A piece of corroded steel plate was found in a submerged ocean vessel. It was estimated that the original area of the plate was 10 in2 and that approximately 2.6 kg had corroded away during the submersion. Assuming a corrosion penetration rate of 200 mpy for this alloy in seawater, estimate the time of submersion in years. (convert the time from hours to years). The density of steel is 7.9 g/cm3. K

Answers

Answer 1

The time of submersion of the steel plate in years is; 10 years

Corrosion Penetration Rate Calculation

We are given;

Corrosion penetration rate; CPR = 200 mpyWeight of the corroded portion of plate; W = 2.6 kg = 2.6 × 10⁶ mgExposed surface area; A = 10 in²Density of the metal plate; ρ =  7.9 g/cm³

The time of submersion of the steel plate is given by the formula;

t = KW/(ρA*CPR)

Now K is a constant and is equal to 534 provided CPR is in mpy and

A is in square inches.

Thus;

t = (534 * 2.6 × 10⁶)/(7.9 * 10 * 200)

t = 8.8 × 10⁴ hours

Now, 24 hours makes one day and there are 365 days in a year. Thus;

number of hours in a year = 24 * 365

Thus;

t in years = (8.8 × 10⁴)/(24 * 365)

t ≈ 10 years

Read more about corrosion at; https://brainly.com/question/5168322


Related Questions

A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calculate: a) The velocity of the faster moving flow. b) The flow rate (discharge). c) The Froude number of the sub-critical flow. d) The flow energy dissipated in the hydraulic jump (expressed as percentage of the energy prior to the jump). e) The critical depth.

Answers

Answer:

(a). 42.1 ft/s, (b). 3366.66 ft^3/s, (c). 0.235, (d). 18.2 ft, (e). 3.8 ft.

Explanation:

The following parameters are given in the question above and they are;

Induced hydraulic jump, j = 80 ft wide channel, and the water depths on either side of the jump are 1 ft and 10 ft. Let k1 and k2 represent each side of the jump respectively.

(a). The velocity of the faster moving flow can be calculated using the formula below;

k1/k2 = 1/2 [ √ (1 + 8g1^2) - 1 ].

Substituting the values into the equation above a s solving it, we have;

g1 = 7.416.

Hence, g1 = V1/ √(L × k1).

Therefore, making V1 the subject of the formula, we have;

V1 = 7.416× √ ( 32.2 × 1).

V1 = 42.1 ft/s.

(b). R = V1 × j × k1.

R = 42.1 × 80 × 1.

R = 3366.66 ft^3/s.

(c). Recall that R = V2 × A.

Where A = 80 × 10.

Therefore, V2 = 3366.66/ 80 × 10.

V2 = 4.21 ft/s.

Hence,

g2 = V1/ √(L × k2).

g2 = 4.21/ √ (32.2 × 10).

g2 = 0.235.

(d). (k2 - k1)^3/ 4 × k1k2.

= (10 - 1)^3/ 4 × 1 × 10.

= 18.2 ft.

(e).The critical depth;

[ (3366.66/80)^2 / 32.2]^ 1/3.

The The critical depth = 3.80 ft.

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

[tex] \frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1} [/tex]

[tex] 10*2 = \sqrt{1 + 8f^2 - 1[/tex]

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

[tex] \frac{V_1}{\sqrt{g*y_1}} = 7.416 [/tex]

[tex] V_1 = 7.416 *\sqrt{32.2*1}[/tex]

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

[tex] V_2 = \frac{3666.66}{80*10} [/tex]

= 4.208 ft/sec

Froude number, F2 =

[tex] \frac{V_2}{g*y_2} = \frac{4.208}{32.2*10} [/tex]

F2 = 0.235

d) [tex]El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}[/tex]

[tex] El = \frac{(10-1)^3}{4*1*10} [/tex]

[tex] = \frac{9^3}{40} [/tex]

= 18.225ft

e) for critical depth, we use :

[tex] y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3 [/tex]

= 3.80 ft

a) A coil connected to a 250-V, 50-Hz sinusoidal supply takes a current of 10 A at a
phase angle of 30°. Calculate the resistance and inductance of, and the power
taken by the coil.
b) A voltage v = 0.95 sin754t is applied to a series RLC circuit, which has L = 22.0
mH, R = 23.2 k2, and C = 0.30 uF.
(i) What is the impedance and phase angle7 element?​

Answers

Final answer:

The question involves calculations within AC circuits, focusing on impedance, phase angles, power in RLC circuits, and the effects of frequency on circuit behavior.

Explanation:

The student has presented a scenario involving alternating current (AC) circuits with various components like coils, resistors, inductors, and capacitors. These types of problems require an understanding of impedance, phase angles, power calculations, and resonance in RLC circuits. Calculating these values involves the use of formulas derived from AC circuit theory which take into account the sinusoidal nature of the voltage and current.

To illustrate, in an AC circuit with a resistor (R) and an inductor (L), the total impedance (Z) can be found using the formula Z = \(\sqrt{R^2 + (\omega L - 1/\omega C)^2}\), where \(\omega\) is the angular frequency of the source. The phase angle (\(\phi\)) between the voltage and the current can be determined using the arctangent of the reactive component over the resistive component, \(\phi = arctan((\omega L - 1/\omega C)/R)\). Power calculations involve both the voltage and current, with the power factor being the cosine of the phase angle.

Why does the the diffusion capacitance fall off at high frequencies?


1. At high frequencies the dopants are vibrated across the metallurgical junction and the doping profiles smooths out.

2. Since Gd increases with frequency Cd must decrease with frequency and the parallel combination of Gd and Cd is constant.

3. When the applied bias frequency is higher than the speed which the majority carriers can respond the diode starts to disappear electrically.

4. It takes time to store and remove minority charge, so when the frequency is higher than the inverse of the minority carrier lifetime the carriers can't respond as well.

Answers

Answer:

The answer 1 is correct.

Explanation:

When a junction called the p-n is forward biased, the capacitance of diffusion will form or structured across depletion layers.

When at a higher frequency or frequencies, the dopants, are vibrated across the metallurgical junction and the doping profiles smooths out.

The cross section at right is made of 2024-T3 (Ftu=62 ksi, E=10.5 Msi,Ec=10.7 Msi) aluminum clad sheet. Dimensions of the angle areb1=1.25", b2=1.75", t1=0.050", & t2=0.080". If the angle is 20" long, and the ends can be considered pinned, determine the critical buckling allowable Pcr for the angle & the allowable buckling stress σcr.

Answers

Answer:

See explaination

Explanation:

Given that

the cross section at right is mode 2024-T3

Ftu=62 ksi

E=10.5 Msi

Ec=10.7 Msi

the angle b1=1.25"

b2=1.75"

t1=0.050"

t2=0.080"

Kindly check attachment for the step by step solution of the given problem.

Thermal energy generated by the electrical resistance of a 5-mm-diameter and 4-m-long bare cable is dissipated to the surrounding air at 20°C. The voltage drop and the electric current across the cable in steady operation are measured to be 60 V and 1.5 A, respectively. Disregarding radiation, estimate the surface temperature of the cable. Evaluate air properties at a film temperature of 60°C and 1 atm pressure. Is this a good assumption?

Answers

Answer:

surface temperature = 128.74⁰c

Explanation:

Given data

diameter of cable = 5 mm = 0.005 m

length of cable = 4 m

T∞ ( surrounding temperature ) = 20⁰c

voltage drop across cable ( dv )= 60 V

current across cable = 1.5 A

attached to this answer is the comprehensive analysis and solution to the problem.

The assumption made is not a good one since the calculated Ts ( surface temperature ) is very much different from the assumed Ts

Heat is transferred at a rate of 2 kW from a hot reservoir at 875 K to a cold reservoir at 300 K. Calculate the rate at which the entropy of the two reservoirs changes. (Round the final answer to six decimal places.) The rate at which the entropy of the two reservoirs changes is kW/K. Is the second law satisfied?

Answers

Answer:

The correct answer is 0.004382 kW/K, the second law is a=satisfied and established because it is a positive value.

Explanation:

Solution

From the question given we recall that,

The transferred heat rate is = 2kW

A reservoir cold at = 300K

The next step is to find the rate  at which the entropy of the two reservoirs changes is kW/K

Given that:

Δs =  Q/T This is the entropy formula,

Thus

Δs₁ = 2/ 300 = 0.006667 kW/K

Δs₂ = 2 / 875 =0.002285

Therefore,

Δs = 0.006667 - 0.002285

= 0.004382 kW/K

Yes, the second law is satisfied, because it is seen as positive.

a sprue is 12 in long and has a diameter of 5 in at the top. The molten metal level in the pouring basing is taken to be 3 in from the top of the sprue for design purposes. If a flow rate of 40 in3/s is to be achieved, what should be the diameter at the bottom of the sprue

Answers

Answer:

See explaination

Explanation:

We can describe Aspiration Effect as a phenomenon of providing an allowance for the release of air from the mold cavity during the metal pouring.

See the attached file for detailed solution of the given problem.

Answer:

The diameter at the bottom of the sprue is =0.725 in, and the sprue will not occur when 0.021<0.447.

Explanation:

Solution

The first step to take is to define the Bernoulli's eqaution

h effective = v²top/2g + ptop /ρg = hbottom + v² bottom/2g + p bottom/ ρg

h effective  + 0 +0= 0 +v² bottom/2g + 0

Thus,

v bottom = √ 2gh total

=√ 2 (32. 6 ft/ s²) + (12/12 ft)

Which is = 8.074 ft/s

We now, express the relation for flow rate.

Q =π/4 D² bottom v bottom

= 40 in 3/s = π/4 D²₃ ( 8.074 ft/s) (12  in/ ft)

so,

D bottom = 0.725 in.

Then,

We express the relation to avoid aspiration

A₃/A₂ < √ h top /h total

= π/4 D²₃/ π/4 D²₂ < √3/15

= 0.725²/5² < √3/15

=0.021<0.447

Therefore, the aspiration will not happen or occur

John was a high school teacher earning $ 80,000 per year. He quit his job to start his own business in pizza catering. In order to learn how to run the pizza catering business, John enrolled in a TAFE to acquire catering skills. John’s course was for 3 months. John had to pay $2,000 as tuition for the 3 months.

After the training, John withdrew $110,000 from his savings account. He had been earning 5 percent interest per year for this account. He also borrowed $50,000.00 from his friend whom he pays 6 percent interest per year. Further, to start the business John used his own premises. He was receiving $12,000 from rent per year. Finally, to start the business John uses $50,000 he had been given by his father to go on holiday to USA.

John’s first year of business can be summarised as follows:

Item Amount $
Revenue- Pizza Section 400,000
Revenue- Beverages Section 190,000
2 Cashiers (wages per worker) 55,000
Pizza ingredients 50,000
Manager 75,000
3 Pizza bakers (wages per baker) 60,000
Equipment 10,000

Based on your calculated accounting profit and economic profit, would you advise John to return to his teaching job? Show your work (10 marks)

Answers

Answer:

John should continue with his catering business because accounting and economic profits from pizza catering are more than his annual salary from teaching.

Explanation:

John can earn from teaching $80,000 annually

For starting business of pizza catering John will incur following expense

Tuition for catering skills $2,000

Opportunity cost for withdrew of funds ($110,000 * 5%) $5,500

Interest for Borrowing from friend ($50,000 * 6%) $3,000

Opportunity cost of Rent from premises $12,000

Total opportunity cost $22,500

Revenue:

Revenues from Pizza $400,000

Revenue from Beverages $190,000

Total revenue $590,000

Expenses:

Cashier wages ($55,000 * 2) $110,000

Pizza ingredients $50,000

Manager salary $75,000

Pizza bakers wages ($60,000 * 3) $180,000

Equipment $10,000

Total Expense $425,000

Net Income - Accounting Profit ($590,000 - $425,000) = $165,000

Less opportunity cost $22,500

Economic Profit $142,500

The vertical force P acts on the bottom of the plate having a negligible weight. Determine the shortest distance d to the edge of the plate at which it can be applied so that it produces no compressive stresses on the plate at section a-a. The plate has a thickness of 10 mm and P acts along the center line of this thickness.


200mm is the width and d is the distance from the right edge to the force P.

Answers

Answer:

The shortest distance d to the edge of the plate is 66.67 mm

Concepts and reason

Moment of a force:

Moment of a force refers to the propensity of the force to cause rotation on the body it acts upon. The magnitude of the moment can be determined from the product of force’s magnitude and the perpendicular distance to the force.

Moment(M) = Force(F)×distance(d)

Moment of inertia ( I )

It is the product of area and the square of the moment arm for a section about a reference. It is also called as second moment of inertia.

First prepare the free body diagram of sectioned plate and apply moment equilibrium condition and also obtain area and moment of inertia of rectangular cross section. Finally, calculate the shortest distance using the formula of compressive stress (σ) in combination of axial and bending stress

Solution and Explanation:

[Find the given attachments]

The shortest distance (d) to the edge of the rectangular-plate is equal to 66.65 mm.

Given the followin data:

Thickness (length) of plate = 10 mm to m = 0.001 m.

Width of plate = 200 mm to m = 0.2 m.

c = [tex]\frac{0.2}{2}[/tex] = 0.1 m.

How to calculate the shortest distance.

First of all, we would determine the area of the rectangular-plate and its moment of inertia.

For area:

[tex]A=LW\\\\A=0.001 \times 0.2\\\\A= 0.002 \;m^2[/tex]

For moment of inertia:

Mathematically, the moment of inertia of a rectangular-plate is given by this formula:

[tex]I=\frac{b^3d}{12} \\\\I=\frac{0.2^3 \times 0.01}{12} \\\\I=\frac{0.008 \times 0.01}{12}\\\\I=\frac{0.0008 }{12}\\\\I=6.67 \times 10^{-6}\;m^4[/tex]

The compressive stress of a rectangular-plate with respect to axial and bending stress is given by this formula:

[tex]\sigma = \frac{P}{A} -\frac{Mc}{I} \\\\\sigma = \frac{P}{0.002} -\frac{P(0.1-d)\times 0.1}{6.67 \times 10^{-6}} \\\\\sigma = \frac{P}{0.002} -\frac{0.01P-0.1Pd}{6.67 \times 10^{-6}} \\\\\frac{P}{0.002}=\frac{0.01P-0.1Pd}{6.67 \times 10^{-6}}\\\\500P=\frac{0.01P-0.1Pd}{6.67 \times 10^{-6}}\\\\3.335 \times 10^{-3}P=0.01P-0.1Pd\\\\[/tex]

[tex]0=0.01P-0.1Pd-3.335 \times 10^{-3}P\\\\0=(0.01-0.1d-3.335 \times 10^{-3})P\\\\0.01-0.1d-3.335 \times 10^{-3}=0\\\\0.1d=0.01-3.335 \times 10^{-3}\\\\d=\frac{6.665\times 10^{-3}}{0.1} \\\\d=6.665\times 10^{-2}\;m\\\\[/tex]

d = 66.65 mm.

Read more on moment of inertia here: https://brainly.com/question/3406242

Technician A says inspecting the operation of the automatic emergency brake system helps determine whether the spring brakes will apply during a loss of system pressure. Technician B says the inspection also helps identify whether several controlled applications of the brake pedal can be used to help slow a vehicle with a sudden severe drop in air pressure. Who is correct?

Answers

Answer: Both Technicians

Explanation:

When testing a spring break it is advisable to Step on and off the brake, with the engine off, the parking brake knob is expected to pop out when air pressure falls between 20-40 psi.

Go under the vehicle and pull the spring brakes.

Turn on the engine back and pump the brake pedal down to the floor. To test the spring breaks

Consider the system whose transfer function is given by: 1()(21)(3)Gsss=++. (a)Use the root-locus design methodology to design a lead compensator that will provide a closed-loop damping ζ =0.4and a natural frequency ωn=9 rad/sec.The general transfer function for lead compensation is given by(b)Use MATLAB to plot the root locus of the feed-forward transfer function, D(s)*G(s), and verify if the closed loop system pole is located on a root locus for the calculated value of K

Answers

Answer:

transfer function from R(s) to E(s) and determine the steady-state error (ess) for a unit-step reference input (c) Select the system parameters (k, kP, kI) such that the closed-loop system has damping coefficient ζ = 0.707 Figure Control system diagram.

Explanation:

hope this helps

An equation used to evaluate vacuum filtration is Q = ΔpA2 α(VRw + ARf) , Where Q ≐ L3/T is the filtrate volume flow rate, Δp ≐ F/L2 the vacuum pressure differential, A ≐ L2 the filter area, α the filtrate "viscosity," V ≐ L3 the filtrate volume, R ≐ L/F the sludge specific resistance, w ≐ F/L3 the weight of dry sludge per unit volume of filtrate, and Rf the specific resistance of the filter medium. What are the dimensions of Rf and and α?

Answers

Final answer:

The dimensions of the specific resistance of the filter medium, Rf, are F/L (force per unit length), and the dimensions of the filtrate "viscosity", alpha, are T/L^2 (time per area). This ensures the dimensional consistency of the vacuum filtration equation.

Explanation:

To answer the question regarding vacuum filtration, we need to determine the dimensions of Rf and alpha. The equation provided is Q = Delta pA2 alpha(VRw + ARf), where each symbol has an associated dimension. To keep the equation dimensionally consistent, the dimensions of the terms added within the parenthesis must be the same, i.e., the dimensions of VRw must equal the dimensions of ARf.

Let's break down the dimensions:

The dimensions of V (volume) are L3.The dimensions of Rw (specific resistance of the sludge) are L/F.The dimensions of A (area) are L2.Therefore, the dimensions of Rf must be F/L, so when multiplied by A (area), it equals L/F, the same as VRw.Similarly, to ensure that when alpha is multiplied by A2, the result has dimensions of L5/FT to be consistent with Q (Delta pA2) without the VRw + ARf term, the dimensions of alpha must be T/L2.

Hence, the dimensions of Rf are F/L (force per unit length), and the dimensions of alpha are T/L2 (time per area).

g (d) Usually, in the case of two finite-duration signals like in parts (a) and (b), the convolution integralmust be evaluated in 5 different regions: no overlap (on the left side), partial overlap (on the left side),complete overlap, partial overlap (on the right side), and no overlap (on the right side). In this case,there are only 4 regions. Why

Answers

you face is A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.

Air in a piston-cylinder assembly is compressed isentropically from state 1, where T1 = 35°C, to state 2, where the specific volume is one-tenth of the specific volume at state 1. Applying the ideal gas model and assuming variations in specific heat, determine (a) T2, in °C, and (b) the work, in kJ/kg.

Answers

(a)[tex]\( T_2 = 87.92°C \), (b) \( W = 8089.91 \text{ kJ/kg} \)[/tex]  for the isentropic compression of air in a piston-cylinder assembly.

To solve this problem, we'll use the isentropic compression process for an ideal gas. The process being isentropic means that entropy remains constant during the compression, which implies [tex]\( S_1 = S_2 \). Given that it's an ideal gas, we can use the specific gas constant \( R \) and the specific heats \( C_{p} \) and \( C_{v} \) to solve the problem. The relationship between these variables is \( C_{p} - C_{v} = R \).[/tex]

First, let's find

[tex]\( T_2 \) using the given information:\( T_1 = 35°C \)\( v_2 = \frac{1}{10} v_1 \)Since it's an isentropic process, we have:\[ \frac{T_2}{T_1} = \left( \frac{v_1}{v_2} \right)^{k-1} \][/tex]

[tex]where \( k = \frac{C_p}{C_v} \) is the ratio of specific heats. We need to express \( T_1 \) and \( v_2 \) in terms of \( v_1 \) to solve for \( T_2 \):\[ v_2 = \frac{1}{10} v_1 \]\[ v_1 = \frac{RT_1}{P_1} \][/tex]

Since it's an ideal gas, we can use the ideal gas law [tex]\( Pv = RT \):[/tex]

[tex]\[ P_1v_1 = RT_1 \]\[ P_1 = \frac{RT_1}{v_1} \]Now substitute \( v_1 \) into the equation for \( P_1 \):\[ P_1 = \frac{RT_1}{v_1} = \frac{RT_1}{\frac{RT_1}{P_1}} = P_1 \]So, \( P_1 \) cancels out. This means pressure remains constant during the process. Now, let's substitute \( v_1 \) and \( v_2 \) into the equation for \( T_2 \):[/tex]

[tex]\[ T_2 = T_1 \left( \frac{v_1}{v_2} \right)^{k-1} \]Now, calculate \( T_2 \):\[ T_2 = 35 \left( \frac{RT_1}{\frac{RT_1}{10}} \right)^{k-1} \]\[ T_2 = 35 \left( 10 \right)^{k-1} \]We know \( k = \frac{C_p}{C_v} \), and since \( C_p - C_v = R \), we can rewrite \( k \) as \( k = 1 + \frac{R}{C_v} \). Substituting this into the equation:\[ T_2 = 35 \left( 10 \right)^{\left( 1 + \frac{R}{C_v} \right) - 1} \]\[ T_2 = 35 \left( 10 \right)^{\frac{R}{C_v}} \][/tex]

Now, let's find the specific heat ratio[tex]\( k \):\[ k = 1 + \frac{R}{C_v} \]\[ k - 1 = \frac{R}{C_v} \]\[ C_v = \frac{R}{k - 1} \]Given that \( C_p - C_v = R \), we can also express \( C_p \) in terms of \( k \):\[ C_p = C_v + R = \frac{R}{k - 1} + R = \frac{Rk}{k - 1} \][/tex]

Now substitute

[tex]\( C_v \) and \( C_p \) into the equation for \( T_2 \):\[ T_2 = 35 \left( 10 \right)^{\frac{R}{\frac{R}{k - 1}}} \]\[ T_2 = 35 \left( 10 \right)^{k - 1} \]Since \( k = \frac{C_p}{C_v} \):\[ T_2 = 35 \left( 10 \right)^{\frac{C_p}{C_v} - 1} \]\[ T_2 = 35 \left( 10 \right)^{\frac{\frac{Rk}{k - 1}}{\frac{R}{k - 1}} - 1} \]\[ T_2 = 35 \left( 10 \right)^{k - 1} \][/tex]

Now we can calculate

[tex]\( T_2 \):\[ T_2 = 35 \times 10^{0.4} \]\[ T_2 = 35 \times 2.5119 \]\[ T_2 = 87.9185°C \][/tex]

Now that we have [tex]\( T_2 \), we can calculate the work done during the process using the first law of thermodynamics:\[ W = C_v (T_1 - T_2) \]Given that \( C_v = \frac{R}{k - 1} \), we can substitute this expression for \( C_v \):\[ W = \frac{R}{k - 1} (T_1 - T_2) \][/tex]

Substitute the known values:

[tex]\[ W = \frac{8.314 \text{ kJ/kg-K}}{\frac{1.4 - 1}{1.4}} (308.15 - 87.9185) \]\[ W = \frac{8.314 \times 1.4 \text{ kJ/kg-K}}{0.4} \times 220.2315 \]\[ W = 36.779 \times 220.2315 \text{ kJ/kg} \]\[ W = 8089.91 \text{ kJ/kg} \]So, the final answers are:(a) \( T_2 = 87.9185°C \)(b) \( W = 8089.91 \text{ kJ/kg} \)[/tex]

g A heat exchanger is designed to is to heat 2,500 kg/h of water from 15 to 80 °C by engine oil. The configuration of the heat exchanger is in shell-and tube and the water is flowing through the tubes. The oil makes a single shell pass, entering at 160 °C and leaving at 90 °C, with an averaged heat transfer coefficient from the oil to the outer wall of the tubes equals 400 W/m2·K. The water flows through 11 brass tubes of 30 mm diameter with each tube making four passes through the shell. Assuming fully developed flow for the water inside the tubes, determine the tube length per pass to achieve these specified output temperatures. You may assume the tube wall thickness is negligible in the determination of overall heat transfer coefficient. (

Answers

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

The attached file gave a detailed solution of the problem.

Electric Resistance Heating. A house that is losing heat at a rate of 50,000 kJ/h when the outside temperature drops to 4 0C is to be heated by electric resistance heaters. If the house is to be maintained at 25 0C, determine the reversible work input for this process and the irreversibility.

Answers

Answer:

a) [tex]\dot W = 0.978\,kW[/tex], b) [tex]I = \left(50000\,\frac{kJ}{h} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}\right)\cdot \left(\frac{1}{COP_{real}} \right) - 0.978\,kW[/tex]

Explanation:

a) The ideal Coefficient of Performance for the heat pump is:

[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]

[tex]COP_{HP} = \frac{298.15\,K}{298.15\,K - 277.15\,K}[/tex]

[tex]COP_{HP} = 14.198[/tex]

The reversible work input is:

[tex]\dot W = \frac{\dot Q_{H}}{COP_{HP}}[/tex]

[tex]\dot W = \left(\frac{50000\,\frac{kJ}{h} }{14.198} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s} \right)[/tex]

[tex]\dot W = 0.978\,kW[/tex]

b) The irreversibility is given by the difference between real work and ideal work inputs:

[tex]I = \dot W_{real} - \dot W_{ideal}[/tex]

[tex]I = \left(50000\,\frac{kJ}{h} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}\right)\cdot \left(\frac{1}{COP_{real}} \right) - 0.978\,kW[/tex]

A tachometer has an analog display dial graduated in 5-revolutions-per-minute (rpm) increments. The user manual states an accuracy of 1% of reading. Estimate the design-stage uncertainty in the reading at 50, 500, and 5,000 rpm.

Answers

Final answer:

To estimate the uncertainty of a tachometer with 1% accuracy, you calculate 1% of the rpm readings at 50, 500, and 5,000 rpm, resulting in uncertainties of 0.5 rpm, 5 rpm, and 50 rpm respectively.

Explanation:

To estimate the design-stage uncertainty in a tachometer reading with an accuracy of 1% of reading, we calculate the uncertainty for different values of revolutions per minute (rpm). Given readings at 50 rpm, 500 rpm, and 5,000 rpm, the uncertainty can be calculated by taking 1% of each reading:

At 50 rpm: Uncertainty = 1% of 50 rpm = 0.5 rpmAt 500 rpm: Uncertainty = 1% of 500 rpm = 5 rpmAt 5,000 rpm: Uncertainty = 1% of 5,000 rpm = 50 rpm

This means that the display of the tachometer can vary by the calculated uncertainty for each of these readings, which represents the design-stage accuracy of the instrument.

HELP!
A roller picture has a front roll of 1.3m diameter by 1.7m long and two rear wheel each of 2.6m diameter
1. From the sizes given for the road roller calculate:
A) The surface area of the front drum (ignore material thickness)
B) The volume of the front roll in litres if the end plates are set in 75mm from each end of the roll and the thickness of the material is 20mm.
C) If one gallon=4.57 litres, calculate in gallons, the amount of water that can be held in the front roll.
D) The ratio in size of the front roll diameter to the rear wheel diameter.
E) The distance travelled by the rear wheel when the front roll turns one revolution, and state this as a percentage of one full revolution.

Answers

The thickness is thick

Consider a large vertical plate with a uniform surface temperature of 100°C suspended in quiescent air at 25°C and atmospheric pressure. (a) Estimate the boundary layer thickness at a location 0.28 m measured from the lower edge. (b) What is the maximum velocity in the boundary layer at this location and at what position in the boundary layer does the maximum occur? (c) Using the similarity solution result, Equation 9.19, determine the heat transfer coefficient 0.25 m from the lower edge. (d) At what location on the plate measured from the lower edge will the boundary layer become turbulent?

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

In a given rocket engine, a mass flow of propellants equal to 87.6 lbm/s is pumped into the combustion chamber, where the stagnation temperature after combustion is 6000°R. The combustion products have mixture values R = 2400 ft·lb/(slug·°R) and γ = 1.21. If the throat area is 0.5 ft2 , calculate the stagnation pressure in the combustion chamber in lb/ft2 . Hint: use your knowledge about choked flow.

Answers

Answer:

15 atm

Explanation:

Solution

Given that:

The first step is to convert mass flow rate unit

m = 87.6 lbm/s = 2.72  slug/sec

Now,

We express the mass flow rate, which is

m = p₀ A* /√T₀√y/R ( 2/ y+1)^(y+1) (y-1)

so,

2.72 = p₀ ^(0.5)/√6000√1.21/2400 (2/2.21)^10.52

Thus,

p₀ =  31736 lb/ft^2

Then,

We convert the pressure in terms of atmosphere

p₀ = 31736/ 2116 = 15 atm

Natural Convection from an Oven Wall. The oven wall in Example 4.7-1 is insulated so that the surface temperature is 366.5 K instead of 505.4 K. Calculate the natural convection heat-transfer coefficient and the heat-transfer rate per m of width. Use both Eq. (4.7-4) and the simplified equation. (Note: Radiation is being neglected in this calculation.) Use both SI and English units.

Answers

Answer:

i) Heat transfer coefficient (h) = 7 w/m²k

ii) Heat transfer per meter width of wall

      = h x L x 1 x (Ts - T₆₀)

        = 7 x 0.3048 x (505.4 - 322) = 414.747 w/m

Explanation:

see attached image

Consider viscous flow over a flat plate a. Write the definition of the Rex , based on distance, x, from the leading edge of a flat plate, and explain its significance b. Sketch the development of the velocity boundary layer height, d, beginning at the plate’s leading edge, and extending into the turbulent region, and indicate the range of the Reynolds number in the relevant regions c. How does d change with distance x in the laminar region.

Answers

Answer:

Explanation:

Solution:-

- To categorize the flow conditions of any fluid we utilize a dimensionless number, called Reynold's number ( Re ) to study the behaviour of the fluid.

- Reynold's number is proportional to the ratio of inertial forces ( forces that resist any change in motion of a unit mass ) and viscous forces ( forces that resist any iner-plane deformations between layers of fluid ).

- Considering 2-Dimensional viscous flow over a flat plate, the Reynold number (Re) is mathematically expressed as a function of distance "x" denoted from leading edge and along the length of the plate:

                             [tex]Re_x = \frac{U*x}{v}[/tex]

Where,

               U: The free stream velocity of the fluid

               ν: The kinematic viscosity of the fluid

- The distance "x" along the length of the plate is substituted in the above formula and the corresponding Reynold number is evaluated. This gives a highly localized value about "x".

- The purpose of the Reynold number is the substitution of dynamically similar fluids i.e Fluid with the same Reynold's number when testing models to see how they would behave in a specific environment.

- The Reynolds number has a set of ranges above and below the critical range defined by the critical length "xc" along the plate.  The range below the critical has laminar flow characteristics, whereas the range above the critical has turbulent flow. The laminar region has flow along smooth streamlines, while turbulent region is characterized by 3 - dimensional random eddy.

- The critical length " xc " is determined from the critical Reynold number i.e ( 5 x 10^5 ) which is a small region that has mixed characteristics of laminar and turbulent conditions.

- The flow at the boundaries has zero velocity, there is a steep velocity gradient from the boundary into the flow. This velocity gradient in a real fluid sets up shear forces near the boundary that reduce the flow speed to that of the boundary. That fluid layer which has had its velocity affected by the boundary shear is called the "boundary layer"

-  For smooth upstream boundaries, " x << xc " or " Re_x < 5 x 10^5 " , the boundary layer starts out as a laminar boundary layer in which the fluid particles move in smooth layer.

- As the laminar boundary layer increases in thickness, it becomes unstable as changes in motion become more predominant ( inertial ) than viscous effect of fluid layers. This leads to a transformation of laminar boundary layer into turbulent boundary layer in which fluid particles move in haphazard paths.  " x > xc " or " Re_x > 5 x 10^5 "

- The boundary layer thickness/height d increases as x increases. The relationships for laminar and turbulent regions of boundary layer are given as follows:

                  [tex]\frac{d}{x} = \left \{ {{\frac{5}{\sqrt{Re_x} } , 10^3 < Re_x < 10^6} \\\\\atop {\frac{0.16}{\frac{1}{7} \sqrt{Re_x} } , 10^6 < Re_x}} \right.[/tex]

- To construct a function of boundary layer thickness " d " and length from leading edge of the plate " x ". We use the Re_x relation and substitute, we get the following proportionalities for our sketch:

                  d ∝ √x  .... Laminar region

                  d ∝ [tex]x^\frac{6}{7}[/tex]  .... Turbulent region

- Use the above relation to develop sketch for the boundary layer along the length "x" from leading edge.

- The sketch is given as an attachment.

1. A solar concentrator produces a heat flux of 2500 W/m2 on the projected area of a tube of diameter 50 mm. Water flows through the tube at a rate of 0.015 kg/s. If the water temperature at the inlet is 15°C, what length of pipe is required to produce water at a temperature of 85°C?


(Water at 50 degree C has: rho = 990 kg m^-3, k = 0.64 Wm^-1 K^-1, c = 4180 Jkg^-1 K^-1.)

Answers

Answer:

[tex]L = 0.319\,m[/tex]

Explanation:

Let suppose that temperature of air is 15°C. The heating process of the solar concentrator is modelled after the First Law of Thermodynamics:

[tex]\dot Q = h\cdot \pi\cdot D\cdot L\cdot (\bar T-T_{\infty})[/tex]

The required length is:

[tex]L = \frac{\dot Q}{h\cdot \pi\cdot D\cdot (\bar T-T_{\infty})}[/tex]

But,

[tex]\dot Q = \dot m \cdot c_{w}\cdot (T_{o}-T_{i})[/tex]

[tex]\dot Q = \left(0.015\,\frac{kg}{s}\right)\cdot \left(4180\,\frac{J}{kg\cdot ^{\circ}C} \right)\cdot (85^{\circ}C-15^{\circ}C)[/tex]

[tex]\dot Q = 4389\,W[/tex]

[tex]\bar T = \frac{15^{\circ}C + 85^{\circ}C}{2}[/tex]

[tex]\bar T = 50^{\circ}C[/tex]

[tex]L = \frac{4389\,W}{\left(2500\,\frac{W}{m^{2}} \right)\cdot \pi \cdot (0.05\,m)\cdot (50^{\circ}C-15^{\circ}C)}[/tex]

[tex]L = 0.319\,m[/tex]

the voltage across a 5mH inductor is 5[1-exp(-0.5t)]V. Calculate the current through the inductor and the energy stored in the inductor at t=2 seconds

Answers

Given Information:

Inductance = L = 5 mH = 0.005 H

Time = t = 2 seconds

Required Information:

Current at t = 2 seconds = i(t) = ?

Energy at t = 2 seconds = W = ?

Answer:

Current at t = 2 seconds = i(t) = 735.75 A

Energy at t = 2 seconds = W = 1353.32 J

Explanation:

The voltage across an inductor is given as

[tex]V(t) = 5(1-e^{-0.5t})[/tex]

The current flowing through the inductor is given by

[tex]i(t) = \frac{1}{L} \int_0^t \mathrm{V(t)}\,\mathrm{d}t \,+ i(0)[/tex]

Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.

[tex]i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\[/tex]

[tex]i(t) = 1000t +2000e^{-0.5t} -2000\\[/tex]

So the current at t = 2 seconds is

[tex]i(t) = 1000(2) +2000e^{-0.5(2)} -2000\\\\i(t) = 735.75 \: A[/tex]

The energy stored in the inductor at t = 2 seconds is

[tex]W = \frac{1}{2}Li(t)^{2}\\\\W = \frac{1}{2}0.005(735.75)^{2}\\\\W = 1353.32 \:J[/tex]

The statement that is NOT true about the difference between laminar and turbulent boundary layers is:1.the Reynolds number for a turbulent boundary layer is higher than that for a laminar boundary layer. 2.the wall shear stress for a turbulent boundary layer is greater than that for a laminar boundary layer. 3.a turbulent boundary layer is thicker than a laminar boundary layer.4.the velocity gradient at the wall is greater for a laminar boundary layer than a turbulent boundary layer.

Answers

Answer:

4. The velocity gradient at the wall is greater for a laminar boundary layer than a turbulent boundary layer.

Explanation:

This is false

the hoop is cast on the rough surface such that it has an angular velocity w=4rad/s and an angular acceleration a=5rad/s^2. also, its center has a velocity v0=5m/s and a deceleration a0=2m/s^2. determine the acceleration of point a at this instant

Answers

Final answer:

The acceleration of point A on the hoop can be calculated by considering both the tangential acceleration due to the hoop's angular acceleration and the radial (centripetal) acceleration. These values are vectorially added along with the deceleration of the hoop's center.

Explanation:

To determine the acceleration of point A, we must consider both the tangential and radial (centripetal) accelerations since the hoop is experiencing angular acceleration and the center of the hoop has a deceleration. The tangential acceleration (at) is due to the angular acceleration and is calculated by multiplying the angular acceleration (
a) by the radius (r) of the hoop. The radial (centripetal) acceleration (ar) depends on the angular velocity (
w) and the radius of the hoop. The equation for centripetal acceleration is ar = w2
r. The total acceleration (aA) of point A can be found by vectorially adding the tangential and radial accelerations, considering the direction of deceleration of the center as well.

) Water flows steadily up the vertical-1-in-diameter pipe and out the nozzle, which is 0.5 in. in diameter, discharging to atmospheric pressure. The stream velocity at the nozzle exit must be 30 f t/s. Calculate the minimum gage pressure required at the section (1). If the device were inverted, what would be the required minimum pressure at section (1) to maintain the nozzle exit velocity at 30 f t/s.

Answers

Answer:

a) 9.995 psi

b) 1.3725 psi

Explanation:

Given:-

- The diameter of the pipe at inlet, d1 = 1 in

- The diameter of the pipe at exit, de = 0.5 in

- The exit velocity, Ve = 30 ft/s

- The exit discharge pressure Pe = 0 ( gauge )

- The density of water ρ = 1.940 slugs/ft3

Find:-

Calculate the minimum gage pressure required at the section (1)

Solution:-

- The mass flow rate m ( flow ) for the fluid remains constant via the continuity equation applies for all steady state fluid conditions.

                 m  ( flow ) = ρ*An*Vn = constant

Where,

           An: the area of nth section

           Vn: the velocity at nth section

- Consider the point ( 1 ) and exit point. Determine the velocity at point ( 1 ) via continuity equation.

- The cross sectional area of the pipe at nth point is given by:

       

                 An = π*dn^2 / 4

- The continuity equation becomes:

                 ρ*A1*V1 = ρ*Ae*Ve

Note: Water is assumed as incompressible fluid; hence, density remains constant.

                V1 = ( Ae / A1 ) * Ve

                V1 = ( (π*de^2 / 4 ) / (π*d1^2 / 4) ) *Ve

                V1 = ( de / d1 ) ^2 * Ve

                V1 = ( 0.5 / 1 )^2 * 30

                V1 =7.5 ft/s

- The required velocity at section ( 1 ) is V1 = 7.5 ft/s.

- Apply the bernoulli's principle for the point ( 1 ) and exit. Assuming the frictional losses are minimal.

        P1 + 0.5*ρ*V1^2 + ρ*g*h1 = Pe + 0.5*ρ*Ve^2 + ρ*g*he

- We will set " h1 " as datum; hence, h1 = 0. The elevation of exit nozzle from point (1) is at he = 10 ft.

- The bernoulli's equation expressed above is in " gauge pressure ". So the gauge pressure of exit Pe = 0 ( Patm ).

Therefore the simplified equation becomes:

        P1 + 0.5*ρ*V1^2  =  0.5*ρ*Ve^2 + ρ*g*he

        P1 = 0.5*ρ* ( Ve^2 - V1^2 ) + ρ*g*he

        P1  = 0.5*1.940*( 30^2 - 7.5^2 ) + 1.940*32*10

        P1 = 818.4375 + 620.8

        P1 = 1439.2375 lbf / ft^2 = 9.995 psi

- If the device is inverted then the velocity at the inlet " V1 " would remain same as there is no change in continuity equation - ( Diameters at each section remains same ).

- The only thing that changes is the application of bernoulli's equation as follows:

         P1 + 0.5*ρ*V1^2 + ρ*g*h1 = Pe + 0.5*ρ*Ve^2 + ρ*g*he

- We will set " he " as datum; hence, he = 0. The elevation of point ( 1 ) from exit nozzle is at h1 = 10 ft.

- The bernoulli's equation expressed above is in " gauge pressure ". So the gauge pressure of exit Pe = 0 ( Patm ).

Therefore the simplified equation becomes:

        P1 + 0.5*ρ*V1^2 + ρ*g*h1 =  0.5*ρ*Ve^2

        P1 = 0.5*ρ* ( Ve^2 - V1^2 ) - ρ*g*h1

        P1  = 0.5*1.940*( 30^2 - 7.5^2 ) - 1.940*32*10

        P1 = 818.4375 - 620.8

        P1 = 197.6375 lbf / ft^2 = 1.3725 psi

On a cold winter day, wind at 55 km/hr is blowing parallel to a 4-m high and 10-m long wall of a house. If the air outside is at 5o C and the surface temperature of the wall is 12o C, find the rate of heat loss from the wall by convection

Answers

Final answer:

The student's question regarding heat loss by convection requires the convective heat transfer coefficient, which is not provided, making it impossible to calculate the rate of heat loss without additional data or empirical formulas.

Explanation:

The question pertains to heat loss from the wall of a house by convection on a cold winter day when the wind is blowing parallel to the wall. However, to answer the question accurately, we need additional information related to the convective heat transfer coefficient for the scenario described, which typically requires the use of empirical relationships that take into account the flow of air over the surface (such as the wind speed) and the properties of the air (temperature, viscosity, etc.). Unfortunately, the student's question does not provide the necessary details or equations to calculate the convective heat transfer coefficient, which is crucial to determining the rate of heat loss.

To calculate the rate of heat loss through convection, the formula Q = hA(T_s - T_{∞}) is typically used, where Q is the heat transfer rate, h is the convective heat transfer coefficient, A is the surface area, T_s is the surface temperature, and T_{∞} is the ambient temperature. Without the convective heat transfer coefficient, we cannot complete this calculation.

Consider a 1.2-m-high and 2-m-wide glass window with a thickness of 6 mm, thermal conductivity k = 0.78 W/m·K, and emissivity ε = 0.9. The room and the walls that face the window are maintained at 25°C, and the average temperature of the inner surface of the window is measured to be 5°C. If the temperature of the outdoors is −5°C, determine (a) the convection heat transfer coefficient on the inner surface of the window, (b) the rate of total heat transfer through the window, and (c) the combined natural convection and radiation heat transfer coefficient on the outer surface of the window. Is it reasonable to neglect the thermal resistance of the glass in this case?

Answers

Answer:

Explanation:

The solutions to this question can be seen in the following screenshots taken from the solution manual.

For all the problems describe all pieces to the equations. 1.What is the equation for normal stress? 2.What is the equation for shear stress? 3.What is the equation for cross sectional area of a beam? 4.What is the equation for cross sectional area of a shaft? 5.What is the equation for shear stress at an angle to the axis of the member? 6.What is the equation for normal stress at an angle to the axis of the member? 7.What is the equation for the factor of safety? 8.What is the equation for strain under axial loading?

Answers

Answer:

stress equation : [tex]\frac{p}{A}[/tex]     Shear stress equation : [tex]\frac{Qv}{Ib}[/tex]  cross sectional area of a beam equation : b*d   cross sectional area of a shaft equation : [tex]\frac{\pi }{4} (d)^{2}[/tex]   shear stress at an angle to the axis of the member equation: [tex]\frac{P}{A}[/tex] sin∅cos∅. Normal stress at an angle to the axis of the member equation: [tex]\frac{P}{A} cos^{2}[/tex]∅factor of safety equation : [tex]\frac{ultimate stress}{actual stress}[/tex]  strain under axial loading equation: [tex]\frac{PL}{2AE}[/tex]    

Explanation:

The description of all the pieces to the equations

stress equation : [tex]\frac{p}{A}[/tex]     p = axial force, A = cross sectional areaShear stress equation : [tex]\frac{Qv}{Ib}[/tex]  Q = calculated statistical moment, I = moment of inertia, v = calculated shear, b = width of beamcross sectional area of a beam equation : b*d     b=width of beam,       d =depth of beamcross sectional area of a shaft equation : [tex]\frac{\pi }{4} (d)^{2}[/tex]   d = shaft diametershear stress at an angle to the axis of the member equation: [tex]\frac{P}{A}[/tex] sin∅cos∅.  P = axial force, A = cross sectional area  ∅ = given angleNormal stress at an angle to the axis of the member equation: [tex]\frac{P}{A} cos^{2}[/tex]∅  p = axial force , A = cross sectional area, ∅ = given anglefactor of safety equation : [tex]\frac{ultimate stress}{actual stress}[/tex]  strain under axial loading equation: [tex]\frac{PL}{2AE}[/tex]    P = axial force, L = length, A = cross sectional area, E = young's modulus
Other Questions
A group of campers travels to a cabin which has no electrical power. In order to provide for a heater and lights, which device would be appropriate? a resistor, an insulator, a generator, or a voltmeter Which evidence best supports the claim in an argumentative essay that people should use cell phones only with earphones? A. a graph in a magazine about the number of cell phones in use around the world B. a blog with stories about annoying cell phone users C. a newspaper article about loss of hearing in children from loud music and games D. a science article about how talking directly on cell phones changes brain waves In OPQ, the measure of Q=90, the measure of P=76, and PQ = 4.1 feet. Find the length of OP to the nearest tenth of a foot. What was president Lincolns plan to bring the confederate states back in the union Given f(x) = 3x- 1 and g(x)=2x-3, for which value of x does g(x) = f(2)? What is the prefix in disappointedly? How are these two sentences different? One uses imagery, while the other does not. One uses metaphor, while the other does not. One is descriptive, while the other is not. One is economical, while the other is not.Read the two sentences below and answer the question that follows. The night was a dark, inky black soup, like mud or coffee, with an incredible cold that had an icy bite not unlike that of a wolf. The inky night bit like a wolf. How are these two sentences different? One uses imagery, while the other does not. One uses metaphor, while the other does not. One is descriptive, while the other is not. One is economical, while the other is not. Why did actor John Wilkes Booth assassinate Abraham Lincoln? Khan Academy what's the absolute value of -25 A green light blinks every 4 seconds and a yellow light blinks every 5 seconds. At how many seconds will the lights first blink at the same time? Person A is breathing five times as fast as person B. Compare the graphs of the breathing of the two people over time.The period of the graph for person A is 5 times shorter than the period of the graph for person B.The period of the graph for person A is 5 times longer than the period of the graph for person B.The period of the graph for person A is 2 times longer than the period of the graph for person B.The period of the graph for person A is 2 times shorter than the period of the graph for person B. Identify the narrator's POV in the following passage : Joshua walked into the room carefully. He began to sweat as he looked around his room. I could sense that he was very nervous. Hopefully his fear was short lived. He seemed excited when I told him that he didn't have any cavities 1. As Z stays constant and the number of electrons increases, the electron-electron repulsions _____, and the anion becomes larger. 2. The reverse is true for the cation, which becomes ____ than the neutral atom. What are the roots of the graph below? Determine if the following system of equations has no solutions, infinitely manysolutions or exactly one solution.x + 6y = -53x + 18y = -15 The Palo Duro Canyon in the High Plains was originally formed by a fork in the Red River. The canyon continues to widen and deepen due to A) human interactions. B) wind and water erosion. C) overgrazing of the land. D) physical and chemical weatherin An unknown mass of aluminum requires 6290 joules to raisethe temperature from 23.9C to 80.0C. What is the mass of thealuminum?Specific heat value of aluminium is 0.900 J/gK Ajax Company presently leases a copy machine on a monthly basis. The lease agreement requires a fixed fee each month in addition to a charge per copy. The Company made 2,400 copies and paid a total of $162 in lease payments in September. In October they made 3,500 copies and paid a total of $195 in lease payments. Using these two data points and the high-low method, determine the Companys variable cost per copy. What is one solution of the following system? Onshore Bank has $20 million in assets with risk-adjusted assets of $10 million. CET1 capital is $500,000, additional Tier I capital is $50,000, and Tier II capital is $400,000. How will each of the following transactions affect the value of the CET1, Tier I, and total capital ratios? What will the new values of each ratio be? a. The bank repurchases $100,000 of common stock with cash. b. The bank issues $2 million of CDs and uses the proceeds to issue category 1 mortgage loans with a loan-to-value ratio of 80 percent. Steam Workshop Downloader