Answer:
Check the explanation
Step-by-step explanation:
Social Median GDP (PPP), Y X^2 Y^2 XY
usage (%), X
18085 66 327067225 4356 1193610
15833 56 250683889 3136 886648
6117 47 37417689 2209 287499
6559 42 43020481 1764 275478
9948 40 98962704 1600 397920
15264 41 232989696 1681 625824
17522 50 307020484 2500 876100
4661 34 21724921 1156 158474
9833 54 96687889 2916 530982
5186 22 26894596 484 114092
18579 69 345179241 4761 1281951
19105 67 365001025 4489 1280035
13580 59 184416400 3481 801220
12115 49 146773225 2401 593635
15614 44 243796996 1936 687016
5289 45 27973521 2025 238005
7508 29 56370064 841 217732
11521 43 132733441 1849 495403
2824 32 7974976 1024 90368
3542 27 12545764 729 95634
1855 36 3441025 1296 66780
2056 35 4227136 1225 71960
3142 7 9872164 49 21994
1473 13 2169729 169 19149
Total 227211 1007 2984944281 48077 11307509
Sample size: n=24
Now,
Syy= 5824.95833
833909342.6
ry 1774114.125 ry
The coefficient of correlation is :
0.805
The coefficient of correlation indicates a strong and positive correlation between the variables.
(b)
For hypotheses correct option is (a).
The test statistics is
= 6.36
Degree of freedom: df=n-2= 22
The p-value is: 0.000
The critical value of t is to/2 = 2.07
Since p-value is less than 0.05 so we reject the null hypothesis. There is significant evidence ....
PLEASEEEEE HELPPPP MEEE WITHHH NUMBERR 20!!!!!
Answer:
∠3 = ∠4 = 60°
Step-by-step explanation:
Angles 1 and 3 are "remote interior angles" with respect to angle 2, so ...
∠2 = ∠1 + ∠3
120° = 60° + ∠3 . . . fill in known values
60° = ∠3 . . . . . . . . . subtract 60°
__
Since two of the interior angles in the triangle ABC are 60°, the third one is also. The interior angle at B (supplementary to angle 2) is corresponding to ∠4, so has the same measure as angle 4.
∠4 = 60°
Combine like terms to create an equivalent expression: -n + (-4) - (-4n) + 6
Answer:
3n + 2
Step-by-step explanation:
-n + 4n -4 + 6
3n + 2
A follow-up study will be conducted with a sample of 20 people from the 300 people who responded yes (support) and no (do not support). Two sampling methods have been proposed: a simple random sample and a stratified random sample with the survey response as strata. (b) If the stratified random sample is used, what is the number of people that will be selected from those who responded yes? Support your answer by showing your work.
Using the concept of stratified sampling, it is found that 10 people will be selected from those who responded yes.
In a stratified sample, the population is divided into groups, and the same number of elements of each group is surveyed.
In this problem:
Two groups, one with those who responded yes and other with those who responded no.Sample of 20 people, thus 10 people who responded yes and 10 people who responded no.A similar problem is given at https://brainly.com/question/24188753
To decide how many participants who answered 'yes' to include in a stratified random sample of 20, use the proportion of 'yes' answers out of 300 to calculate the sample from that stratum.
Explanation:In a stratified random sample, the population is divided into groups, or strata, and a sample is taken from each group to ensure that each subgroup of the population is adequately represented. To determine the number of people that will be selected from those who responded yes in a stratified random sample, we need to find the proportion of 'yes' responses among the 300 respondents and then apply that proportion to the sample size of 20.
Assuming we know the exact number of people who responded 'yes', let's call that number 'Y'. The number of 'yes' responses in the stratified sample would then be (Y/300) * 20. Without the actual number of 'yes' responses, we cannot compute the exact number of people that should be selected from the 'yes' group. However, this formula demonstrates how you would calculate it once the value for 'Y' is known.
Learn more about Stratified Random Sampling here:https://brainly.com/question/29852583
#SPJ3
Which type of car had the largest range in monthly sales? Explain how you came up with your answer.
Answer:
Used car have the highest range of 75
Step-by-step explanation:
Yeah the type of car that have the highest range In monthly sales.
we know that
The range is the difference between the highest and the lowest value
First we,
calculate the range in monthly sales for the new car
highest value=51
lowest value=20
range=51-20
range=31
Secondly,we
calculate the range in monthly sales for used car
highest value=87
lowest value=12
range=87-12
range=75
Answer:
My answer: "The car that had the largest range in monthly sales was a used. Through finding the range by subtracting the highest and lowest data points, i was able to find the range for used cars being 75, and for new cars was 31. 75 is larger then 31, so therefore the used cars have the largest monthly range in sales. "
Their sample answer: Sample Response: I subtracted the highest and lowest numbers. The range for new cars was 31. The range for old cars was 75. The range for used cars was much bigger."
Select all that you included in your explanation.
The range for new cars was 31.
The range for used cars was 75.
Subtract the highest and lowest numbers.
Step-by-step explanation:
edg2020
Suppose you are constructing either a mean chart with known variation or a p-chart to monitor some process. The process will only be stopped if a sample taken falls outside your control limits. If the process is in control, management wants only 12.6% of the samples taken to fall outside of your limits. (The company does not like stopping the process "accidentally.") What Z value should you use for your chart?
Answer:
1.53
Step-by-step explanation:
Find the attachment for explanation
The z-value corresponding to the probability of 0.937 using the standard normal distribution table is 1.53 and this can be determined by using the given data.
Given :
Suppose you are constructing either a mean chart with a known variation or a p-chart to monitor some process. The process will only be stopped if a sample taken falls outside your control limits.The process is in control, management wants only 12.6% of the samples taken to fall outside of your limits.Assuming that the distribution is normal so the probability for being within the maximum limit is given by:
[tex]\rm P=1-\dfrac{6.3}{100}[/tex]
P = 0.937
Now, the z-value corresponding to the probability of 0.937 using the standard normal distribution table is 1.53.
Therefore, the correct option is D) 1.53.
For more information, refer to the link given below:
https://brainly.com/question/23044118
The probability that it will snow on the last day of January is 85%. If the probability remains the same of the first eight day of February, what is the probability that it will snow AT LEAST five of those days in February?
Answer:
Here, we have:
P(5 days snow in this 8 days) = 8C5 x (0.85)^5 x (1 - 0.85)^3 = 0.084
P(6 days snow in this 8 days) = 8C6 x (0.85)^6 x (1 - 0.85)^2 = 0.238
P(7 days snow in this 8 days) = 8C7 x (0.85)^7 x (1 - 0.85)^1 = 0.385
P(8 days snow in this 8 days) = 8C8 x (0.85)^8 x (1 - 0.85)^0 = 0.272
Add up those above, then the probability that it will snow AT LEAST five of those days in February:
P = 0.084+ 0.238 + 0. 385 + 0.272 = 0.979
Hope this helps!
:)
What is the value of x in the equation x/-4=7?
Answer: -28
Step-by-step explanation: Since x is being divided by -4, to solve for x, multiply both sides of the equation by -4.
On the left side, the -4's will cancel
and on the right side, 7(-4) is -28.
So x = -28.
Please do not try to do this problem in your head.
Show the work that it takes to get x by itself.
Answer:
x= - 28
Step-by-step explanation:
-4/1[x/-4 = 7]
x = -28
According to a recent publication, the mean price of new mobile homes is $63 comma 800. Assume a standard deviation of $7900. Let x overbar denote the mean price of a sample of new mobile homes. a. For samples of size 25, find the mean and standard deviation of x overbar. Interpret your results in words. b. Repeat part (a) with nequals50. a. For ▼ the mean and standard deviation of ▼ the prices of the mobile homes all possible sample mean prices are $ nothing and $ nothing, respectively. (Round to the nearest cent as needed.) b. For ▼ samples of 50 mobile homes, the 50 mobile homes sampled, the mean and standard deviation of ▼ the prices of the mobile homes all possible sample mean prices are $ nothing and $ nothing, respectively. (Round to the nearest cent as needed.)
Answer:
a. For n=25, the mean and standard deviation of the prices of the mobile homes all possible sample mean prices are $63,800 and $1,580, respectively.
b. For n=50, the mean and standard deviation of the prices of the mobile homes all possible sample mean prices are $63,800 and $1,117, respectively.
Step-by-step explanation:
In this case, for each sample size, we have a sampling distribution (a distribution for the population of sample means), with the following parameters:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{n}[/tex]
For n=25 we have:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{25}=7,900/5=1,580[/tex]
The spread of the sampling distribution is always smaller than the population spread of the individuals. The spread is smaller as the sample size increase.
This has the implication that is expected to have more precision in the estimation of the population mean when we use bigger samples than smaller ones.
If n=50, we have:
[tex]\mu_s=\mu=63,800\\\\\sigma_s=\sigma/\sqrt{n}=7,900/\sqrt{50}=7,900/7.07=1,117[/tex]
For samples of size 25 and 50, the mean of x bar is $63,800. The standard deviation of x bar is $1580 for a sample size of 25 and $1117 for a sample size of 50.
a. For samples of size 25, the mean of x bar is equal to the population mean, which is $63,800. The standard deviation of x bar is equal to the population standard deviation divided by the square root of the sample size. So, the standard deviation of x bar is $7900/sqrt(25) = $1580.
b. For samples of size 50, the mean of x bar is still $63,800. The standard deviation of x bar is $7900/sqrt(50) = $1117. Note that as the sample size increases, the standard deviation of x bar decreases.
Learn more about Sample Mean and Standard Deviation here:https://brainly.com/question/14747159
#SPJ11
A subtending arc on a circle with a radius of 4.5 centimeters has an arc length of 8π. The measure of the angle subtended by the arc is ?
Answer: 320°
Step-by-step explanation:
This is a circle geometry.
The arc length of the circle is given to be 8πcm and the radius is 4.5cm.
Now the length of an arc of a circle is
Arc length = πr0°/180° or 2πr0°/360°
To find the angle 0° subtend at the center we equate the arc length with the formula and solve for 0°.Now we go
πr0°/180 = 8π, convert to a simple linear equal and solve for the angle.
πr0° = 8π × 180
0°. = 8π × 180
-----------
π × r
= 8 × 180. 8 × 180
-------- or ---------
9/2. 4.5
= 8 × 180 × 2
------------
9
= 8 × 20 × 2
= 320°
or 8 × 180/4.5
= 1440/4.5
= 320°
In 1999 the population of Austria was one-third the population of Nepal. At that time the number of people living in Austria was 8,100,000. How many people were living in Nepal
A sprinkler is designed to rotate 360∘ clockwise, and then 360∘ counterclockwise to water a circular region with a radius of 11 feet. The sprinkler is located in the middle of the circular region. The sprinkler begins malfunctioning and is only able to rotate 225∘ in each direction. Find the area of the sector to the nearest square foot.
The sprinkler can water ____
square feet.
We have been given that a sprinkler is designed to rotate 360∘ clockwise, and then 360∘ counterclockwise to water a circular region with a radius of 11 feet. The sprinkler is located in the middle of the circular region. The sprinkler begins malfunctioning and is only able to rotate 225∘ in each direction.
We are asked to find the area of the sector to nearest square foot.
We will use area of sector formula to solve our given problem.
[tex]\text{Area of sector}=\frac{\theta}{360}\times \pi r^2[/tex], where,
[tex]\theta[/tex] = Central angle of sector,
[tex]r[/tex] = Radius.
For our given problem [tex]\theta = 225^{\circ}[/tex] and [tex]r=11[/tex].
[tex]\text{Area of sector}=\frac{225^{\circ}}{360^{\circ}}\times \pi (11)^2[/tex]
[tex]\text{Area of sector}=0.625\times 121\pi[/tex]
[tex]\text{Area of sector}=237.5829444277281137[/tex]
[tex]\text{Area of sector}\approx 238[/tex]
Therefore, the sprinkler can water approximately 238 square feet.
To find the area of the sector, we need to find the central angle, find the fraction of the circle covered by the sector, and then multiply it by the area of the entire circle with a radius of 11 feet.
Explanation:To find the area of the sector, we need to find the central angle first. Since the sprinkler can only rotate 225∘ in each direction, the total angle covered is 225∘+225∘=450∘.
Next, we need to find the fraction of the circle covered by the sector. We can do this by finding the ratio of the central angle to the total angle of a circle, which is 360∘. This can be calculated as (450/360).
Finally, we multiply the fraction by the area of the entire circle with a radius of 11 feet, which is π(11)^2, to find the area of the sector.
Associations In Data:Question 10
The list below show test scores for 3rd period on a
recent test. Finding the mean absolute deviation.
62 63 68 72 79 80 83 93 94 95
Select one:
7.8
101.2
78.9
10.12
Answer:
[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]
[tex] |62-78.9| = 16.9[/tex]
[tex] |63-78.9| = 15.9[/tex]
[tex] |68-78.9| = 10.9[/tex]
[tex] |72-78.9| = 6.9[/tex]
[tex] |79-78.9| = 0.1[/tex]
[tex] |80-78.9| = 1.1[/tex]
[tex] |83-78.9| = 4.1[/tex]
[tex] |93-78.9| = 14.1[/tex]
[tex] |94-78.9| = 15.1[/tex]
[tex] |95-78.9| = 16.1[/tex]
[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]
And replacing we got:
[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]
And the best anwer is
10.12
Step-by-step explanation:
We have the following data given:
62 63 68 72 79 80 83 93 94 95
And we need to begin finding the mean with the following formula:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
And replacing we got:
[tex] \bar X = \frac{62+63+68+72+79+80+83+93+94+95}{10}= 78.9[/tex]
Now we can find the mean absolute deviation like this:
[tex] |62-78.9| = 16.9[/tex]
[tex] |63-78.9| = 15.9[/tex]
[tex] |68-78.9| = 10.9[/tex]
[tex] |72-78.9| = 6.9[/tex]
[tex] |79-78.9| = 0.1[/tex]
[tex] |80-78.9| = 1.1[/tex]
[tex] |83-78.9| = 4.1[/tex]
[tex] |93-78.9| = 14.1[/tex]
[tex] |94-78.9| = 15.1[/tex]
[tex] |95-78.9| = 16.1[/tex]
And finally we can find the mean abslute deviation with the following formula:
[tex] MAD = \frac{\sum_{i=1}^n |X_i -\bar X|}{n}[/tex]
And replacing we got:
[tex] MAD =\frac{16.9+15.9+10.9+6.9+0.1+1.1+4.1+14.1+15.1+16.1}{10}= 10.12[/tex]
And the best anwer is
10.12
Chandler has 828 millimeters of fabric.
How many centimeters of fabric does Chandler have?
Use the numbers and symbols on the tiles to enter an equation to show the
828 8.28
182.8
0.828
100 || 1.000
Chandler has
centimeters of fabric.
Answer:
82.8 centimeters
Step-by-step explanation:
Chandler has 828 millimeters of fabric.
1 centimeter =10 millimetersx centimeters = 828 millimetersExpressing as a ratio
[tex]\dfrac{1}{x}= \dfrac{10}{828}\\10x=828\\x=828\div 10\\x=82.8 cm[/tex]
Therefore, Chandler has 82.8 centimeters of fabric.
Answer:
82.8 centimeters of fabric
Step-by-step explanation:
1 centimeters= 10 millimeters;
828mm x 1cm ÷10 mm=82.8cm ;centimeters of fabric
The exercise is performed by conversion factor and a smaller unit is transferred to a larger unit that is centimeters.
1. (a) Show that the polynomial x⁴+ 4x³ + 6x² - 8 is divisible by x+2
Answer:
Step-by-step explanation:
if x= -2
and P(x)=x^4+4x^3+6x^2-8
then P(-2)=(-2)^4+4*(-2)^3+6*(-2)^2-8=16-32+24-8=0
so P(x)=(x+2)* Q(x) and P(x) is divisible by x+2
4. Which of the following points on the number line best represents 5/8?
Answer:
B
Step-by-step explanation:
You can see that the dashes on the number line are going up by 1/4 which is equal to 2/8 (when you multiply 1/4 by 2). At point C your already at 6/8 which is a little larger than 5/8 so when you do a little less than 6/8 you get to point B which is the best answer.
Can anyone find this area of this parallelogram
Answer:
260
Step-by-step explanation:
A = bh
Suppose SAT Writing scores are normally distributed with a mean of 488488 and a standard deviation of 111111. A university plans to award scholarships to students whose scores are in the top 8%8%. What is the minimum score required for the scholarship? Round your answer to the nearest whole number, if necessary.
Answer:
The minimum score required for the scholarship is 644.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 488, \sigma = 111[/tex]
What is the minimum score required for the scholarship?
Top 8%, which means that the minimum score is the 100-8 = 92th percentile, which is X when Z has a pvalue of 0.92. So it is X when Z = 1.405.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.405 = \frac{X - 488}{111}[/tex]
[tex]X - 488 = 1.405*111[/tex]
[tex]X = 644[/tex]
The minimum score required for the scholarship is 644.
A manufacturer of car batteries claims that the batteries will last, on average, 3 years with a variance of 1 year. If 5 of these batteries have lifetimes of 1.9, 2.4, 3.0, 3.5, and 4.2 years, construct a 95% confidence interval for σ2 and decide if the manufacturer’s claim that σ2 = 1 is valid. Assume the population of battery lives to be approximately normally distributed.
Answer:
[tex]\frac{(4)(0.903)^2}{11.143} \leq \sigma^2 \leq \frac{(4)(0.903)^2}{0.484}[/tex]
[tex] 0.293 \leq \sigma^2 \leq 6.736[/tex]
And in order to obtain the confidence interval for the deviation we just take the square root and we got:
[tex] 0.541 \leq \sigma \leq 2.595[/tex]
Since the confidence interval cointains the 1 we don't have enough evidence to reject the hypothesis given by the claim
Step-by-step explanation:
Data provided
1.9, 2.4, 3.0, 3.5, and 4.2
We can calculate the sample mean and deviation from this data with these formulas:
[tex]\bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex] s=\frac{\sum_{i=1}^n (X_i-\bar X)^2}{n-1}[/tex]
And we got:
[tex]\bar X= 3[/tex]
s=0.903 represent the sample standard deviation
n=5 the sample size
Confidence=95% or 0.95
Confidence interval
We need to begin finding the confidence interval for the population variance is given by:
[tex]\frac{(n-1)s^2}{\chi^2_{\alpha/2}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}[/tex]
The degrees of freedom given by:
[tex]df=n-1=5-1=4[/tex]
The Confidence level provided is 0.95 or 95%, the significance is then[tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical values for this case are:
[tex]\chi^2_{\alpha/2}=11.143[/tex]
[tex]\chi^2_{1- \alpha/2}=0.484[/tex]
And the confidence interval would be:
[tex]\frac{(4)(0.903)^2}{11.143} \leq \sigma^2 \leq \frac{(4)(0.903)^2}{0.484}[/tex]
[tex] 0.293 \leq \sigma^2 \leq 6.736[/tex]
And in order to obtain the confidence interval for the deviation we just take the square root and we got:
[tex] 0.541 \leq \sigma \leq 2.595[/tex]
Since the confidence interval cointains the 1 we don't have enough evidence to reject the hypothesis given by the claim
A marketing firm wishes to know what proportion of viewers of Impractical Jokers feels that the current season is at least as good as, or better, than previous seasons. A randomly selected group of 200 was polled. 58 responded that they felt that quality standards have been maintained. Please calculate a 90% confidence interval for the true population proportion that feels that the current season is as good as, or better, than previous seasons.
Answer:
The 90% confidence interval for the true population proportion that feels that the current season is as good as, or better, than previous seasons is (0.2372, 0.3428).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 200, \pi = \frac{58}{200} = 0.29[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.29 - 1.645\sqrt{\frac{0.29*0.71}{200}} = 0.2372[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.29 + 1.645\sqrt{\frac{0.29*0.71}{200}} = 0.3428[/tex]
The 90% confidence interval for the true population proportion that feels that the current season is as good as, or better, than previous seasons is (0.2372, 0.3428).
Answer:
[tex]0.29 - 1.64\sqrt{\frac{0.29(1-0.29)}{200}}=0.237[/tex]
[tex]0.29 + 1.64\sqrt{\frac{0.29(1-0.29)}{200}}=0.343[/tex]
And the confidence interval for this case would be (0.237; 0.343).
Step-by-step explanation:
We can begin find the proportion estimated of responded that they felt that quality standards have been maintained with the following formula:
[tex]\hat p = \frac{X}{n}[/tex]
And replacing we got:
[tex] \hat p =\frac{58}{200}= 0.29[/tex]
The confidence interval is given by 90%, and the significance level would be [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2 =0.05[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.64, z_{1-\alpha/2}=1.64[/tex]
The confidence interval for the true proportion is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
Replacing the values we got:
[tex]0.29 - 1.64\sqrt{\frac{0.29(1-0.29)}{200}}=0.237[/tex]
[tex]0.29 + 1.64\sqrt{\frac{0.29(1-0.29)}{200}}=0.343[/tex]
And the confidence interval for this case would be (0.237; 0.343).
Lydia drove 441 miles in 6 hours. On average, how fast did she drive in miles per hour? Express your answer in simplest form.
Answer:
She drove [tex]\frac{147}{2} miles/ hour[/tex]
Step-by-step explanation:
We are given that Lydia drove 441 miles in 6 hours.
We are supposed to find how fast did she drive in miles per hour
Distance covered by Lydia in 6 hours = 441 miles
Distance covered by Lydia in 1 hour =[tex]\frac{441}{6}[/tex]
Distance covered by Lydia in 1 hour =[tex]\frac{147}{2} miles/ hour[/tex]
Hence She drove [tex]\frac{147}{2} miles/ hour[/tex]
Suppose that the manager of a company has estimated the probability of a super-event sometime during the next five years that will disrupt all suppliers as 0.0023. In addition, the firm currently uses three suppliers for its main component, and the manager estimates the probability of a unique-event that would disrupt one of them sometime during the next five years to be 0.014. What is the approximate probability that all three suppliers will be disrupted at the same time at some point during the next five years?a.0.0012b.0.0140 c.0.0023 d.0.0090
Given Information:
Probability of super event = P(S) = 0.0023
Number of suppliers = n = 3
Probability of unique event = P(U) = 0.014
Required Information:
Probability that all three suppliers will be disrupted = ?
Answer:
P(3) = 0.0023
Step-by-step explanation:
We want to find out the approximate probability that all three suppliers will be disrupted at the same time at some point during the next five years.
The required probability is given by
P(n) = P(S) + (1 - P(S))*P(U)ⁿ
Where P(S) is the probability of super event that will disrupt all suppliers, P(U) is the probability of unique event that would disrupt one of the suppliers and n is the number of suppliers.
P(3) = 0.0023 + (1 - 0.0023)*(0.014)³
P(3) = 0.0023 + (0.9977)*(0.014)³
P(3) = 0.0023
The correct option is C = 0.0023
Therefore, there is 0.23% probability that all three suppliers will be disrupted at the same time at some point during the next five years.
How many moles of H2 would be required to produce 9.0 grams of water? 10
2 H2 + O2 + 2 H20
Answer:
8.1 moles
Step-by-step explanation:
Given parameters: Mass of water to be decomposed = 29.2g Unknown: Number of moles of oxygen. Solution: To solve this problem, we first write the balanced reaction equation : 2H₂O → 2H₂ + O₂ Now convert the given mass of the water to number of moles; Number of moles of water = Molar mass of water = 2(1) + 16 = 18g/mol Number of moles of water = = 16.2moles From the balanced reaction equation: 2 moles of water produced 1 mole of oxygen gas; 16.2 mole of water will produce = 8.1moles of oxygen gas
Hope this helps you :3
Wilbur spends 2/3 of his income, share 1/12, and saves the rest. What part of his income does he save? Give the answer in simplest form.
Answer:
1/4 of his income.
Step-by-step explanation:
If Wilbur spends 2/3 of his income, 1/3 or 4/12 of it is left for other purposes (It is easier if everything has a common denominator of 12). And if he shares 1/12 of that remaining amount, there is 3/12 left. And when we simplify 3/12, we get 1/4.
*Mark me brainliest!*
Use the spinner to find the theoretical probability of spinning an even number.
25
Step-by-step explanation:
25
Question 1
Convert from parametric to rectangular:
x=t+4, y = t^2
Answer:
y = x^2 +8x +16
Step-by-step explanation:
t can be written in terms of x, then substituted into the equation for y.
x = t -4
x + 4 = t
y = t^2 = (x +4)^2
y = x^2 +8x +16
Complete each statement in the steps to solve x2 – 4x + 3 = 0 using the process of completing the square.
Answer:
x= 3,1
Step-by-step explanation:
-b ± √b²-4(ac)/2a
4 ± √(-4)² - 4 · (1·3)/2·1
x = 2 ± 1
x = 3,1
Simplify this complex fraction
Answer:
1/4
Step-by-step explanation:
2/4 ÷ 2
Copy dot flip
2/4 * 1/2
We can cancel the 2 in the numerator and denominator
1/4 * 1/1
1/4
If a single 12-sided die is tossed once, find the probability of rolling a 2.
What is the probability?
Answer:
1/12
Step-by-step explanation:
hope this helps you
Final answer:
The probability of rolling a 2 on a single 12-sided die is 1/12, which is approximately 8.33%.
Explanation:
If a single 12-sided die is tossed once, the probability of rolling a 2 is calculated by dividing the number of ways to roll a 2 by the total number of possible outcomes on the die. Since there is only one way to roll a 2, and there are 12 different possible outcomes on a 12-sided die, the probability is calculated as follows:
Count the number of favorable outcomes for rolling a 2: There is 1 way to roll a 2.
Count the total number of possible outcomes on a 12-sided die: There are 12 possible outcomes (1, 2, 3, ... 12).
Divide the number of favorable outcomes by the total number of possible outcomes to get the probability: P(rolling a 2) = 1/12.
Therefore, the probability of rolling a 2 on a 12-sided die is 1/12, which can also be expressed as approximately 8.33%.
Since 1936, the Gallup Organization has been asking Americans: "Are you in favor of the death penalty for a person convicted of murder?" The percentage has fluctuated significantly over the years, ranging from a low of 42% in 1966 to a high of 80% in 1994. Here are the results of the most recent survey; in a sample of 3100 females, 62% said that they were in favor of the death penalty for convicted murders. Construct a 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders.
Plugging in the values and calculating, we find that the 98% confidence interval is approximately (0.5847, 0.6553).
Explanation:To construct a 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders, we can use the formula:
CI = p ± z * √(p * (1-p) / n)
Where:
CI is the confidence intervalp is the sample proportion (0.62)z is the z-score corresponding to the desired confidence level (98% or 0.98)n is the sample size (3100)Using a standard normal distribution table or a calculator, we can find that the z-score for a 98% confidence level is approximately 2.33.
Plugging in the values into the formula:
CI = 0.62 ± 2.33 * √(0.62 * (1-0.62) / 3100)
Calculating the values:
CI = 0.62 ± 2.33 * √(0.62 * 0.38 / 3100)
CI = 0.62 ± 2.33 * √(0.235 / 3100)
CI = 0.62 ± 2.33 * 0.01516
CI = 0.62 ± 0.03535
CI ≈ (0.5847, 0.6553)
Therefore, the 98% confidence interval for the proportion of all American females who support the death penalty for convicted murders is approximately (0.5847, 0.6553).
Learn more about Confidence interval here:https://brainly.com/question/34700241
#SPJ3
The election of a local construction union involves 2,000 union members. Among them, 500 members are randomly selected and asked whether they planned to vote for the incumbent Union President or the challenger. Of the 500 surveyed, 350 said they would vote for the incumbent. Using the 0.99 confidence coefficient, what are the confidence limits for the proportion that plan to vote for the incumbent
Answer:
The 99% of confidence limits for the proportion that plan to vote for the incumbent.
(0.6473 ,0.7527)
Step-by-step explanation:
Explanation:-
Given data the election of a local construction union involves 2,000 union members. Among them, 500 members are randomly selected.
Given large sample size 'N' = 2000
Given sample size 'n' = 500
Given data Of the 500 surveyed, 350 said they would vote for the incumbent.
The sample Proportion
[tex]p = \frac{x}{n} = \frac{350}{500} =0.7[/tex]
q = 1-p = 1 - 0.7 = 0.3
Confidence intervals:-
The 99% of confidence intervals are determined by
[tex](p-Z_{\alpha } \sqrt{\frac{pq}{n} } , p+Z_{\alpha }\sqrt{\frac{pq}{n} } )[/tex]
The z- score of 0.99 level of significance =2.576
[tex](0.7-2.576\sqrt{\frac{0.7X0.3}{500} } , 0.7+2.576\sqrt{\frac{0.7X0.3}{500} } )[/tex]
on using calculator, we get
(0.7 - 0.0527 ,0.7+0.0527)
(0.6473 ,0.7527)
Conclusion:-
The 99% of confidence limits for the proportion that plan to vote for the incumbent.
(0.6473 ,0.7527)