac{I'}{I_{0}})[/tex]

[tex]L'=10\log(\dfrac{79.05}{10^{-12}})[/tex]

[tex]L'=138.97\ dB[/tex]

Hence, The sound level is 138.97 dB

Final answer:

In a simplified situation, if the pilot shuts down all engines but one, the person would experience an estimated sound level of approximately 141.5 dB. This is because decibels combine logarithmically, not linearly.

Explanation:

The sound of an airplane engine is a result of four equally noisy jet engines operating together, hence the combined sound level is 145 dB. The sound level is measured in decibels (dB), which is a logarithmic unit. The unit being logarithmic implies that when you decrease the number of sound sources, in this case the number of engines, the sound level does not decrease linearly.

Let's consider each engine contributes equally to the total sound; thus, each engine would approximately produce a sound level of 141.5 dB (since dB is a logarithmic unit, they combine logarithmically, not linearly). Therefore, if the pilot shuts down all engines but one, the resulting sound level experienced would be approximately 141.5 dB.

It's important to comprehend that actual schoolwork problems involving sound levels are more complicated. This simplified explanation does not consider other factors like interference, which can enhance or diminish the overall sound level.

Learn more about Sound Intensity here:

https://brainly.com/question/15089336

#SPJ3

In the Boyle’s law experiment, what was used to increase the pressure on the air (gas)?

Answers

Answer:

Volume.

Explanation:

Boyle’s law experiment :

This is also known as Mariotte's law or in the other words it is also known as Boyle–Mariotte law.

This law tell us about the variation of gas pressure when the volume of the gas changes at the constant temperature.According to this law the abslute pressure is inversely proportional to the volume .

We can say that

[tex]P\alpha \dfrac{1}{V}[/tex]

Where P=Pressure

V=Volume

PV = K

K=Constant

When volume decrease then the pressure of the gas will increase.

That is why the answer is "Volume".

A van traveling at a speed of 36.0 mi/h needs a minimum of 50.0 ft to stop. If the same van is traveling 69.0 mi/h, determine its minimum stopping distance (in ft), assuming the same rate of acceleration.

Answers

Answer:

Van will stop after a distance of 183.216 ft

Explanation:

We have given initial speed of the van = 36 mi/hr

As the van finally stops so final velocity v = 0 mi/hr

Distance after which van stop = 50 ft

As 1 ft = 0.000189 mi

So 50 ft [tex]=50\times 0.000189=0.00945mi[/tex]

From third equation of motion [tex]v^2=u^2+2as[/tex]

[tex]0^2=36^2+2\times a\times 0.00945[/tex]

[tex]a=-68571.42mi/hr^2[/tex]

In second case u = 69 mi/hr

And acceleration is same

So [tex]0^2=69^2-2\times 68571.42\times s[/tex]

[tex]s=0.03471mi[/tex]

As 1 mi = 5280 ft

So [tex]0.0347mi=0.0347\times 5280=183.216ft[/tex]

Two circular disks spaced 0.50 mm apart form a parallel-plate capacitor. Transferring 1.70 x 10^9 electrons from one disk to the other causes the electric field strength to be 2.60 x 10^5 N/C.What are the daimeters of the disk?

Answers

Answer:

The diameters of the disk is 1.23 cm

Explanation:

Given information:

the space of two disks, d =0.5 mm = 0.0005 m =  5 x [tex]10^{-4}[/tex] m

the transferred electron, n = 1.70 x [tex]10^{9}[/tex]

electric field strength, E = 2.6 x [tex]10^{5}[/tex] N/C

to find the diameter of the disk we can use the following equation

A = πD²/4 ...........................................(1)

where

D = the distance of the disk

A = the area of the disk

first, we have to find the are of the disk using the capacitance equation

C = ε₀A/d...........................................(2)

A = Cd/ε₀ where C = Q/V (Q is total charge and V is potential difference)

thus

A = Qd/Vε₀.........................................(3)

now substitute V = Ed and Q = ne, so

A = (ned)/(Edε₀)

   = ne/Eε₀..........................................(4)

e = 1.6 x [tex]10^{-19}[/tex] C

now can substitute equation (4) to the first equation

A = πD²/4

D² = 4A/π

D  = √4A/π

    = √(4ne)/(πEε₀) , ε₀ = 9.85 x [tex]10^{-12}[/tex] C²/Nm²

    = √4(1.70 x [tex]10^{9}[/tex])(1.6 x [tex]10^{-19}[/tex])/π(2.6 x [tex]10^{5}[/tex] )(8.85 x [tex]10^{-12}[/tex] )

    = 0.0123 m

    = 1.23 cm

3. An engine’s fuel is heated to 2,000 K and the surrounding air is 300 K. Calculate the ideal efficiency of the engine. Hint: The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH : e=W/QH. W=QH – QC, where Qc is the output heat. That is, e=1-Qc/QH =1-Tc/TH, where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir. The unit of temperature must be in Kelvin.

Answers

Answer: E = 0.85

Therefore the efficiency is: E = 0.85 or 85%

Explanation:

The efficiency (e) of a Carnot engine is defined as the ratio of the work (W) done by the engine to the input heat QH

E = W/QH.

W=QH – QC,

Where Qc is the output heat.

That is,

E=1 - Qc/QH

E =1 - Tc/TH

where Tc for a temperature of the cold reservoir and TH for a temperature of the hot reservoir.

Note: The unit of temperature must be in Kelvin.

Tc = 300K

TH = 2000K

Substituting the values of E, we have;

E = 1 - 300K/2000K

E = 1 - 0.15

E = 0.85

Therefore the efficiency is: E = 0.85 or 85%

Final answer:

To calculate the ideal efficiency of an engine with specified temperatures, convert to Kelvin and use the Carnot efficiency formula.

Explanation:

The Carnot Engine Efficiency Calculation:

First, convert the temperatures to Kelvin. TH = 2000 K, TC = 300 K.Calculate the efficiency using the formula: e = 1 - TC/TH = 1 - 300/2000 = 0.85.

Learn more about Carnot Engine Efficiency Calculation here:

https://brainly.com/question/36599883

#SPJ11

What can you say about the magnitudes of the forces that the balloons exert on each other?

Answers

Answer:

[tex]F_G=G. \frac{m_1.m_2}{R^2}[/tex] gravitational force

[tex]F=\frac{1}{4\pi \epsilon_0} \times \frac{q_1.q_2}{R^2}[/tex] electrostatic force

Explanation:

The forces that balloons may exert on each other can be gravitational pull due to the mass of the balloon membrane and the mass of the gas contained in each. This force is inversely proportional to the square of the radial distance between their center of masses.

The Mutual force of gravitational pull that they exert on each other can be given as:

[tex]F_G=G. \frac{m_1.m_2}{R^2}[/tex]

where:

[tex]G=[/tex] gravitational constant  [tex]=6.67\times 10^{-11} m^3.kg^{-1}.s^{-2}[/tex]

[tex]m_1\ \&\ m_2[/tex] are the masses of individual balloons

[tex]R=[/tex] the radial distance between the  center of masses of the balloons.

But when  there are charges on the balloons, the electrostatic force comes into act which is governed by Coulomb's law.

Given as:

[tex]F=\frac{1}{4\pi \epsilon_0} \times \frac{q_1.q_2}{R^2}[/tex]

where:

[tex]\rm \epsilon_0= permittivity\ of\ free\ space[/tex]

[tex]q_1\ \&\ q_2[/tex] are the charges on the individual balloons

R = radial distance between the charges.

The string is fixed at two ends with distance 1.5 m. Its mass is 5 g and the tension in the string is 50N and it vibrates on its third harmonic.

a) What is the wavelength of waves of the string.
b) What is the frequency of the waves.
c) The vibrations produce the sound with the same frequency. What is the wavelength of the sound emitted by the string?

Answers

Answer:

a) [tex]\lambda=1\ m[/tex]

b) [tex]f=122.47\ Hz[/tex]

c) [tex]\lambda_s=2.8\ m[/tex]

Explanation:

Given:

distance between the fixed end of strings, [tex]l=1.5\ m[/tex]

mass of string, [tex]m=5\ g=0.005\ kg[/tex]

tension in the string, [tex]F_T=50\ N[/tex]

a)

Since the wave vibrating in the string is in third harmonic:

Therefore wavelength λ of the string:

[tex]l=1.5\lambda[/tex]

[tex]\lambda=\frac{1.5}{1.5}[/tex]

[tex]\lambda=1\ m[/tex]

b)

We know that the velocity of the wave in this case is given by:

[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex]

where:

[tex]\mu=[/tex] linear mass density

[tex]v=\sqrt{\frac{50}{(\frac{m}{l}) } }[/tex]

[tex]v=\sqrt{\frac{50}{(\frac{0.005}{1.5}) } }[/tex]

[tex]v=122.47\ m.s^{-1}[/tex]

Now, frequency:

[tex]f=\frac{v}{\lambda}[/tex]

[tex]f=\frac{122.47}{1}[/tex]

[tex]f=122.47\ Hz[/tex]

c)

When the vibrations produce the sound of the same frequency:

[tex]f_s=122.47\ Hz[/tex]

Velocity of sound in air:

[tex]v_s=343\ m.s^{-1}[/tex]

Wavelength of the sound waves in air:

[tex]\lambda_s=\frac{v_s}{f_s}[/tex]

[tex]\lambda_s=2.8\ m[/tex]

Radiation from the Sun The intensity of the radiation from the Sun measured on Earth is 1360 W/m2 and frequency is f = 60 MHz. The distance between the Earth and the Sun is 1.5 x 1011 m.a) Assuming it radiates uniformly in all directions what is the total power output of the Sun?b) If the frequency increases by 1 MHz what would be the relative (percentage) change in the power output? c) For frequency in b) what is the intensity of the radiation from the Sun measured on Mars? Note that Mars is 60% farther from the Sun than the Earth is.

Answers

a) Total power output: [tex]3.845\cdot 10^{26} W[/tex]

b) The relative percentage change of power output is 1.67%

c) The intensity of the radiation on Mars is [tex]540 W/m^2[/tex]

Explanation:

a)

The intensity of electromagnetic radiation is given by

[tex]I=\frac{P}{A}[/tex]

where

P is the power output

A is the surface area considered

In this problem, we have

[tex]I=1360 W/m^2[/tex] is the intensity of the solar radiation at the Earth

The area to be considered is area of a sphere of radius

[tex]r=1.5\cdot 10^{11} m[/tex] (distance Earth-Sun)

Therefore

[tex]A=4\pi r^2 = 4 \pi (1.5\cdot 10^{11})^2=2.8\cdot 10^{23}m^2[/tex]

And now, using the first equation, we can find the total power output of the Sun:

[tex]P=IA=(1360)(2.8\cdot 10^{23})=3.845\cdot 10^{26} W[/tex]

b)

The energy of the solar radiation is directly proportional to its frequency, given the relationship

[tex]E=hf[/tex]

where E is the energy, h is the Planck's constant, f is the frequency.

Also, the power output of the Sun is directly proportional to the energy,

[tex]P=\frac{E}{t}[/tex]

where t is the time.

This means that the power output is proportional to the frequency:

[tex]P\propto f[/tex]

Here the frequency increases by 1 MHz: the original frequency was

[tex]f_0 = 60 MHz[/tex]

so the relative percentage change in frequency is

[tex]\frac{\Delta f}{f_0}\cdot 100 = \frac{1}{60}\cdot 100 =1.67\%[/tex]

And therefore, the power also increases by 1.67 %.

c)

In this second  case, we have to calculate the new power output of the Sun:

[tex]P' = P + \frac{1.67}{100}P =1.167P=1.0167(3.845\cdot 10^{26})=3.910\cdot 10^{26} W[/tex]

Now we want to calculate the intensity of the radiation measured on Mars. Mars is 60% farther from the Sun than the Earth, so its distance from the Sun is

[tex]r'=(1+0.60)r=1.60r=1.60(1.5\cdot 10^{11})=2.4\cdot 10^{11}m[/tex]

Now we can find the radiation intensity with the equation

[tex]I=\frac{P}{A}[/tex]

Where the area is

[tex]A=4\pi r'^2 = 4\pi(2.4\cdot 10^{11})^2=7.24\cdot 10^{23} m^2[/tex]

And substituting,

[tex]I=\frac{3.910\cdot 10^{26}}{7.24\cdot 10^{23}}=540 W/m^2[/tex]

Learn more about electromagnetic radiation:

brainly.com/question/9184100

brainly.com/question/12450147

#LearnwithBrainly

Final answer:

The total power output of the Sun is 3.8 x 10^26 W and does not change with frequency variations. Therefore, increasing frequency by 1MHz won't change the power output. Using a distance that takes into account Mars being farther from the Sun, the radiation intensity at Mars can be calculated.

Explanation:

The total power output of the sun can be calculated using the equation for the intensity of radiant power (P = I * 4πd^2). So, the total power output of the sun is P = 1360 W/m^2 * 4π * (1.5 x 10^11 m)^2 ≈ 3.8 x 10^26 W.

As for the relative change in power output with frequency change, it is important to note that the power output of the Sun is independent of frequency. Therefore, an increase in frequency by 1 MHz would not result in any relative change in power output. The power output remains 3.8 x 10^26 W regardless of frequency.

Lastly, to find the intensity at Mars which is 60% farther from the Sun than Earth, we use the same intensity equation (I = P / 4πd²) but adjust the distance accordingly. If r is the distance to Earth, then the distance to Mars is 1.6r. Substituting these values, we get I = 3.8 x 10^26 W / 4π * (1.6 * 1.5 x 10^11 m)². From this, you can calculate the radiation intensity at Mars.

Learn more about Sun's radiation here:

https://brainly.com/question/34694606

#SPJ3

While playing baseball with your friends your hands begin to sting after you ctach several fast balls.
What method of catching the ball might prevent this stinging sensation?

Answers

Answer:

Explanation:

To stop a ball with high momentum in a small-time imparts a high amount of impact on hands. This is the reason for the stinging of hands.

The momentum of the ball is due to the mass and velocity. To prevent stinging in the hand one needs to lower his hands to increase the time of contact. In this way, the momentum transfer to the hands will be lesser.        

During a tennis match, a player serves the ball at a speed s, with the center of the ball leaving the racquet at angle θ below the horizontal at a height y0. The net is a distance d away and has a height h. When the ball is directly over the net, what is the distance between them?

Answers

Answer: Maximum distance

= {s²/g} * sine(2*theta)unit

Explanation: This is a projectile motion problem. The horizontal distance between the tennis player and where the tennis reaches over the net is given by the horizontal Range.

Range = {s² * sine2*theta}/g

(s)is the initial speed of projection

Theta is the angle of projection

g is acceleration due to gravity 10m/s².

Find the change in internal energy of a system which receives 70 J of heat from its environment and does 20 J of work.
Select one:
a. 90 J
b. 50 J
c. Zero
d. -70 J

Answers

Answer:

option B

Explanation:

given,

Q = energy input = 70 J

U = increase in internal energy

W is the work done = 20 J

using first law of thermodynamics

The change in internal energy of a system is equal to the heat added to the system minus the work done.

U = Q - W

U = 70 - 20

U = 50 J

The change in internal energy is equal to 50 J

Hence, the correct answer is option B

A stretched string is fixed at both ends which are 160 cm apart. If the density of the string is 0.038 g/cm, and its tension is 600 N, what is the wavelength of the 6th harmonic?

Answers

Final answer:

The wavelength of the 6th harmonic of a stretched string fixed at both ends with a length of 160 cm is 53.33 cm.

Explanation:

To calculate the wavelength of the 6th harmonic of a stretched string fixed at both ends, we need to use the formula for the wavelength of standing waves on a string. The formula for the nth harmonic on a string of length L is given by:

\[\lambda = \frac{2L}{n}\]

In this case, the length L is 160 cm, and the harmonic number n is 6.

So, the wavelength for the 6th harmonic is:

\[\lambda_6 = \frac{2 \times 160}{6}\]

\[\lambda_6 = \frac{320}{6}\]

\[\lambda_6 = 53.33 \text{ cm}\]

Therefore, the wavelength of the 6th harmonic is 53.33 cm.

Suppose you added to the single slit an identical slit a distance d=0.25mm away
from the first. Draw the resulting interference pattern you might expect on the same
screen. What happens when we increase the distance between slits ? What
happens in the limit that d becomes arbitrarily large?

Answers

Answer:

a) See attachment

b) The pattern converges towards central order

c) Very bright spot at central order and rest is dark and contrast of pattern increases.

Explanation:

b) According to Young's Double slit experiment the following relationship is given:

[tex]wavelength = \frac{x*d}{nL}[/tex]

where,

λ = wavelength of light used (m)

x = distance from central fringe (m)

d = distance between the slits (m)

n = the order of the fringe

L = length from the screen with slits to the viewing screen (m)

Using the formula if we increase the (d) i.e distance between slits we see that (x) distance between fringes decreases and the patterns of bright and dark spots is alternating more frequently.

c) When d is arbitrarily large the x is arbitrarily small.

Hence, the entire pattern converges on to the film in a small space with millions spots of bright and dark spots alternating together to forma big bright spot and contrast of pattern increases.

Final answer:

Adding an identical slit close to the first results in an interference pattern of light and dark fridges due to light interference. Increasing the slits' distance results in narrower fringes, while in the limit that this distance becomes arbitrarily large, interference effects vanish and we see two independent single-slit diffraction patterns.

Explanation:

The question discusses an experiment in Physics related to wave interference, specifically light interference in a double-slit experiment. When you add an identical slit a distance of 0.25mm away from the first, an interference pattern of light and dark fringes (bright and dark spots) is created on the screen due to constructive (light) and destructive (dark) interference of the light waves passing through the slits.

Now, as we increase the distance d between the slits, the interference fringes on the screen will become narrower, and their separation will increase. This occurs because the path difference between the light waves emerging from the two slits and reaching the screen changes.

In the limit that the distance d between the slits becomes arbitrarily large, interference effects would vanish, and one would observe two independent single-slit diffraction patterns.

Learn more about Light Interference here:

https://brainly.com/question/31507646

#SPJ3

The weight of the mass added to the hanger is equal to the extra force on the gas, but what area should we use to calculate the added pressure from this mass?

With some of the experimental details out of the way, let's think a bit about what we expect to see in our data if the ideal gas law is a good model for our gas. We would like to verify the ideal gas law PV = nRT

Answers

Answer: according to the Avagadro's law, volume is directly propotional to no of moles: VXn

according to the Charles law, volume is directly propotional to  temperatue: VXT

according to the Boyle's law, volume is inversely propotional to P: VX1/P

when we combine them we get:

VXnT1/P

V=knT/P

k= R(universal gas constant)

V=RnT/P

PV=nRT  

What region of the spectrum best corresponds to light with a wavelength equal to:_____ a. The diameter of a hydrogen atomb. The size of a virus.c. Your height?

Answers

We will make the comparison between each of the sizes against the known wavelengths.

In the case of the hydrogen atom, we know that this is equivalent to [tex]10^{-10}[/tex] m on average, which corresponds to the wavelength corresponding to X-rays.

In the case of the Virus we know that it is oscillating in a size of 30nm to 200 nm, so the size of the virus is equivalent to the range of the wavelength of an ultraviolet ray.

In the case of height, it fluctuates in a person around [tex]10 ^ 0[/tex] to [tex]10 ^ 1[/tex] m, which falls to the wavelength of a radio wave.

Final answer:

The region of the spectrum that best corresponds to light with a wavelength equal to the diameter of a hydrogen atom is the X-ray region. The visible light spectrum corresponds to objects around the same size as the wavelength. The size of a virus is much smaller than the wavelength of visible light

Explanation:

The region of the spectrum that best corresponds to light with a wavelength equal to the diameter of a hydrogen atom is the X-ray region of the electromagnetic spectrum.

The wavelength of visible light corresponds to the size of objects that are around the same size as the wavelength. For example, if you want to use light to see a human, you would need to use a wavelength at or below 1 meter, since humans are about 1 meter in size.

The size of a virus is much smaller than the wavelength of visible light, so the wavelength is very small compared to the object's size.

Two blocks of masses M and 2M are initially traveling at the same speed v but in the opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision

Answers

Answer:

Explanation:

Given

Two masses M and 2 M with velocity v in opposite direction

After collision they stick together

Initial momentum

[tex]P_i=Mv-2Mv[/tex]

final momentum

[tex]P_f=3Mv'[/tex]

Conserving momentum

[tex]P_i=P_f[/tex]

[tex]-Mv=3Mv'[/tex]

[tex]v'=\frac{v}{3}[/tex]

i.e. system moves towards the direction of 2M mass

Initial kinetic Energy [tex]K_1=\frac{1}{2}Mv^2+\frac{1}{2}2Mv^2[/tex]

[tex]K_1=\frac{3}{2}Mv^2[/tex]

Final Kinetic Energy [tex]K_2=\frac{1}{2}\cdot (3M)\cdot (\frac{v}{3})^2=\frac{3}{18}Mv^2[/tex]

loss of Energy[tex]=K_1-K_2[/tex]

[tex]=\frac{3}{2}Mv^2-\frac{3}{18}Mv^2[/tex]

[tex]=\frac{4}{3}Mv^2[/tex]

                   

The mechanical energy is lost to other forms of energy during the collision is [tex]\bold { \dfrac 43 mv^2}[/tex].

Given here,

Mass of the first object = M

Mass of the second  object = 2M

Thy are moving at same speed = v,

The initial momentum,

[tex]\bold {Pi = Mv - 2mv}[/tex]

The Final momentum,

Pf = 3 Mv'

From the conservation of momentum,

Pi = pf

Mv - 2Mv = 3mv'

[tex]\bold {v' = \dfrac v3}[/tex]

The final velocity is one-third of the initial speed.

Since, the system moves towards the direction second object,

The loss of energy  = Ki - Kf

Where,

Ki - Initial kinetic energy,

[tex]\bold {Ki = \dfrac 12 mv^2 + \dfrac 12 mv^2 = \dfrac 32 mv^2}[/tex]

Kf = final kinetic energy

[tex]\bold {Kf = \dfrac 12 (3m)(\dfrac v3)^2 = \dfrac {3}{18 } mv^2}[/tex]

Thus,

[tex]\bold {\Delta E = \dfrac 32 mv^2 - \dfrac 3{18} mv^2 }\\\\\bold {\Delta E = \dfrac 43 mv^2}[/tex]

Therefore, the mechanical energy is lost to other forms of energy during the collision is [tex]\bold { \dfrac 43 mv^2}[/tex].

To know more about energy,

https://brainly.com/question/1932868

when the first artificial satilite was launched into orbit by the former soviet union in 1957 us president asked his scientific advisors to calculate the mass of the satilite would they have been able to make this calculation?

Answers

Answer:

No, they are not able to make this calculation

Explanation:

Acceleration Equation of satellite:

                                g = (G • Mcentral)/R2 ..............(1)

Acceleration equation of a satellite in circular motion:

                                a=(G • Mcentral)/R2...................(2)

Newton's form of Kepler's third law .

The period of a satellite (T) and the mean distance from the central body (R) are related by the following equation:

                                     [tex]\frac{T^{2} }{R^{3} }[/tex]=4×[tex]\pi ^{2}[/tex]/G×[tex]M_{central}[/tex].............(3)

T= the period of the satellite

R= The average radius of orbit for the satellite

G=6.673 x 10-11 N•m2/kg2.

According to all these three equations(1)(2)(3)

The period, speed and the acceleration of an orbiting satellite are independent upon the mass of the satellite.

A ball is kicked from a location <8, 0, -7> (on the ground) with initial velocity <-8, 19, -3> m/s. The ball's speed is low enough that air resistance is negligible.(a) What is the velocity of the ball 0.3 seconds after being kicked? (Use the Momentum Principle!)(b) What is the average velocity of the ball over this time interval?(c) Use the average velocity to find the location of the ball 0.5 seconds after being kicked.

Answers

Final answer:

The velocity of the ball 0.3 seconds after being kicked is <-8, 16.06, -3> m/s. The average velocity of the ball over this time interval is <0, 53.53, 13.33> m/s. The location of the ball 0.5 seconds after being kicked is <8, 26.765, -0.335> m.

Explanation:

(a) To find the velocity of the ball 0.3 seconds after being kicked, we can use the Momentum Principle. The Momentum Principle states that the change in momentum of an object is equal to the force exerted on it multiplied by the time over which the force was exerted. In this case, we can assume that the only force acting on the ball is gravity. Thus, the change in momentum is equal to the weight of the ball, which is equal to its mass multiplied by the acceleration due to gravity. The time over which the force was exerted is 0.3 seconds. Using the formula for momentum (momentum = mass * velocity), we can calculate the velocity of the ball after 0.3 seconds.

Given initial velocity: <-8, 19, -3> m/s

Acceleration due to gravity (in the vertical direction): -9.8 m/s^2

Time: 0.3 seconds

Using the formula for velocity (velocity = initial velocity + acceleration * time), we can calculate the velocity of the ball after 0.3 seconds:

Velocity = (-8, 19, -3) + (0, -9.8, 0) * 0.3

Velocity = (-8, 19, -3) + (0, -2.94, 0)

Velocity = (-8, 16.06, -3)

Therefore, the velocity of the ball 0.3 seconds after being kicked is <-8, 16.06, -3> m/s.

(b) To find the average velocity of the ball over this time interval, we can divide the displacement of the ball by the time interval. The displacement of the ball is the difference between its final position and its initial position. The time interval is 0.3 seconds. Using the formula for average velocity (average velocity = displacement / time interval), we can calculate the average velocity of the ball over this time interval:

Initial position: <8, 0, -7> m

Final position: <8, 16.06, -3> m

Displacement = Final position - Initial position

Displacement = <8, 16.06, -3> - <8, 0, -7>

Displacement = <0, 16.06, 4> m

Average velocity = Displacement / Time interval

Average velocity = <0, 16.06, 4> / 0.3

Average velocity = <0, 53.53, 13.33> m/s

Therefore, the average velocity of the ball over this time interval is <0, 53.53, 13.33> m/s.

(c) To find the location of the ball 0.5 seconds after being kicked, we can multiply the average velocity by the time interval and add the result to the initial position of the ball. The average velocity is <0, 53.53, 13.33> m/s and the time interval is 0.5 seconds. Using the formula for displacement (displacement = average velocity * time interval), we can calculate the displacement of the ball:

Displacement = <0, 53.53, 13.33> m/s * 0.5 seconds

Displacement = <0, 26.765, 6.665> m

Therefore, the location of the ball 0.5 seconds after being kicked is <8, 0, -7> m + <0, 26.765, 6.665> m = <8, 26.765, -0.335> m.

(a) Velocity after 0.3s: <-8, 16.057, -3> m/s.

(b) Average velocity: <-8, 15.0595, -1.4715> m/s.

(c) Location after 0.5s: <4, 7.53, -7.74> meters.

To solve this problem, we can use the Momentum Principle, which relates the change in momentum of an object to the net force acting on it. The formula for the Momentum Principle is:

Δp = FΔt

Where:

Δp = change in momentum

F = net force

Δt = change in time

First, let's calculate the change in momentum of the ball over the given time intervals.

(a) Velocity of the ball 0.3 seconds after being kicked:

We want to find the velocity of the ball at t = 0.3 seconds. We can use the following formula:

Δp = mΔv

Where:

Δp = change in momentum

m = mass of the ball (which is not given, but we can ignore it since it cancels out in this case)

Δv = change in velocity

Given initial velocity (u) = <-8, 19, -3> m/s

Time interval (Δt) = 0.3 seconds

Δv = a * Δt

Where:

a = acceleration

To find acceleration, we need to use the kinematic equation:

Δv = u + at

For each component (x, y, z), we can calculate the change in velocity:

Δvx = -8 + ax * 0.3

Δvy = 19 + ay * 0.3

Δvz = -3 + az * 0.3

Now, we need to find the acceleration (ax, ay, az) for each component. Since there's no air resistance, the only force acting on the ball is gravity (assuming the acceleration due to gravity is approximately -9.81 m/s² in the negative y-direction).

ax = 0 (no force in the x-direction)

ay = -9.81 m/s²

az = 0 (no force in the z-direction)

Now we can calculate Δv for each component:

Δvx = -8 + 0 * 0.3 = -8 m/s

Δvy = 19 + (-9.81) * 0.3 = 19 - 2.943 = 16.057 m/s

Δvz = -3 + 0 * 0.3 = -3 m/s

So, the velocity of the ball 0.3 seconds after being kicked is:

V = <Δvx, Δvy, Δvz> = <-8, 16.057, -3> m/s

(b) Average velocity of the ball over the time interval:

Average velocity is calculated by taking the total displacement and dividing it by the total time. In this case, the total displacement is the change in position from the initial point to the final point (0.3 seconds after being kicked):

Δx = ut + (1/2)at²

Δx = <-8 * 0.3, 19 * 0.3 - (1/2) * 9.81 * (0.3)², -3 * 0.3> = <-2.4, 4.51785, -0.44145> meters

So, the average velocity is:

Average velocity = Δx / Δt = <-2.4/0.3, 4.51785/0.3, -0.44145/0.3> = <-8, 15.0595, -1.4715> m/s

(c) Location of the ball 0.5 seconds after being kicked using average velocity:

We want to find the location of the ball 0.5 seconds after being kicked. We can use the formula:

Δx = v_avg * Δt

Where:

Δx = change in position

v_avg = average velocity calculated in part (b)

Δt = time interval (0.5 seconds)

Δx = <-8 * 0.5, 15.0595 * 0.5, -1.4715 * 0.5> = <-4, 7.52975, -0.73575> meters

Now, we need to add this displacement to the initial position to find the final position:

Final position = Initial position + Δx = <8, 0, -7> + <-4, 7.52975, -0.73575> = <4, 7.52975, -7.73575> meters

So, the location of the ball 0.5 seconds after being kicked is approximately <4, 7.53, -7.74> meters.

Suppose that all the mass in your body were suddenly converted into energy according to the formula E=mc2. How much energy would be released? (Assume that your mass is about 70.0 kilograms) Compare this to the energy released by a 1 megaton hydrogen bomb.

Answers

The energy released by the body is approximately 1500 times more than that of a 1 megaton hydrogen bomb.

The energy released from converting mass to energy using the formula [tex]\rm \(E=mc^2\)[/tex] can be calculated by substituting the mass (m) into the equation, where c is the speed of light [tex]\rm (\(3.00 \times 10^8\) m/s)[/tex].

Given:

Mass (m) = 70.0 kg

Speed of light (c) = [tex]\rm \(3.00 \times 10^8\) m/s[/tex]

Using the formula [tex]\rm \(E = mc^2\)[/tex]:

[tex]\rm \[ E = (70.0 \, \text{kg}) \times (3.00 \times 10^8 \, \text{m/s})^2 \][/tex]

Now, calculate E:

[tex]\rm \[ E = 70.0 \, \text{kg} \times 9.00 \times 10^{16} \, \text{J/kg} \]\\\ E = 6.3 \times 10^{18} \, \text{Joules} \][/tex]

So, the energy released from converting the mass of your body to energy is [tex]\rm \(6.3 \times 10^{18}\)[/tex] Joules.

The energy released by a 1 megaton hydrogen bomb can be calculated as [tex]\(1 \, \text{megaton} = 4.18 \times 10^{15}\)[/tex] Joules.

Comparing the two energies:

[tex]\[ \text{Energy released by body} = 6.3 \times 10^{18} \, \text{Joules} \]\\\ \text{Energy released by 1 megaton hydrogen bomb} = 4.18 \times 10^{15} \, \text{Joules} \][/tex]

The energy released by the body is approximately 1500 times more than that of a 1-megaton hydrogen bomb.

Know more about hydrogen bomb:

https://brainly.com/question/30409483

#SPJ12

Final answer:

The energy obtained from completely converting a 70kg mass into energy using the E=mc^2 formula is approximately 6.3 x 10^18 joules. This is about 1500 times greater than the energy released by a 1 megaton hydrogen bomb, which is about 4.18 x 10^15 joules.

Explanation:

The mass-energy equivalence principle, stated by the formula E=mc^2, allows us to calculate the energy resulting from the conversion of mass to energy. Here, 'E' is energy, 'm' is mass, and 'c' is the speed of light in a vacuum (about 3.00x10^8 meters per second). If we substitute your mass (70.0 kilograms) into the formula, we find that the energy released would amount to approximately 6.3 x 10^18 joules of energy.

For comparison, a 1 megaton hydrogen bomb releases about 4.18 x 10^15 joules. Therefore, the energy from a complete mass to energy conversion of a 70-kg person would be approximately 1500 times more than a 1 megaton hydrogen bomb.

Learn more about Mass-energy equivalence

https://brainly.com/question/33439849

#SPJ3

Calculate the minimum intensity of light in Watts (J/s) required to eject 1.40 x 1011 electrons (each with a kinetic energy of 3.61 x 10-19 J) using a 0.20 second pulse of light.

Answers

Final answer:

The minimum intensity of light required to release 1.40 x 10^11 electrons with a kinetic energy of 3.61 x 10^-19 J in a 0.20 second pulse of light is 25.25 Watts.

Explanation:

The question requires us to calculate the minimum intensity of light needed to release a certain number of electrons with a given kinetic energy in a set amount of time. This can be done using the formula for intensity (I), which is total energy (E) divided by time (t).

The total energy can be found by multiplying the kinetic energy of each electron (Ke) by the total number of electrons (N). Given, Ke = 3.61 x 10^-19 J, and N = 1.40 x 10^11, we get E = Ke x N = 3.61 x 10^-19 J x 1.40 x 10^11 = 5.05 J. Next, we divide this total energy by the pulse duration to find the intensity. Given t = 0.20 s, we have I = E/t = 5.05 J / 0.20 s = 25.25 Watts.

Learn more about Light Intensity here:

https://brainly.com/question/35900055

#SPJ3

How far is the center of mass of the Earth-Moon system from thecenter of the Earth? (Appendix C gives the masses of the Earth andthe Moon and the distance between the two.)

Answers

Answer:

[tex]\bar x=4679496.086\ m=4679.496086\ km[/tex] from the center of the earth.

Explanation:

We have a system of Earth & Moon:

we have the mass of earth, [tex]m_e=5.972\times 10^{24}\ kg[/tex]mass of the moon, [tex]m_m=7.348\times 10^{22}\ kg[/tex]distance between the center of the earth and the moon [tex]d=385000\ km[/tex]

Now we assume the origin of the system to be at the center of the earth.

Now for the center of mass of this system:

[tex]\bar x=\frac{m_e.x_e+m_m.x_m}{m_e+m_m}[/tex]

here:

[tex]x_e\ \&\ x_m[/tex] are the distance of the centers (center of masses) of the Earth and the Moon from the origin of the system.

[tex]x_e=0[/tex] ∵ since we have taken the point as the origin of the system.

[tex]x_m=d[/tex]

now putting the values in the above equation:

[tex]\bar x=\frac{(5.972\times 10^{24}\times 0)+(7.348\times 10^{22}\times 385000\times 1000)}{5.972\times 10^{24}+7.348\times 10^{22}}[/tex]

[tex]\bar x=4679496.086\ m=4679.496086\ km[/tex] from the center of the earth.

A wheel accelerates from rest to 59 rad/s^2 at a uniform rate of 58 rad/s^2. Through what angle (in radians) did the wheel turn while accelerating?

A) 24 rad
B) 38 rad
C) 30 rad
D) 60 rad

Answers

To solve this problem we will apply the physical equations of the angular kinematic movement, for which it defines the square of the final angular velocity as the sum between the square of the initial angular velocity and the product between 2 times the angular acceleration and angular displacement. We will clear said angular displacement to find the correct response

Using,

[tex]\omega^2 = \omega_0^2 +2\alpha \theta[/tex]

Here,

[tex]\omega[/tex] = Final angular velocity

[tex]\omega_0[/tex] = Initial angular velocity

[tex]\alpha =[/tex] Angular acceleration

[tex]\theta =[/tex] Angular displacement

Replacing,

[tex]59^2 = 0+2*58\theta[/tex]

[tex]\theta = 30rad[/tex]

Therefore the correct answer is C.

The angle at which the wheel turns while accelerating is 30 radians and this can be determined by using the kinematics equation.

Given :

A wheel accelerates from rest to 59 rad/[tex]\rm s^2[/tex] at a uniform rate of 58 rad/[tex]\rm s^2[/tex].

The equation of kinematics is used in order to determine the angle at which the wheel turn while accelerating.

[tex]\omega^2 = \omega^2_0+2\alpha \theta[/tex]

where [tex]\omega[/tex] is the final angular velocity, [tex]\omega_0[/tex] is the initial angular velocity, [tex]\alpha[/tex] is the angular acceleration, and [tex]\theta[/tex] is the angular displacement.

Now, substitute the values of the known terms in the above formula.

[tex]59^2 =0+2\times 58 \times \theta[/tex]

Simplify the above expression.

[tex]\rm \theta = 30\; rad[/tex]

Therefore, the correct option is C).

For more information, refer to the link given below:

https://brainly.com/question/408236

Perform the following unit conversions using units of length, mass, and time only to convert. Show your work, do not just use Google.

(a) 1 L to in.3
(b) 0.135 kW to ft.·lbf./s
(c) 304 kPa to psi
(d) 122 ft.3 to m3
(e) 100 hp to kW
(f) 1000 lbm. to kg

Answers

Answer:

[tex]\mathbf{1\ L=61.02384\ in^3}[/tex]

[tex]\mathbf{0.135\ kW=99.5709185406\ ft-lb/s}[/tex]

[tex]\mathbf{304\ kPa=44.091435811\ psi}[/tex]

[tex]\mathbf{122\ ft^3=3.45465495258\ m^3}[/tex]

[tex]\mathbf{100\ hp=74.6\ kW}[/tex]

[tex]\mathbf{1000\ lbm=453.592\ kg}[/tex]

Explanation:

[tex]1\ L=10^{-3}\ m^3[/tex]

[tex]1\ m=39.3701\ in[/tex]

[tex]10^{-3}\ m^3=10^{-3}\times 39.3701^3=61.02384\ in^3[/tex]

[tex]\mathbf{1\ L=61.02384\ in^3}[/tex]

[tex]0.135\ kW=135\ W[/tex]

[tex]135\ W=135\ Nm/s[/tex]

[tex]1\ N=0.224809\ lbf[/tex]

[tex]1\ m=3.28084\ ft[/tex]

[tex]135\times 0.224809\times 3.28084=99.5709185406\ ft-lb/s[/tex]

[tex]\mathbf{0.135\ kW=99.5709185406\ ft-lb/s}[/tex]

[tex]304\ kPa=304000\ N/m^2[/tex]

[tex]1\ m=39.3701\ in[/tex]

[tex]304000\ N/m^2=304000\times 0.224809\times \dfrac{1}{39.3701^2}=44.091435811\ psi[/tex]

[tex]\mathbf{304\ kPa=44.091435811\ psi}[/tex]

[tex]122\ ft^3=\dfrac{122}{3.28084^3}=3.45465495258\ m^3[/tex]

[tex]\mathbf{122\ ft^3=3.45465495258\ m^3}[/tex]

[tex]1\ hp=746\ W[/tex]

[tex]100\ hp=100\times 746\ W=74.6\ kW[/tex]

[tex]\mathbf{100\ hp=74.6\ kW}[/tex]

[tex]1\ lbm=0.224809\ kg[/tex]

[tex]1000\ lbm=1000\times 0.453592=453.592\ kg[/tex]

[tex]\mathbf{1000\ lbm=453.592\ kg}[/tex]

The blood flow rate through the aorta is measured to be 104.1 cm^3/s, and an adult is measured to have 4.93 L of blood. How long does it take for all of your blood to pass through the aorta?


If the adult's aorta has a diamter of 1.85 cm, what is the speed of blood as it flows through the aorta?

Answers

Answer:

a)time t = 47.4s

b)speed v = 38.7cm/s

Explanation:

Given:

Total volume of blood = 4.93L × 1000cm^3/L = 4930cm^3

Volumetric rate of flow = 104.1cm^3/s

a) Time taken for all the blood to pass through the aorta is:

Time t = total volume/ volumetric rate

t = 4930/104.1

t = 47.4s

b) Given that the diameter of the aorta is 1.85cm.

V = Av

Where V = Volumetric rate

A = area of aorta

v = speed of blood

v = V/A ...1

Area of a circular aorta = πr^2 = (πd^2)/4

d = 1.85cm

A = (π×1.85^2)/4

A = 2.69cm^2

From equation 1.

v = V/A = 104.1/2.69

v = 38.7 cm/s

Two locomotives approach each other on parallel tracks. Each has a speed of v = 80 km/h with respect to the ground. If they are initially d = 9.0 km apart, how long will it be before they reach each other?(min)

Answers

Answer:

Explanation:

Given

speed of locomotive [tex]v=80\ km/h[/tex]

distance [tex]d=9\ km[/tex]

Relative velocity of two locomotive [tex]v_r=80-(-80)=160\ km/h[/tex]

Time taken[tex]=\frac{distance}{speed}[/tex]

[tex]t=\frac{9}{160} \hr[/tex]

[tex]t=\frac{9}{160}\times 60\ min[/tex]

[tex]t=3.375\ min[/tex]

     

momentum A proton interacts electrically with a neutral HCl molecule located at the origin. At a certain time t, the proton’s position is h1.6 × 10−9 , 0, 0i m and the proton’s velocity is h3200, 800, 0i m/s. The force exerted on the proton by the HCl molecule is h−1.12 × 10−11 , 0, 0i N. At a time t + (2 × 10−14 s), what is the approximate velocity of the proton? answer

Answers

Answer:

[tex]<3068.2352, 800, 0>\ m/s[/tex]

Explanation:

F = Force = [tex]<-1.12\times 10^{-11}, 0, 0>[/tex]

m = Mass of proton = [tex]1.7\times 10^{-27\ kg[/tex]

t = Time taken = [tex]2\times 10^{-14}\ s[/tex]

Acceleration is given by

[tex]a=\dfrac{F}{m}\\\Rightarrow a=\dfrac{<-1.12\times 10^{-11}, 0, 0>}{1.7\times 10^{-27}}\\\Rightarrow a=<-6.58824\times 10^{15}, 0, 0>\ m/s^2[/tex]

[tex]v=u+at\\\Rightarrow v=<3200, 800, 0>+<-6.58824\times 10^{15}, 0, 0>\times 2\times 10^{-14}\\\Rightarrow v=<3200, 800, 0>+<-6.58824\times 10^{15}, 0, 0>\times 2\times 10^{-14}\\\Rightarrow v=<3200, 800, 0>+<-131.7648, 0, 0>\\\Rightarrow v=<3068.2352, 800, 0>\ m/s[/tex]

The velocity of the proton is [tex]<3068.2352, 800, 0>\ m/s[/tex]

Other Questions
Suppose a wheel with radius 16 cm rolls in a straight line over a flat surface rotating a total of 5 radians. How far did the wheel travel? Find a third-degree polynomial equation with rational coefficients that has the given numbers as roots. 1 and 3i Given a JFrame variable named frame, write a statement that makes the frame visible. An 80-cm-long, 1.0-mm-diameter steel guitar string must betightened to a tension of 2000 {\rm N} by turning the tuningscrews.By how much is the string stretched? (In 2 sig figs and cm) Find the difference 83456 - 728.88 Complete the answer using the past tense and an indirect object pronoun.Did your father give you a gift? Yes, there ____________ a gift.gave mehe gave himgave yougave it How does a chemical reaction obey the law of conservation of matter? A student watched a local activist advocate for people to give money to his association that takes care of neglected and abused cats and dogs. The activist told stories of pet suffering and even had some pictures of pets that were in terrible condition. This advocate was using ______ to influence the audience. pathos charisma logos ethos A baker has 10 cups of sugar to make cookies. Each batch calls for 113 cups of sugar.How many batches of cookies can he make?Enter your answer, as a mixed number in simplest form, in the box. Which of the following is NOT a latent function of education?A. Political and social integrationB. CourtshipC. Working in groupsD. Transmission of culture Autoimmunities are relatively uncommon. What usually happens to autoimmune antibody-producing clones during development A child who does not seek proximity to the mother and, after she leaves the room, does not look distressed is exhibiting a(n) __________. The first Ferris wheel was built in 1893 in Chicago. It's diameter was 250 feet. How many feel did the Ferris wheel rotate with one complete turn? Kelsey is a research assistant in drug-treatment studies. Her professor said they are using a double-blind procedure to minimize the chance that _____ are responsible for differences between experimental and control conditions. ating a Line with a Positive SlopeA line passes through the point (0, 1) and has a positive slope. Which of these points could that line pass through? Check all that apply.(12, 3)(2, 5)(3, 1)(1, 15)(5, 2) In ur opinion, is Martin Luther King speech is a great speech? The speech is: The Other America Which of the following does NOT constitute an act of "investment" as economists use the term? A)A department store increases its inventory of football jerseys before the Super Bowl.B)A retiree buys 50 shares of stock at $10 a share and then sells the stock at a profit for $20 ashare.C)The city council authorizes the construction of a new fire station.D)An accountant attends a seminar on changes in the federal tax code. Write as a single integral in the form b f(x) dx. a 1 f(x) dx 3 + 4 f(x) dx 1 2 f(x) dx 3 Maureen's college raises the cost of room and board per semester. This increase raises Maureen's opportunity cost of attending college ____. a. only if the amount she would have to pay for room and board if she didn't attend college rose by less than the increase in the amount her college charges. An increase in opportunity cost increases Maureen's incentive to attend college. b. even if the amount she would have to pay for room and board if she didn't attend college rose by the same amount. An increase in opportunity cost increases Maureen's incentive to attend college. c. only if the amount she would have to pay for room and board if she didn't attend college rose by less than the increase in the amount her college charges. An increase in opportunity cost reduces Maureea's incentive to attend college. d even if the amount she would have to pay for room and board if she didn't attend college rose by the same amount An increase in opportunity cost reduces Maureen's incentive to attend college. Afrter reviewing details in the second and third paragraphs of chapter 5 what ideas about playing god do you think shelly might be conveying through the character of dr Frankenstein? How does the film version characterization of the doctor address these ideas in both similar and different ways Steam Workshop Downloader