A water jet that leaves a nozzle at 60 m/s at a flow rate of 120 kg/s is to be used to generate power by striking the buckets located on the perimeter of a wheel. Determine the power generation potential of this water jet.

Answers

Answer 1

Answer:

216000 W or 216 kW

Explanation:

Power: This can be defined as the rate at which energy is consumed or used, The S.I unit of power is Watt (W)

Generally,

Power = Energy/time

P = E/t........................ Equation 1.

But

E = 1/2mv²..................... Equation 2

Where m = mass, v = velocity.

Substitute equation 2 into  equation 1

P = 1/2mv²/t...................... Equation 3

Let flow rate (Q) = m/t

Q = m/t................ Equation 4

Substitute equation 4 into equation 3

P = Qv²/2........................ Equation 5

Where Q = flow rate, v = velocity, P = power.

Given: Q = 120 kg/s, v = 60 m/s

Substitute into equation 5

P = 120(60)²/2

P = 60(60)²

P = 60×3600

P = 216000 W.

Thus the power generation potential of the water jet = 216000 W or 216 kW

Answer 2
Final answer:

The water jet could potentially generate 432 kW of power under ideal circumstances, calculated based on the given flow rate and velocity of the water jet.

Explanation:

To calculate the power generation potential of the water jet, you will use the formula for power: Power = Work/time. Since work can be translated into a measure of force times distance, we substitute Force * Distance into the equation for work. We can find the force exerted by the water jet with the equation for force: Force = mass * acceleration. The water's acceleration is its velocity out of the nozzle, or 60 m/s, and the mass flow rate is given as 120 kg/s. This gives us a force of 120 kg/s * 60 m/s = 7200 N.

However, distance is not given in the problem, so it's more helpful in this case to use an alternative equation for Power, given as the product of force and velocity: Power = Force * Velocity. Thus, our power becomes 7200 N * 60 m/s = 432,000 Watts, or 432 kW, assuming 100% efficiency.

Realistically, some power will be lost due to friction and inefficiencies in the system, but under ideal circumstances the water jet could potentially generate 432 kW of power.

Learn more about Power generation potential here:

https://brainly.com/question/22285863

#SPJ3


Related Questions

A small object is attached to a horizontal spring and set in simple harmonic motion with amplitude A and period T .
How long does it take for the object to travel a total distance of 6A?

Answers

Answer:

t = 3/2T

To find how long it takes to cover a total distance of 6A, we need to find the time it takes to cover a distance A then multiply by 6.

The step to the solution is given below in the attachment.

Explanation:

Thank you for reading

Final answer:

The object takes 3 times the period (3T) to travel a total distance of 6A in simple harmonic motion.

Explanation:

The time taken for the object to travel a total distance of 6A can be calculated using the formula for the period of simple harmonic motion (T). The period is the time it takes for one complete oscillation. Since the object is attached to a spring and is set in simple harmonic motion with an amplitude (A) and period (T), we can use the formula T = 2π√(m/k), where m is the mass of the object and k is the spring constant.

In this case, we need to find the time it takes for the object to travel a distance of 6A. A full oscillation covers a distance of 2A. Therefore, to cover 6A, the object needs to complete 3 full oscillations. So, the total time taken would be 3 times the period (3T).

Therefore, the object takes 3 times the period (3T) to travel a total distance of 6A.

When riding a 10-speed bicycle up a hill, a cyclist shifts the chain to a larger-diameter gear attached to the back wheel. Why is this gear preferred to a smaller gear? a. The torque exerted by the chain on the gear is larger. b. The force exerted by the chain on the gear is larger. c. You pedal more frequently to travel the same distance. d. Both a and c are correct.

Answers

To solve this problem we will use the concepts of the moment of rotational inertia, angular acceleration and the expression of angular velocity.

The rotational inertia is expressed as follows:

[tex]I = \sum mr^2[/tex]

Here,

m = Mass of the object

r = Distance from the rotational axis

The rotational acceleration in terms of translational acceleration is

[tex]\alpha = \frac{a}{R}[/tex]

Here,

a = Acceleration

R = Radius of the circular path of the object

The expression for the rotational speed of the object is

[tex]\omega = \frac{\Delta \theta}{\Delta t}[/tex]

Here,

[tex]\Delta \theta[/tex] is the angular displacement of the object

The explanation by which when climbing a mountain uphill is changed to a larger pinion, is because it produces a greater torque but it is necessary to make more pedaling to be able to travel the same distance. Basically every turn results in less rotations of the rear wheel. Said energy that was previously used to move the rotation of the wheel is now distributed in more turns of the pedal. Therefore option a and c are correct.

This would indicate that the correct option is D.

Final answer:

Shifting to a larger-diameter gear in a 10-speed bicycle allows for an increased force exerted by the chain on the gear and a greater torque on the wheel, making it easier to ride uphill.

Explanation:

When riding a 10-speed bicycle up a hill, shifting to a larger-diameter gear attached to the back wheel is preferred compared to a smaller gear because it increases the force exerted by the chain on the gear and allows the cyclist to exert a greater torque on the wheel.



By shifting to a larger gear, the chain wraps around a larger portion of the gear's circumference, resulting in a greater force being applied to rotate the wheel. This increased force allows the cyclist to overcome gravity more efficiently and climb the hill with less effort.



The larger gear also allows the cyclist to apply a greater torque to the wheel. Torque is the rotational equivalent of force and represents the ability to turn the wheel. With a larger gear, the cyclist can pedal with more force and generate a larger torque, which is necessary to propel the bike up the hill.

Learn more about Bicycle gears here:

https://brainly.com/question/30741360

#SPJ11

Why is the air drag on a baseball different than it would be for a smooth ball with no stitches? How does this apply to the design of a golf ball?

Answers

Answer:

The stitches and dimples around a baseball  and a golf ball respectively, disturbs the air drag on the balls once they are in motion, allowing the them to travel more easily.

Explanation:

The stitches on a baseball disturbs the air drag on the ball when the ball is in motion, allowing the ball to travel more easily. Depending on the orientation of the ball in flight, the drag changes as the flow is disturbed by the stitches.  

A smooth ball with no stitches or dimples has more air drag that opposes the motion.

A golf ball is smooth ball with dimples to create a thin turbulent boundary layer of air that clings to the ball's surface. This allows the smoothly flowing air to follow the ball's surface a little farther around the back side of the ball, thereby decreasing the size of the wake, and allowing the ball to travel more easily.

A hot-air balloon of diameter 12 m rises vertically at a constant speed of 11 m/s . A passenger accidentally drops his camera from the railing of the basket when it is 19 m above the ground.

If the balloon continues to rise at the same speed, how high is the railing when the camera hits the ground?

Answers

Answer:

The railing is at 56.4 m above the ground when the camera reaches the ground.

Explanation:

Hi there!

Let´s find how much time it takes the camera to reach the ground. The equation of the height of the camera is the following:

h = h0 + v0 · t + 1/2 · g · t²

Where:

h = height at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

The initial height of the camera is 19 m and we need to find at which time its height is zero. Since the camera is dropped while the balloon is rising, the initial velocity of the camera is the same as the velocity of the balloon:

h = h0 + v0 · t + 1/2 · g · t²

When the camera hits the ground, h = 0

0 = 19 m + 11 m/s · t - 1/2 · 9.8 m/s² · t²

0 = 19 m + 11 m/s · t - 4.9 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 3.4 s (The other value is rejected because it is negative and time can´t be negative).

Since the balloon rises at constant speed, the equation of height of the railing is as follows:

h = h0 + v · t

To find the height of the railing 3.4 s after it was at 19 m, we have to solve the equation with h0 = 19 m and t = 3.4 s:

h = 19 m + 11 m/s · 3.4 s

h = 56.4 m

The railing is at 56.4 m above the ground when the camera reaches the ground.

A 0.30 kg mass is sliding on a horizontal, frictionless air track with a speed of 4.0 m/s when it instantaneously hits and sticks to a 2.0 kg mass initially at rest on the track. The spring constant is 100 N/m . The other end of the spring is fixed.a. Determine the following for the 0.30 kg mass immediately before the impact:i. Its linear momentum ii. Its KEb. Determine the following for the combined masses immediately after the impact:i. The linear momentum in. The KEc. Besides the fact that the objects stick together, what other clue lets you know that this was an inelastic collision

Answers

Answer

given,

mass of block 1, m = 0.3 Kg

speed of block 1, v = 4 m/s

mass of second block,M = 2 Kg

initial speed of block = 0 m/s

spring constant, k = 100 N/m

a) for block 1

  linear momentum before collision

   P₁ = m v = 0.3 x 4 = 1.2 Kg.m/s

  Kinetic energy

   [tex]KE_1 = \dfrac{1}{2}mv^2[/tex]

   [tex]KE_1 = \dfrac{1}{2}\times 0.3\times 4^2[/tex]

   [tex]KE_1 =2.4\ J[/tex]

b) After impact

  final velocity calculation

 using conservation of momentum

  m v  = (m + M )v_f

   0.3 x 4 = 2.3 x v_f

    v_f = 0.522 m/s

   Linear momentum

   P₂ = (m+M) v_f

   P₂ = 1.5 x 0.522

   P₂ = 0.783 kg.m/s

   Kinetic energy

   [tex]KE_2= \dfrac{1}{2}(M+m)v^2[/tex]

   [tex]KE_2= \dfrac{1}{2}\times 2.3\times 0.522^2[/tex]

   [tex]KE_2=0.313\ J[/tex]

A machine gun fires 50-g bullets at the rate of 4 bullets per second. The bullets leave the gun at a speed of 1000 m/s. What is the average recoil force experienced by the machine gun?

Answers

Answer:

Average recoil force experienced by machine will be 200 N

Explanation:

We have give mass of each bullet m = 50 gram = 0.05 kg

There are 4 bullets

So mass of 4 bullets = 4×0.05 = 0.2 kg

Initial speed of the bullet u = 0 m/sec

And final speed of the bullet v = 1000 m/sec

So change in momentum [tex]P=m(v-u)=0.2\times (1000-0)=200kgm/sec[/tex]

Time is given per second so t = 1 sec

We know that force is equal to rate of change of momentum

So force will be equal to [tex]F=\frac{200}{1}=200N[/tex]

So average recoil force experienced by machine will be 200 N

The average recoil force experienced by the machine gun is 100N.

The impulse-momentum theorem states that the impulse applied to an object will be equal to the change in its momentum.

Force (F) * change in time (Δt) = change in momentum = mass (m) * velocity (v)

FΔt = mv

m = 50 g = 0.05 kg

F = mv / Δt

F = (0.05kg * 1000 m/s * 4 bullets)/ 1 second

F = 100 N

The average recoil force experienced by the machine gun is 100N.

Find out more at: https://brainly.com/question/19284095

A rope is lying on the floor and has a mass which applies a force of 3 N/m. How much work is required to raise one end of the rope to a height of 2 meters?

Answers

Answer:

At least 6 N, assuming that the rope has a length of more than 2 meters.

Explanation:

In general, if it takes a force of [tex]F(h)[/tex] newtons to lift an object at height [tex]h[/tex], the work done lifting the object from [tex]h = a[/tex] to [tex]h = b[/tex] can be found using the definite integral about [tex]h[/tex]:

[tex]\displaystyle W = \int \limits_{a}^{b} F(h)\, dh[/tex].

If the value of [tex]F(h)[/tex] is a constant [tex]m \cdot g[/tex] regardless of height [tex]h[/tex], then the result of the integral would be

[tex]\displaystyle \int \limits_{a}^{b} (m \cdot g)\, dh = \left[m \, g\, h \right]_a^b = m\cdot g \, (b - a)[/tex].

However, in this case the value of [tex]F(h)[/tex] does depend on the value of [tex]h[/tex].

At height [tex]h = 0\; \rm m[/tex], nothing is being lifted. The amount of force required would be zero. At height [tex]h = 1\; \rm m[/tex], one meter of the rope is in the air. That requires a force of at least [tex]1\; \rm m \times 3\; N \cdot m^{-1} = 3\; N[/tex].In general, at a height of [tex]h[/tex] meters, the force required would be at least [tex]3\, h[/tex] Newtons.

In other words, [tex]F(h) = 3\; h[/tex] where [tex]F[/tex] is in Newtons and [tex]h[/tex] is in meters.

Evaluate the integral:

[tex]\begin{aligned} W &= \int \limits_{a}^{b} F(h)\, dh \cr &= \int \limits_{0}^{2}3\, h \, dh && \text{Apply the power rule.}\cr &= \left[\frac{3}{2}\,h^2\right]_{0}^{2}\cr &= \frac{3}{2} \times 2^2 \cr &= 6\end{aligned}[/tex].

The work required to raise one end of the rope to a height of 2 meters with an applied force of 3 N is 6 joules.

We can calculate the work required to raise one end of the rope to a height of 2 meters as follows:

[tex] W = F*d*cos(\theta) [/tex]

Where:

F: is the force exerted = 3 N (newton: unit of force)

d: is the displacement = 2 m

θ: is the angle between the applied force and the displacement

Since the force and the displacement are in the same direction, θ = 0, so:

[tex] W = F*d*cos(\theta) = Fdcos(0) = F*d [/tex]

Hence, the work done is:

[tex] W = 3 N*2m = 6 J [/tex]

Therefore, it is required 6 J of work.

You can see another example of work calculation here: https://brainly.com/question/2270290?referrer=searchResults

 

I hope it helps you!

 

How far apart must two point charges of 75.0 nC (typical of static electricity) be to have a force of 1.00 N between them?

Answers

Answer:

0.71 cm

Explanation:

[tex]q_1=75.0nC=75\times 10^{-9}C[/tex]

[tex]1nC=10^{-9}C[/tex]

[tex]q_2=75.0nC=75\times 10^{-9}C[/tex]

Force between two charges=1 N

Coulomb's law of force

[tex]F=\frac{kq_1q_2}{r^2}[/tex]

Where k=[tex]9\times 10^9Nm^2/C^2[/tex]

Using the formula

[tex]1=\frac{9\times 10^9\times 75\times 10^{-9}\times 75\times 10^{-9}}{r^2}[/tex]

[tex]r^2=0.50625\times 10^{-4}[/tex]m

[tex]r=\sqrt{0.50625\times 10^{-4}}=0.71\times 10^{-2} m[/tex]

[tex]r=0.71\times 10^{-2}\times 10^{2}=0.71\times 10^{-2+2}=0.71\times 10^0=0.71 cm[/tex]

Using formula

[tex]1 m=10^2cm, a^x\cdot a^y=a^{x+y}, a^0=1[/tex]

Hence, the distance between two charges =r=0.71 cm

Suppose that a single guitar player makes noise at 70 dB. (a) If two guitar players play at the same time, what is the noise level in dB? What is the sound intensity in W/m2 ?

Answers

Answer:

Explanation:

Given

For single guitar noise level [tex]SL=70\ dB[/tex]

Intensity of sound

Sound level[tex]=10\log (\frac{I}{I_0})[/tex]

where I=Intensity of sound Produced

[tex]I_0=[/tex]Human threshold frequency [tex](10^{-12}\ W/m^2)[/tex]

[tex]70=10\log (\frac{I}{10^{-12}})[/tex]

[tex]I=10^{-12}\times 10^7[/tex]

[tex]I=10^{-5}\ W/m^2[/tex]

For 2 guitars

[tex]I'=2I=2\times 10^{-5}\ W/m^2[/tex]

[tex]SL=10\log (\frac{I}{I_0})[/tex]

[tex]SL=10\log (\frac{2\times 10^{-5}}{10^{-12}})[/tex]

[tex]SL=10(7+\log (2))[/tex]

[tex]SL=73.01\ dB[/tex]

                 

A woman who weighs 500 N stands on an 8.0-m-long board that weighs 100 N. The board is supported at each end. The support force at the right end is 3 times the support force at the left end. How far from the right end is the woman standing?

Answers

Answer:

The woman's distance from the right end is 1.6m = (8-6.4)m.

The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.

Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.

Also the sun of upward forces must be equal to the sun of downward forces.

Theses are the conditions for static equilibrium.

Explanation:

The step by step solution can be found in the attachment below.

Thank you for reading this solution and I hope it is helpful to you.

The woman is standing 6.4 meters from the left end of the board. Since the board is 8 meters long, she is standing [tex]\( 8 \, \text{m} - 6.4 \, \text{m} = 1.6 \, \text{m} \)[/tex] from the right end of the board.

To solve this problem, we need to apply the principles of static equilibrium to the board. The board is in equilibrium because it is not moving, which means the sum of the forces acting on it must be zero, and the sum of the torques (or moments) about any point must also be zero.

The total weight of the board and the woman is [tex]\( 500 \, \text{N} + 100 \, \text{N} = 600 \, \text{N} \)[/tex]. This total weight is balanced by the support forces at the ends of the board. Therefore, the sum of the support forces is equal to the total weight:

[tex]\[ F_L + F_R = 600 \, \text{N} \][/tex]

Substituting [tex]\( F_R = 3F_L \)[/tex] into the equation, we get:

[tex]\[ F_L + 3F_L = 600 \, \text{N} \] \[ 4F_L = 600 \, \text{N} \] \[ F_L = \frac{600 \, \text{N}}{4} \] \[ F_L = 150 \, \text{N} \][/tex]

Now we can find [tex]\( F_R \)[/tex]:

[tex]\[ F_R = 3F_L \] \[ F_R = 3 \times 150 \, \text{N} \] \[ F_R = 450 \, \text{N} \][/tex]

Next, we need to consider the torques about one of the support points. Let's choose the left end as our pivot point. The torque due to the woman's weight is the product of her weight and her distance from the left end, which we will call [tex]x[/tex]. The torque due to the board's weight acts at the center of the board (since the board is uniform), which is 4 meters from either end. The torque due to the support force [tex]\( F_R \)[/tex] acts at the right end.

Setting the sum of the torques equal to zero, we have:

[tex]\[ -F_R \times 8 \, \text{m} + 500 \, \text{N} \times x + 100 \, \text{N} \times 4 \, \text{m} = 0 \][/tex]

Substituting [tex]\( F_R = 450 \, \text{N} \)[/tex] and rearranging terms, we get:

[tex]\[ -450 \, \text{N} \times 8 \, \text{m} + 500 \, \text{N} \times x + 100 \, \text{N} \times 4 \, \text{m} = 0 \] \[ -3600 \, \text{N} \cdot \text{m} + 500 \, \text{N} \times x + 400 \, \text{N} \cdot \text{m} = 0 \] \[ 500 \, \text{N} \times x = 3600 \, \text{N} \cdot \text{m} - 400 \, \text{N} \cdot \text{m} \] \[ 500 \, \text{N} \times x = 3200 \, \text{N} \cdot \text{m} \] \[ x = \frac{3200 \, \text{N} \cdot \text{m}}{500 \, \text{N}} \] \[ x = 6.4 \, \text{m} \][/tex]

Therefore, the woman is standing 6.4 meters from the left end of the board. Since the board is 8 meters long, she is standing [tex]\( 8 \, \text{m} - 6.4 \, \text{m} = 1.6 \, \text{m} \)[/tex] from the right end of the board.

On average, an adult person breathes in about 6 liters of air per minute. Assuming atmospheric pressure and 20°C air temperature, estimate the mass of air in kilograms that a person breathes in per day.

Answers

The problem can be covered from different methods for development. I will approximate it by the proximity method. We know that the person breathes about 6 liters per minute, that is [tex]6 * 10 - 3 m ^ 3 / min[/tex] (Recall that [tex]1L = 1 * 10 - 3 m ^ 3[/tex])

Given the conditions, we have that at atmospheric pressure with a temperature of 20 ° C the air density is [tex]1.24kgm ^ 3[/tex]

Therefore, from the density ratio, the mass would be

[tex]\rho = \frac{m}{V}\rightarrow m = \rho \dot{V}[/tex]

Here,

m = mass per time unit

V = Volume per time unit

[tex]\rho[/tex] = Density

We have

[tex]m = (6*10^{-3}m^3 / min )(1.24kg/m^3 )[/tex]

[tex]m= 7.44*10^{-3} kg/ min[/tex]

Using the conversion factor from minutes to days,

[tex]m= 7.44*10^{-3} kg/ min(\frac{60min}{1hour})(\frac{24 hours}{1day })[/tex]

[tex]m = 10.7136kg/day[/tex]

Therefore he mass of air in kilograms that a person breathes in per day is 10.7136kg

3. Find the de Broglie wavelength of the following particles: (i) An electron in a semiconductor having average thermal velocity at T = 300 K

Answers

Answer:

The wavelength of the electron is [tex]\dfrac{4.4097\times10^{-9}}{\sqrt{a}}\ m[/tex]

Explanation:

Given that,

Temperature = 300 K

We know that,

The energy of free electron is

[tex]E=\dfrac{(\hbar)^2k^2}{2m}[/tex]

[tex]k=\dfrac{\sqrt{2mE}}{\hbar}[/tex]

Where, k = wave number

The momentum of the electron is

[tex]p=\hbar k[/tex]

Th effective mass is

[tex]m=am_{0}[/tex]

We need to calculate the wavelength of the electron

Using formula of wave number

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

[tex]\lambda=\dfrac{2\pi}{k}[/tex]

Put the value of k

[tex]\lambda=\dfrac{2\pi}{\dfrac{\sqrt{2mE}}{\hbar}}[/tex]

[tex]\lambda=\dfrac{h}{\sqrt{2am_{0}E}}[/tex]

We know that,

Thermal energy of electron

[tex]E=3kT[/tex]

The de Broglie wavelength of the electron is

[tex]\lambda=\dfrac{h}{\sqrt{2am_{0}\times3kT}}[/tex]

Put the value into the formula

[tex]\lambda=\dfrac{6.63\times10^{-34}}{\sqrt{2\times9.1\times10^{-31}\times3\times300\times1.380\times10^{-23}\times a}}[/tex]

[tex]\lambda=\dfrac{4.4097\times10^{-9}}{\sqrt{a}}\ m[/tex]

Hence, The wavelength of the electron is [tex]\dfrac{4.4097\times10^{-9}}{\sqrt{a}}\ m[/tex]

Final answer:

The de Broglie wavelength of an electron can be calculated using de Broglie's equation, λ = h/p. To find the wavelength for an electron in a semiconductor at 300 K, one needs to know the electron's velocity, which is related to its kinetic energy at that temperature. Precise calculation would require details about the effective electron mass in the semiconductor.

Explanation:

The de Broglie wavelength λ of a particle can be determined using de Broglie's equation, λ = h/p, where 'h' is Planck's constant (6.626 × 10-34 m2 kg/s) and 'p' is the momentum of the particle. The momentum of an electron moving at thermal velocities in a semiconductor at room temperature (T = 300 K) can be approximated using the formula p = mv, where 'm' is the mass of an electron (9.11 × 10-31 kg) and 'v' is the velocity. The average thermal velocity can be obtained from the kinetic theory of gases, which states that the average kinetic energy (KE) of a particle is ⅓kT, where 'k' is the Boltzmann constant (1.38 × 10-23 J/K) and 'T' is the temperature in kelvins. Therefore, v can be calculated as √(3kT/m). Substituting this velocity into the momentum formula and then into de Broglie's equation yields the de Broglie wavelength of the electron.

However, a precise value for the de Broglie wavelength of an electron in a semiconductor at T = 300 K would require additional information not provided in the question, such as the effective mass of the electron in the semiconductor, which can differ from the free electron mass due to the crystal structure's influence.

One planet is three times farther from the Sun than another. Will the farther planet take more, less, or the same amount of time to orbit the Sun

Answers

The planet will take more time to orbit the Sun.

Explanation:

According to the Kepler's law of orbital motion, a planet which is far away from the Sun experiences a lower  gravitational pull towards the Sun, thus it will move with a lower speed in its orbit. Thus the farther planet takes more time to orbit the Sun compared to the planets closer to the Sun.

Learn More

Orbital speed of planets :https://brainly.com/question/13422499

Keywords: planet,farther,Sun

#LearnwithBrainly

Suppose you are an observer standing on the Moon, looking back at Earth.

If the moon is in the waxingquarter phase, what phase of the Earth would you see?

A. waxing quarter

B. full

C. new

D. waning quarter

E. none; the Earth doesn't have phases

Answers

Answer:

D. waning quarter

Explanation:

The Moon is a natural satellite of Earth and reflects the light of Sun to become visible from the Earth. It shows various phases during its revolution around the Earth depending on how much part of the lit up portion of the Moon is towards Earth. Just like Moon shows phases, if we go on Moon the Earth will show various phases.

When the Moon will be in waxing quarter phase i.e. as seen from Earth, we will see a semicircular Moon with its right side lit up. At the same time if someone from the Moon sees Earth, the Earth will show a waning quarter phase. It will be seen as semicircular but left side will be lit up.

Final answer:

If you are an observer standing on the Moon looking back at Earth during the waxing quarter phase of the Moon, you would see a waning quarter phase of the Earth. Thus, the correct option is D.

Explanation:

If you are an observer standing on the Moon looking back at Earth, the phase of the Earth that you would see depends on the relative positions of the Moon, Earth, and Sun. In the waxing quarter phase of the Moon, you would see a waning quarter phase of the Earth. This is because when the Moon is in the waxing quarter phase, the illuminated portion of the Moon is on the right side, meaning the Earth would be on the left side of the Moon and in the waning quarter phase.

Learn more about Phases of the Moon here:

https://brainly.com/question/33727597

#SPJ3

A sprinter in a 100-m race accelerates uniformly for the first 71 m and then runs with constant velocity. The sprinter’s time for the first 71 m is 9.9 s. Determine his acceleration.

Answers

Answer:

The acceleration of the sprinter is 1.4 m/s²

Explanation:

Hi there!

The equation of position of the sprinter is the following:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the sprinter at a time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:

x = 1/2 · a · t²

At t = 9.9 s, x = 71 m

71 m = 1/2 · a · (9.9 s)²

2 · 71 m / (9.9 s)² = a

a = 1.4 m/s²

The acceleration of the sprinter is 1.4 m/s²

Final answer:

The sprinter's acceleration can calculated by solving two equations from physics: the first formula of motion (final velocity equals initial velocity plus acceleration times time) and the formula for final velocity (distance divided by time). The result is an approximate acceleration of 0.72 m/s^2.

Explanation:

The question requires the use of kinematics, a topic in physics. The formula to calculate uniform acceleration is given by a = 2*(final velocity - initial velocity) / time. Here, final velocity is the velocity achieved after 71m, initial velocity is 0 (standing start), and time is 9.9s. However, we are not given final velocity. We will have to use the first formula of motion, v = u + at, in which v is the final velocity, u is the initial velocity, a is acceleration and t is time. Simultaneously, we have v = d/t where d is distance and t is time. Solving these two equations will give the acceleration (a).

From the first formula of motion and the equation v = d/t, it's clear the sprinter's final velocity (when he/she stops accelerating) is 71m/9.9s which equals approximately 7.17 m/s. Substituting into the first formula of motion gives 7.17 m/s = 0 + a*9.9s which simplifies to a = 7.17 m/s / 9.9s. This gives us an acceleration of approximately 0.72 m/s2.

Learn more about Acceleration here:

https://brainly.com/question/11789833

#SPJ3

Is it possible for a car to be accelerating to the west while it is driving to the east?

Answers

Answer:

Yes

Explanation:

If the acceleration has an opposite direction to the velocity of the car, this means that it is opposed to is motion. Therefore, it is called deceleration, since the car's velocity will decrease until it stops and then will start it moving towards the west.

The sinusoid corresponding to the phasor V2 = 6 + j8 V and ω = 31 rad/s is v2(t) =__________ V. Please report your answer so the magnitude is positive and all angles are in the range of negative 180 degrees to positive 180 degrees.

Answers

Answer:

[tex]v_2(t)=10sin[31t+53.13^{\circ}]\ V[/tex]

Explanation:

Given in the question

[tex]\omega[/tex] = Angular frequency = 31 rad/s

[tex]V_2=(6+j8)V[/tex]

[tex]V_2=\sqrt{6^2+8^2}tan^{-1}\dfrac{8}{6}\\\Rightarrow V_2=10, 53.13^{\circ}[/tex]

Now,

[tex]v_2(t)=rsin[\omega t+\theta]\\\Rightarrow v_2(t)=10sin[31t+53.13^{\circ}]\ V[/tex]

The required function is

[tex]\mathbf{v_2(t)=10sin[31t+53.13^{\circ}]\ V}[/tex]

Final answer:

The sinusoid corresponding to the phasor V₂ = 6 + j8 V and ω = 31 rad/s is v₂(t) = 10 cos(31t + 53.13°) V, with the magnitude positive and the phase angle within -180° to 180° range.

Explanation:

To find the sinusoid corresponding to the phasor V₂ = 6 + j8 V and ω = 31 rad/s, we first need to determine the magnitude and phase of the phasor. The magnitude (V) is the square root of the sum of the squares of the real part and the imaginary part, which gives us:

V = √(6² + 8²) = √(36 + 64) = √100 = 10 V

To find the phase angle (θ), we use the arctangent of the imaginary part over the real part:

θ = arctan(± ÷ 6) = arctan(4÷ 3) ≈ 53.13 degrees

Now, we can write the sinusoidal function using the magnitude and phase as:

v₂(t) = 10 cos(31t + 53.13°) V

However, if the question specifies that the angle should be between -180° and 180°, and the angle provided here is already in that range, we do not need to adjust our answer.

I have a bag that contains 976 mL of air at room temperature (25 oC) and has a pressure of 795 torr. If I ascend a mountain and the bag does not break, what is the volume in liters (L) when the pressure is 553 torr and the temperature is 10. oC?

Answers

Final answer:

The volume of the bag at the new pressure and temperature is 0.991 L.

Explanation:

To solve this problem, we can use the combined gas law:

P1V1/T1 = P2V2/T2

Where:

P1 = 795 torr (initial pressure)

V1 = 976 mL (initial volume, convert to L: 976 mL / 1000 = 0.976 L)

T1 = 25°C (initial temperature, convert to Kelvin: 25°C + 273 = 298 K)

P2 = 553 torr (final pressure)

T2 = 10°C (final temperature, convert to Kelvin: 10°C + 273 = 283 K)

Now we can plug in these values into the equation:

P1V1/T1 = P2V2/T2

(795 torr)(0.976 L)/(298 K) = (553 torr)(V2)/(283 K)

Solving for V2, we get:

V2 = (795 torr)(0.976 L)(283 K) / (553 torr)(298 K) = 0.991 L

Therefore, the volume of the bag at the new pressure and temperature is approximately 0.991 L.

Protons and neutrons are made from combinations of the two most common quarks, the u quark and the d quark. The u quark's charge is +2/3e, while the d quark carries −1/3e.
Part A
How could three of these quarks combine to make a proton?

A. uuu
B. uud
C. udd
D. ddd
Part B
How could three of these quarks combine to make a neutron?

A. uuu
B. uud
C. udd
D. ddd

Answers

Answer:

Part A  B.  Part B C.

Explanation:

A) The elementary charge e (without sign) is equal to the charge of one electron (with negative sign) or to the charge of one proton (with positive sign), so the proton must have a total charge of +e.

if u = +2/3 e and d= -1/3 e, we need a combination which sum gives +3/3 e.

Combination A adds to 6/3e, so it is not possible. C adds to zero, and D gives a negative result.

The only remaining choice is udd:

uud ⇒ +2/3 e + 2/3 e -1/3 e = +3/3 e = +e

So, the statement B is true.

B) As the neutron has no net charge, we need to find a combination which sum adds to zero.

So, A and D are not possible, as they are combinations of the same type of quarks, so the sum is either positive or negative, but not zero.

uud gives +e (we chose it to make a proton in part A), so the only remaining choice is udd:

udd⇒ +2/3 e -1/3 e - 1/3 e = 0

So the statement C is true.

A security guard walks at a steady pace, traveling 120 mm in one trip around the perimeter of a building. It takes him 230 ss to make this trip. what is his speed.

Answers

Answer:

0.0005217 m/s or 5.217×10⁻⁴ m/s

Explanation:

Speed: This can be defined as the ratio of the distance covered by a body to the time taken to cover that distance. The S.I unit of speed is m/s. Speed is a scalar quantity, because it can only be represented by magnitude only.

Mathematically, speed is expressed as

S = d/t ......................................................... Equation 1

Where S = speed, d = total distance, t = time taken to cover the distance

Given: d = 120 mm = (120/1000) m = 0.12 m, t = 230 s.

Substituting into equation 1

S = 0.12/230

S = 0.0005217 m/s

Hence the speed of the security guard = 0.0005217 m/s or 5.217×10⁻⁴ m/s

Final answer:

The speed of the security guard is 0.52 mm/ss.

Explanation:

To find the speed of the security guard, we need to divide the distance traveled by the time taken. In this case, the distance is 120 mm and the time is 230 ss. The formula to calculate speed is:

Speed = Distance / Time

Substituting the given values:

Speed = 120 mm / 230 ss

Simplifying the expression, we get:

Speed = 0.52 mm/ss

Therefore, the speed of the security guard is 0.52 mm/ss.

Learn more about Speed here:

https://brainly.com/question/22610586

#SPJ3

A soft-drink bottler purchases glass bottles from a vendor. The bottles are required to have internal pressure strength of at least 150 pounds per square inch (psi). A prospective bottle vendor claims that its production process yields bottles with mean internal pressure strength of 157 psi and standard deviation of 3 psi. The bottler strikes an agreement with the vendor that permits the bottler to sample from the vendor's production process to verify the vendor's claim. The bottler obtains a random sample of 64 bottles. If the mean internal pressure strength of the sample falls below K, the bottler will conclude the vendor's claim about the mean internal pressure strength to be false. Suppose the bottler is willing to risk a 2% chance of concluding the vendor's claim to be false even if the claim is true. Find the value of K.

Answers

Answer: K =24 psi

Explanation:

Given: Standard deviation =3psi

Internal pressure strength =157psi

Number of random bottle =n=64

K= 3 × square root of 64

K= 3×8=24 psi

If mean internal pressure K fall below K,

157-1.3=155.7psi

At 2%:

0.16×64 = 10.24

Final answer:

The value of K is 150.835 psi.

Explanation:

To find the value of K, we need to calculate the critical value of the sample mean that separates the lower 2% of the distribution from the upper 98%. First, we need to determine the z-score corresponding to the desired probability of 2%. We can find this value using a standard normal distribution table or a calculator. The z-score for a 2% probability is approximately -2.055. Next, we can calculate the value of K by multiplying the z-score by the standard deviation and adding it to the mean:

K = 157 + (-2.055 * 3) = 150.835 psi

Therefore, if the sample mean falls below 150.835 psi, the bottler will conclude the vendor's claim about the mean internal pressure strength to be false.

A solid metal sphere has a radius of 3.53 cm and a mass of 1.497 kg. Part A What is the density of the metal in g/cm3? The volume of sphere is V=43πr3 .

Answers

Answer:The density of the metal sphere  is [tex]8.14g/cm^3[/tex]

Explanation:

Density is defined as the mass contained per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Given : Mass of metal sphere = 1.497 kg = 1497 g   (1kg=1000g)

Density of the metal sphere = ?[tex]g/cm^3[/tex]

Volume of the metal sphere = [tex]\frac{4}{3}\times \pi\times r^3=\frac{4}{3}\times 3.14\times (3.53)^3cm^3=184cm^3[/tex]

Putting in the values we get:

[tex]Density=\frac{1497g}{184cm^3}[/tex]

[tex]Density=8.14g/cm^3[/tex]

Thus the density of the metal sphere  is [tex]8.14g/cm^3[/tex]

Final answer:

The density of the metal in the solid sphere is 8.34 g/cm³.

Explanation:Density Calculation:

The density of an object can be calculated by dividing the mass of the object by its volume. In this case, the mass of the metal sphere is given as 1.497 kg and the volume can be calculated using the formula V = 4/3 × π × (radius)^3. Plugging in the values, we get:

V = 4/3 × π × (3.53 cm)^3 = 179.5942 cm^3

Now, we can substitute the values in the density formula:

Density = mass / volume = 1.497 kg / 179.5942 cm^3 = 8.34 g/cm^3

Learn more about density here:

https://brainly.com/question/34199020

#SPJ3

Find a unit vector that has the same direction as the given vector. −3i + 2j − k

Answers

The unit vector that has the same direction as the given vector [tex]\(-3i + 2j - k\) is \(\frac{-3}{\sqrt{14}}i + \frac{2}{\sqrt{14}}j - \frac{1}{\sqrt{14}}k\).[/tex]

To find a unit vector in the same direction as the given vector [tex]\(-3i + 2j - k\)[/tex], we first need to calculate the magnitude of the given vector and then divide each component by that magnitude.

The magnitude of the given vector is given by the formula:

[tex]\[|v| = \sqrt{(-3)^2 + (2)^2 + (-1)^2} = \sqrt{14}\][/tex]

Now, we can find the unit vector [tex]\(\hat{u}\)[/tex] by dividing each component of the given vector by its magnitude:

[tex]\[\hat{u} = \frac{-3}{\sqrt{14}}i + \frac{2}{\sqrt{14}}j - \frac{1}{\sqrt{14}}k\]\[\hat{u} = \frac{-3}{\sqrt{14}}i + \frac{2}{\sqrt{14}}j - \frac{1}{\sqrt{14}}k\][/tex]

So, the unit vector that has the same direction as the given vector [tex]\(-3i + 2j - k\) is \(\frac{-3}{\sqrt{14}}i + \frac{2}{\sqrt{14}}j - \frac{1}{\sqrt{14}}k\).[/tex]

Learn more about unit vector, here:

https://brainly.com/question/28028700

#SPJ12

Final answer:

To find a unit vector with the same direction as the given vector -3i + 2j - k, divide the given vector by its magnitude.

Explanation:

To find a unit vector with the same direction as the given vector -3i + 2j - k, we need to divide the given vector by its magnitude. The magnitude of the given vector is the square root of the sum of the squares of its components, which is sqrt((-3)^2 + 2^2 + (-1)^2) = sqrt(14).

So, the unit vector with the same direction as the given vector is (-3i + 2j - k) / sqrt(14).

An undamped 2.65 kg horizontal spring oscillator has a spring constant of 38.5 N/m. While oscillating, it is found to have a speed of 2.92 m/s as it passes through its equilibrium position. What is its amplitude of oscillation?

Answers

Answer: 0.44831m

Explanation:

Unwanted horizontal spring oscillator=2.65kg

Spring constant =38.5N/M

Speed=2.92m/s

Amplitude of oscillation=?

Potential energy=m*v2/2

=2.65*2.92/2

=3.8695J

Potential energy=kinetic energy

Potential energy=1/2kx^2

3.869=1/2*38.5*x^2

3.869=19.25x^2

Dividing both sides by 19.25

3.869/19.25=x^2

So therefore, x^2=√0.200987

x=0.44831m

A horse and a squirrel participate in a race over a 1.20 km long course. The horse travels at a speed of 19.0 m/s and the squirrel can do 3.50 m/s. The horse runs for 0.960 km and then stops to tease the slow-moving squirrel, which eventually passes by. The horse waits for a while after the squirrel passes and then runs toward the finish line. Both animals cross the finish line at the exact same instant. Assume both animals, when moving, move steadily at their respective speeds.

(a)

How far (in m) is the squirrel from the finish line when the horse resumes the race?

m

(b)

For how long in time (in s) was the horse stationary?

s

Answers

Answer:

44.21053 m

279.69925 seconds

Explanation:

Time taken by the squirrel to reach the finish line

[tex]\dfrac{1200}{3.5}=342.85714\ seconds[/tex]

Time taken by the horse to cover 0.96 km

[tex]\dfrac{960}{19}=50.52631\ seconds[/tex]

Time taken by the horse to cover 1.2 km

[tex]\dfrac{1200}{19}=63.15789\ seconds[/tex]

Let the distance that the squirrel is from the finish line when the horse resumes the race be x.

During this time the horse also reaches the finish line.

We deduce that

The time taken by the horse from one stop = Time taken by squirrel before x distance from finish line.

[tex]3.5\times (63.15789-50.52631)=x\\\Rightarrow x=44.21053\ m[/tex]

The squirrel is 44.21053 m from the finish line when the horse resumes the race.

Duration is given by

[tex](342.85714-63.15789)=279.69925\ s[/tex]

The duration is 279.69925 seconds

Final answer:

When the horse resumed the race, the squirrel was 240m from the finish line. The horse was stationary for approximately 68.57 seconds.

Explanation:

The subject of this question is Physics, specifically it deals with the concept of speed and distance. The grade level is high school as it involves basic kinematics.

(a) The horse has traveled 0.96 km, which is 960 m. It leaves 240 m for the rest of the journey. When the horse stopped, the squirrel kept moving. By the time the horse started again, the squirrel must have traveled more than 240 m. We know the horse and the squirrel finished the race at the same time, hence, they must have started the remaining journey at the same time. So, the distance from the finish line where the squirrel was when the horse began to run again equals to the rest of the horse's journey, which is 240m.

(b) To figure out how long the horse was stationary we need to calculate how long it took the squirrel to cover the distance. This is done by dividing the distance the squirrel traveled (240m) by its speed (3.5 m/s). Hence, time = distance / speed = 240m / 3.5 m/s = 68.57 seconds.

Learn more about Speed here:

https://brainly.com/question/22610586

#SPJ3

Two equally charged insulating balls each weigh 0.16 g and hang from a common point by identical threads 35 cm long. The balls repel each other so that the separation between their centers is 6.8 cm.
What is the magnitude of the charge on each ball

Answers

Answer:

Q₁ = Q₂ = 8.84 x 10⁻⁹ C

Explanation:

given,

mass of ball, m = 0.16 g = 1.6 x 10⁻⁴ Kg

ball each other, r = 6.8 cm

Weight of the ball

F_w = m g

F_w = 1.6 x 10⁻⁴ x 9.8

F_w = 1.56 x 10⁻³ N

The tension in each string is a force directed along the length of the string and is the hypotenuse of a right triangle.

we have to find the horizontal component of the forces.

The length of the string,L is 35 cm so, it will be the hypotenuse.

θ be the angle made with imaginary vertical line and the string.

now,

[tex]sin \theta = \dfrac{r\2}{L}[/tex]

[tex]sin \theta = \dfrac{3.4}{35}[/tex]

   θ = 5.57°

horizontal component of the force = ?

vertical component of force,F_v = 1.56 x 10⁻³ N

[tex]tan\theta = \dfrac{F_H}{F_v}[/tex]

[tex]tan(5.57^0) = \dfrac{F_H}{1.56\times 10^{-3}}[/tex]

 F_h = 1.52 x 10⁻⁴ N

now, each ball will be repelled by

F = 1.52 x 10⁻⁴ N

now calculation of charges

[tex]F = \dfrac{kQ_1Q_2}{r^2}[/tex]

Q₁ = Q₂ because both charge are same

[tex]1.52\times 10^{-4} = \dfrac{9\times10^9Q^2}{0.068^2}[/tex]

    Q² = 7.809 x 10⁻¹⁷

   Q = 8.84 x 10⁻⁹ C

hence the change on the balls were Q₁ = Q₂ = 8.84 x 10⁻⁹ C

The acceleration of a rocket traveling upward is given by a = (6 + 0.02s) m/s2 , where s is in meters. Determine the time needed for the rocket to reach an altitude of s = 100 m. Initially, v = 0 and s = 0 when t = 0.

Answers

Final answer:

The time needed for the rocket to reach 100 meters, given an acceleration function a = (6 + 0.02s) m/s², requires integrating the acceleration to get velocity and then position as a function of time, considering the initial conditions v = 0, s = 0, and t = 0.

Explanation:

To solve the problem of determining the time needed for a rocket to reach an altitude of 100 meters when its acceleration is given by a = (6 + 0.02s) m/s², we will integrate the acceleration to find the velocity as a function of position and then the position as a function of time. Since we have the initial conditions of starting from rest (v = 0) and starting at the ground (s = 0) when t = 0, we can use calculus to carry out the integration for motion under variable acceleration.

First, we integrate the acceleration to get velocity:

∫ a ds = ∫ (6 + 0.02s) ds

Then, we use the velocity function to find the time taken to reach 100 meters. In this scenario, as the question relates to variable acceleration, we are dealing with non-uniformly accelerated motion, which makes it more complex than just using basic kinematic equations.

Unfortunately, without specific guidance on the integration technique or an appropriate kinematic equation that takes into account variable acceleration, we cannot solve this problem directly. However, generally, to integrate acceleration to get velocity, we would apply the fundamental theorem of calculus and then integrate the velocity function to get the position over time. From there, we can find the time needed to reach a particular altitude.

The time needed for the rocket to reach an altitude of 100 meters is approximately 187 seconds.

Establish the relationship between acceleration and distance:

The given acceleration is a function of distance: a = 6 + 0.02s. We know that acceleration is the derivative of velocity with respect to time (a = dv/dt), and velocity is the derivative of position with respect to time (v = ds/dt). Using the chain rule of calculus, we get:

[tex]a = \frac{dv}{dt} = \frac{dv}{ds} \cdot \frac{ds}{dt} = v \cdot \frac{dv}{ds}[/tex]
[tex]6 + 0.02s = v \frac{dv}{ds}[/tex]

Separate variables and integrate:

[tex]\int v \, dv = \int (6 + 0.02s) \, ds[/tex]

Integrating both sides, we get:

[tex]\frac{v^2}{2} = 6s + 0.01s^2 + C[/tex]

Given the initial conditions, at s = 0, v = 0, so C = 0. Therefore, the equation simplifies to:

[tex]v^2 = 12s + 0.02s^2[/tex]

Express velocity as a function of s:

[tex]v = \sqrt{12s + 0.02s^2}[/tex]

Use the relationship between velocity and time:

Since v = ds/dt, we can write:

[tex]dt = \frac{ds}{\sqrt{12s + 0.02s^2}}[/tex]

Integrate both sides with respect to their respective variables:

[tex]t = \int \frac{ds}{\sqrt{12s + 0.02s^2}}[/tex]

This integral can be solved using appropriate methods or a substitution trick (depending on algebraic techniques or a table of integrals):

[tex]\int \frac{ds}{\sqrt{12s + 0.02s^2}} = \frac{1}{\sqrt{0.02}} \int \frac{ds}{\sqrt{s + \frac{12}{0.02}}}[/tex]
[tex]t = \frac{1}{\sqrt{0.02}} \left[ \frac{2}{2} \sqrt{s + \frac{12}{0.02}} \right][/tex]

After evaluating the definite integral from s = 0 to s = 100 m, we obtain:

[tex]t = \frac{1}{0.1414} \left[ \sqrt{100 + 600} - \sqrt{0} \right][/tex]
[tex]t = 7.07 \sqrt{700}[/tex]
[tex]t = 7.07 \times 26.46[/tex]
[tex]t \approx 187 \text{ seconds}[/tex]

In a salt crystal, the distance between adjacent sodium and chloride ions is 2.82 Angstroms. What is the force of attraction between the two singly charged ions

Answers

Final answer:

The force of attraction between sodium and chloride ions in a salt crystal can be calculated using Coulomb's law, considering isotropic forces and applying the Madelung constant.

Explanation:

The force of attraction between the sodium and chloride ions in a salt crystal can be calculated using Coulomb's law, which involves the product of the charges divided by the distance between them squared. The force is proportional to the ionic charges and inversely proportional to the square of the distance between the ions. In a sodium chloride (NaCl) crystal, the resulting ions (Na+ and Cl¯) produce isotropic forces, which means the force is the same in all directions.

Given the distance mentioned in your question (2.82 Angstroms), you can use this along with the known charges of sodium and chloride ions to calculate the force. However, please note that this calculation needs to take into account the Madelung constant, which is a factor for considering the interaction of a sodium ion with all the nearby chloride and sodium ions in a tightly arranged three-dimensional lattice structure. For a NaCl crystal, the Madelung constant is approximately 1.75.

Learn more about Ionic Force Calculation here:

https://brainly.com/question/14635829

#SPJ12

An electron is projected with an initial speed v0 = 1.10 x 10⁶ m/s into the uniform field between the parallel plates. The distance between the plates is 1 cm and the length of the plates is 2 cm. Assume that the field between the plates is uniform and directed vertically downward, and that the field outside the plates is zero. The electron enters the field at a point midway between the plates. E = N/C
(a) If the electron just misses the upper plate as it emerges from the field, find the magnitude of the electric field.
(b) Suppose that the electron is replaced by a proton with the same initial speed. Would the proton hit one of the plates?

Answers

Answer:

a) [tex]E=364N/C[/tex]

b) No

Explanation:

A) Because the electron is affected by an acceleration force in this case by the electric field, we can use the formulas of 2-dimension movement.

We will assume the electron missed the upper plate, so we need to calculate the time to travel all the way through the plate, that is:

[tex]x=v_x*t[/tex]

[tex]where:\\x=distance\\v=speed\\t=time[/tex]

so:

[tex]t=\frac{x}{v_x}=\frac{0.02m}{1.6\cdot 10^6m/s}\\\\t=1.25\cdot10^{-8}[/tex]

the electron experiences an accelerated motion in the vertical direction, so we can obtain the acceleration of the electron:

[tex]y=\frac{1}{2}.a.t^2\\\\where:\\y=vertical\_distance\\a=acceleration\\t=time[/tex]

so:

[tex]a=\frac{2.y}{t^2}\\\\a=\frac{2*(\frac{0.01}{2}m)}{(1.25\cdot10^{-8}s)^2}\\\\a=6.4\cdot10^{13} m/s^2[/tex]

now we can use the relation:

[tex]F=m.a=E.q\\so\\E=\frac{m.a}{q}[/tex]

[tex]where:\\\\E=electric\_field\\m=electron\_mass=9.1\cdot10^{-31}kg\\q=Charge=1.6\cdot10^{-19}\\a=acceleration[/tex]

Now we can calculate the electric field:

[tex]E=\frac{9.1\cdot10^{-31}kg\cdot6.4\cdot10^{13}m/s^2}{1.6\cdot10^{-19}C}\\\\E=364N/C[/tex]

B) Because the proton has the same charge but positive it will go in the opposite direction, so because we assume the electron didn't touch the plate, the proton won't.

Final answer:

The magnitude of the electric field is 8.91 x 10^-6 N/C. Both the electron and the proton would just miss the upper plate.

Explanation:

(a) To find the magnitude of the electric field, we can use the equation of motion for a charged particle in an electric field:

F = qE

Where F is the force on the particle, q is the charge of the particle, and E is the electric field strength. In this case, the force on the electron is given by:

F = (9.11 x 10^-31 kg)(1.10 x 10^6 m/s)(E)

Since the electron just misses the upper plate, the force on the electron due to gravity is equal to the force due to the electric field:

(9.11 x 10^-31 kg)(9.8 m/s^2) = (9.11 x 10^-31 kg)(1.10 x 10^6 m/s)(E)

Solving for E, we find:

E = (9.8 m/s^2) / (1.10 x 10^6 m/s)

E = 8.91 x 10^-6 N/C

(b) To determine if the proton would hit one of the plates, we can use the same approach. The force on the proton is given by:

F = (1.67 x 10^-27 kg)(1.10 x 10^6 m/s)(E)

Comparing this force to the force due to gravity:

(1.67 x 10^-27 kg)(9.8 m/s^2) = (1.67 x 10^-27 kg)(1.10 x 10^6 m/s)(E)

Solving for E, we find:

E = (9.8 m/s^2) / (1.10 x 10^6 m/s)

E = 8.91 x 10^-6 N/C

Therefore, the proton would also just miss the upper plate.

Learn more about Electric Field here:

https://brainly.com/question/8971780

#SPJ3

A cube with sides of area 32 cm2 contains a 35.9 nanoCoulomb charge. Find the flux of the electric field through the surface of the cube in unis of Nm2/C.

Answers

Answer:

The electric flux through the surface is equal to 3.878 x 10³ Nm²/C

The field distance r is equal to half the length of each side of the cube.

From the area the length of each size was calculated and the field distance and charge were used in calculating the magnitude of the electric field vector which was found to be 202 x 10³ N/C

The total flux area available to this electric field is 6x32cm²

Explanation:

The full solution can be found in the attachment below.

Thank you for reading this post and I hope it is helpful to you.

Other Questions
An ovary that is placed below other flower parts in an angiosperm is called A. monoecious B. inferior C. incomplete D. gynoecium E. substandard Total variable costs A. always increase with output. B. initially decrease and then increase with output. C. initially increase as output increases and then decrease. D. always decrease with output. A town develops green space on top of an apartment building. This provides a relaxing place for the renters while also allowing the owners to charge higher rents. Whichbenefits of green space does this situation provide?1.environmental health, and economic2.health and economic3.economic and environmental4.environmental and health A circle with circumference 6 has an arc with a 20 central angle,What is the length of the arc? corinne, tu de la video amateur New research is showing that the relationship between occupation, income, education, and health changes over the life course, with __________ becoming more important for health as a person moves toward older age. Bruce drives his car for his job. The equation R=0.575m+42 models the relation between the amount in dollars. R, that he is reimbursed and the number of miles, m, he drives in one day. Interpret the slope of the equation. This year, the number of applications at College X increased by nearly 5%, while the size of the entering class and the structure of the admissions process remained the same. However, the admissions director of College X claims that this year a greater proportion of its applicants received offers of admission from the college than in years past.Which of the following statements best reconciles the claim of the admissions director with other evidence presented in the argument?A. This year College X moved up in all major rankings of undergraduate programs.B. This year, the number of high school graduates who applied to colleges increased by 5%.C. This year, nearly twice as many accepted applicants at College X decided to attend other colleges.D. The admissions process at College X is substantially more competitive, as compared to other colleges of similar academic profile.E. College X is located in a major metropolitan area with a high concentration of potential college applicants. A 75 kg hunter, standing on frictionless ice, shoots a 42 g bullet horizontally at a speed of 620 m/s . Part A What is the recoil speed of the hunter?Express your answer to two significant figures and include the appropriate units. Harmful chemicals released directly into the atmosphere due to either human activities or natural processes are ___ air pollutants.a) primaryb) secondaryc) tertiaryd) quaternary Retirement dating in old age and a second or third career are all part of a complex network of policies and practices that are being called into question. Which factor is the biggest influence in this shift Brown fat is a specialized tissue found especially in infants and hibernating mammals. Brown fat mitochondria have proton channels located in their inner membranes that allow protons to flow from the intermembrane space into the mitochondrial matrix without passing through ATP synthase. What does the flow of protons through these channels mean for the organism? i was told to find 2 reasons. i did one, can someone do my other?pls dont let this slide cmon PLEASE Natalie is 40 years old and in her 15th week of pregnancy. She is concerned that her baby might have Down syndrome. Her doctor performs an , which involves withdrawing and testing a sample of amniotic fluid. (Remember to type only one word per blank.)? Program Evaluation Review Technique (PERT) is a _____ technique because it analyzes a large, complex project as a series of individual tasks. Select the correct answer.Why is it important not to do too much too fast?OA. It puts too much stress on the muscular system.OB. It puts too much stress on the cardiovascular system.It puts too much stress on the skeletal system.OD. All of the Above Refer to Animation: Kinetic and Potential Energy. Which of the factors accounts for the higher potential energy of C-C and C-H bonds compared to C-O and H-O bonds?A) The C-C and C-H bonds are strong, thus requiring a lot of energy to hold together. B) The CO and H-O bonds are weak, thus requiring less energy to hold together.C) The C-C and C-H bonds are weak, thus requiring a lot of energy to hold together. D) The CO and wo bonds are strong, thus requiring a lot of energy to hold together. Two point charges of equal magnitude are 7.3 cm apart. At the midpoint of the line connecting them, their combined electric field has a magnitude of 50 N/C . Construct a frequency distribution and a relative frequency distribution for the light bulb data with a class width of 20, starting at 800. Copy and paste your distribution tables here. 2. Construct a histogram based on this frequency distribution table for the light bulb data. Copy and paste your histogram here. Describe the shape of the histogram. (Is it unimodal, bimodal, skewed, etc.?) skewed 3. Now, construct a frequency distribution table and a relative frequency distribution table for the light bulb data with a class width of 100, starting at 800. Copy and paste your distribution tables here. 5. Construct a histogram based on this frequency distribution table for the data. Copy and paste your histogram here. Describe the shape of the histogram. (Is it unimodal, bimodal, skewed, etc.?)819836888897903907912918942943952959962986992994100410051007101510161018102010221034103810721077107710821096110011131113111611531154117411881230 Jill has applied for a job with each of two different companies. What is the probability that she will get job offers from both companies?1) The probability that she will get a job offer from neither company is 0.3.2) The probability that she will get a job offer from exactly one of the two companies is 0.5. Steam Workshop Downloader