Answer:
[tex] T(t) = M -C_1 e^{-kt}[/tex]
And as we can see that represent the solution for the differential equation on this case.
Step-by-step explanation:
For this case we have the following differential equation:
[tex] \frac{dT}{dt}= k(M-T)[/tex]
We can rewrite this expression like this:
[tex] \frac{dT}{M-T} = k dt[/tex]
We can us the following susbtitution for the left part [tex] u = M-T[/tex] then [tex] du= -dt[/tex] and if we replace this we got:
[tex] \frac{-du}{u} = kdt[/tex]
We can multiply both sides by -1 and we got;
[tex] \frac{du}{u} =-k dt[/tex]
Now we can integrate both sides and we got:
[tex] ln |u| = -kt + C[/tex]
Where C is a contant. Now we can exponetiate both sides and we got:
[tex] u(t) =e^{-kt} *e^C = C_1 e^{-kt}[/tex]
Where [tex] C_1 = e^C[/tex] is a constant. And now we can replace u and we got this:
[tex] M-T = C_1 e^{-kt}[/tex]
And if we solve for T we got:
[tex] T(t) = M -C_1 e^{-kt}[/tex]
And as we can see that represent the solution for the differential equation on this case.
The solution to the differential equation representing Newton's law of cooling is calculated by rearranging the equation and then integrating both sides. The general solution for the temperature of an object over time is given by T = M - Ce^-kt where M is the ambient temperature, T is the temperature of the object, C is a constant, and k is the constant of proportionality.
Explanation:To solve the given differential equation which represents Newton's law of cooling, we shall proceed with integrating both sides. This is in the form of a separable first order differential equation and can be written in the form as follows:
dT / (M - T) = k dt
By re-arranging and integrating both sides, we can find the solution. When we integrate both sides, we get:
- ln |M - T| = kt + C
Where C is the constant of integration. Simplifying further:
T = M - Ce-kt
This is the general solution to the temperature T of an object over time t according to Newton's law of cooling.
Learn more about Newton's law of cooling:http://brainly.com/question/14523080
#SPJ3
For each part below, give an example of a linear system of
equations in two variables that has the given property. In each case, draw the lines
corresponding to the solutions of the equations in the system.
(a) has no solution
(b) has exactly one solution
(c) has infinitely many solutions
(i) Add or remove equations in (b) to make an inconsistent system.
(ii) Add or remove equations in (b) to create infinitely many solutions.
(iii) Add or remove equations in (b) so that the solution space remains unchanged.
(iv) Can you add or remove equations in (b) to change the unique solution you had
to a different unique solution?
In each of (i) - (iv) justify your action in words.
Answer:
a)g: 3x + 4y = 10 b) a:x+y = 5 c) c: 3x + 4y = 10
h: 6x + 8y = 5 b:2x + 3y = 8 d: 6x + 8y = 5
Step-by-step explanation:
a) Has no solution
g: 3x + 4y = 10
h: 6x + 8y = 5
Above Equations gives you parallel lines refer attachment
b) has exactly one solution
a:x+y = 5
b:2x + 3y = 8
Above Equations gives you intersecting lines refer attachment
c) has infinitely many solutions
c: 3x + 4y = 10
d: 6x + 8y = 5
Above Equations gives you collinear lines refer attachment
i) if we add x + 2y = 1 to equation x + y = 5 to make an inconsistent system.
ii) if we add x + 2y = 3 to equation x + y = 5 to create infinitely system.
iii) if we add x + 4y = 1 to equation x + y = 5 to create infinitely system.
iv) if we add to x + y =5 equation x + y = 5 to change the unique solution you had to a different unique solution
The 3 systems of linear equations are:
a)
y = 4x + 3
y = 3x + 1
(no solution).
b)
y = 4x + 3
y = 3x + 1
(one solution)
c)
y = 4x + 3
y = 4x + 3
(infinite solutions)
Such that the graphs can be seen below, where the solutions are the intersections between the lines.
How to write the systems of linear equations?
a) A system of linear equations has no solution when both lines are parallel. And parallel lines have the same slope and different y-intercept, so this system can be:
y = 4x + 3
y = 4x + 6
This system has no solutions.
b) We get only one solution if the slopes are different:
y = 4x + 3
y = 3x + 1
Has only one solution.
c) We have infinite solution if both lines are the same line, so in the system:
y = 4x + 3
y = 4x + 3
We have infinite solutions.
The graphs of the 3 systems can be seen, in order, below:
If you want to learn more about systems of linear equations, you can read:
https://brainly.com/question/14323743
Find the force exerted by the surface on the point of contact with the hammer head. Assume that the force the hammer exerts on the nail is parallel to the nail.
Answer:
716.3N
Step-by-step explanation:
Moment produced by force F = 150 N:
Mf = 150 * 30 = 4500 Ncm
The same moment is imparted at the nail.
Fn * 5 / sin (60) = 4500 Ncm
Fn = 779.423 N
Force exerted by surface on hammer pivot is:
Fx = 779.423 sin (30) - 150 = 239.7115 N
Fy = 779.423 cos (30) = 675 N
Fres = sqrt ( (Fx)^2 + (Fy)^2)
Fres = sqrt ( 675 ^2 + 239.7115^2)
Fres = 716.3 N
The force the hammer exerts on the nail is parallel to the nail. is 716.3 N
Force and momentFrom the given information, we ned to first calculate the moment as shown:
Moment produced by force F = 150 N:Since Moment = Force * distance:
Mf = 150 * 30 = 4500 NcmThe same moment is imparted at the nail.
5Fn/sin (60) = 4500 Ncm
Fn = 779.42N
Next is to calculate the force exerted by the surface on the hammer pivot.
Fx = 779.423 sin (30) - 150 = 239.7115 N
Fy = 779.423 cos (30) = 675 N
[tex]F = \sqrt{ ( (Fx)^2 + (Fy)^2)}\\F = \sqrt{ ( 675 ^2 + 239.7115^2)}\\F = 716.3N[/tex]
The force the hammer exerts on the nail is parallel to the nail. is 716.3 N
Learn more on force and moment here: https://brainly.com/question/14303536
Suppose that the number of a certain type of computer that can be sold when its price is P (in dollars) is given by a linear function N(P). (a) Determine N(P) if N(1000) = 10000 and N(1700) = 5800. (Use symbolic notation and fractions where needed.) N(P) = (b) Select the statement that gives the slope of the graph of N(P), including units and describes what the slope represents. 6 computers per dollar -6 dollars per computer computers per dollar -6 computers per dollar (c) What is the change AN in the number of computers sold if the price is increased by AP = 110 dollars? (Give your answer as a whole number.) AN = computers
Answer:
a) N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
c) ∆N = -660 computers
Step-by-step explanation:
Since N(P) is a linear function
N(P) = mP + C
Where m is the slope and C is the intercept.
Case 1
N(1000) = 10000
10000 = 1000m + C ....1
Case 2
N(1700) = 5800
5800 = 1700m + C ....2
Subtracting equation 1 from 2
700m = 5800 - 10000
m = -4200/700
m = -6
Substituting m = -6 into eqn 1
10000 = (-6)1000 + C
C = 10000+ 6000 = 16000
N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
Slope is the change in number of computer sold per unit Change in price.
c) since slope m = -6 computers per dollar
∆P = 110 dollars
∆N = m × ∆P
Substituting the values,
∆N = -6 computers/dollar × 110 dollars
∆N = -660 computers.
The number of computer sold reduce by 660 when the price increase by 110 dollars
Answer:
110
Step-by-step explanation:
Two events are listed below:
A: {The home's roof is less than 10 years}
B: {The home has a security system}
Define the event :A^c ∪ BGroup of answer choices:O The home's roof is at least 10 years or it has a no security systemO The home's roof is at least 10 years and it has a security systemO The home's roof is less than 10 years or it has a security systemO The home's roof is at least 10 years or it has a security system
Answer:
Option 4) The home's roof is at least 10 years or it has a security system.
Step-by-step explanation:
We are given the following events in the question:
A: The home's roof is less than 10 years}
B: The home has a security system
We have to find the interpretation of event
[tex]A^c \cup B[/tex]
Now, [tex]A^c[/tex]
This represents the complement of A and consist of events other than A,
Thus,
[tex]A^c[/tex]: The home's roof is not less than 10 years or the home's roof is greater than equal to 10 years or the home's roof is at least 10 years.
The union of two sets is a new set that contains all of the elements that are in at least one of the two sets.
[tex]A^c \cup B[/tex]
Thus, it can be interpreted as the home's roof is at least 10 years or the home has a security system.
Option 4) The home's roof is at least 10 years or it has a security system
The event A^c ∪ B represents all homes with roofs that are at least 10 years or have a security system.
Explanation:When evaluating the union of the complement of event A and event B, which is denoted as Ac ∪ B, we are looking for all outcomes that are either in the complement of A or in B, or in both. The complement of event A, denoted as Ac, includes all outcomes not in A. In the context of the given events, this would mean the complement of event A (the home's roof is less than 10 years) includes homes with roofs that are at least 10 years. Event B is that the home has a security system. Therefore, Ac ∪ B represents all homes with roofs that are at least 10 years or have a security system (or both).
The following confidence interval is obtained for a population proportion, p: 0.408 < p < 0.432
Use these confidence interval limits to find the margin of error, E.
A. 0.012
B. 0.013
C. 0.024
D. 0.420
Answer:
For this case the wisth of the interval represent 2ME and we have this:
[tex] 0.432-0.408 = 2ME[/tex]
And if we solve for ME we got:
[tex] ME = \frac{0.432-0.408}{2}=0.012[/tex]
So then the correct answer would be:
A. 0.012
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution
[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]
Solution to the problem
The confidence interval for the mean is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
The margin of error is given by:
[tex] ME= z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
For this case the wisth of the interval represent 2ME and we have this:
[tex] 0.432-0.408 = 2ME[/tex]
And if we solve for ME we got:
[tex] ME = \frac{0.432-0.408}{2}=0.012[/tex]
So then the correct answer would be:
A. 0.012
Data from a sample of citizens of a certain country yielded the following estimates of average TV viewing time per month for all the citizens. The times are in hours and minutes. (NA, not available)
Viewing Method May 2008 May 2007 Change (%)
Watching TV in the home
Watching timeshifted TV
Using the internet
Watching video on internet
127:49
5:31
26:41
2:34
121:59
3:52
24:17
NA
5
43
10
NA
Is the study descriptive or inferential?
A. Inferential, because the statistics are used to describe the sample
B. Descriptive, because the statistics are used to describe the sample
C. Descriptive, because the statistics are used to make an inference about the population
D. Inferential, because the statistics are used to make an inference about the population
Answer:
D. Inferential, because the statistics are used to make an inference about the population
Correct, the objective of this study is obtain information from the population with a sample and then use any method to estimate the population mean, the parameter of interest.
Step-by-step explanation:
An inferential study consists in take information about a population by a sample and use this information to see what would be the possible values for the population of interest
By the other hand a descriptive study is obtained from observing and measuring some variables of interest but without manipulate the data.
For this case we have sample averages for the viewing time per month.
Let's analyze one by one the possible options:
A. Inferential, because the statistics are used to describe the sample
False the study is inferential but the idea is not just obtain information about the sample, we want to see the population parameters not the statistics
B. Descriptive, because the statistics are used to describe the sample
False for this case we have averages calculated from the sample mean and is not possible to consider this study as descriptive.
C. Descriptive, because the statistics are used to make an inference about the population
False, the statistics are used to make an inference about the population, this statement is correct, but the problem is that this study is not descriptive.
D. Inferential, because the statistics are used to make an inference about the population
Correct, the objective of this study is obtain information from the population with a sample and then use any method to estimate the population mean, the parameter of interest.
The study is descriptive. It uses statistics to provide summaries about the average TV viewing times per month among citizens, without making any inferences about a larger population. Therefore, the correct option is B.
Explanation:The study in question is descriptive. Descriptive statistics are used to describe the main features of a collection of data in quantitative terms. They provide simple summaries about the sample and the measures. The data mentioned here are providing a summary of the average TV viewing times per month for the citizens. They describe various elements of interest within a particular set and there isn't any interpretation or inference being made about the larger population from which the sample was drawn. Therefore, the correct option is B. Descriptive, because the statistics are used to describe the sample.
Learn more about Descriptive Statistics here:https://brainly.com/question/31884351
#SPJ3
On an indoor circular track of circumference 50 feet, Joneal starts at point $S$, runs in a counterclockwise direction, and then stops when he has run exactly one mile (5280 feet). On which quarter of the circle, $A$, $B$, $C$ or $D$, did Joneal stop
Answer:
He stoped on 3th quarter,i.e, $C$.
Step-by-step explanation:
He ran 105 full circles ( 5280/50=105 ( rst= 30ft) ). So in the last circles he started from point S to run 30ft more.
The quarter of the circle is long 50ft/4= 12,5ft. So for 30 feets he must run 2 quarters, its 25ft. The last 5ft he ran on the 3th quarter, so he stoped on C.
This answer $C$, if $C$ is the 3th quadrant, i don't see the picture of the track.
Answer:
C
Step-by-step explanation:
To estimate the mean score μ μ of those who took the Medical College Admission Test on your campus, you will obtain the scores of an SRS of students. From published information you know that the scores are approximately Normal with standard deviation about 6.2 6.2 . You want your sample mean ¯ x x¯ to estimate μ μ with an error of no more than 1.4 1.4 point in either direction. (a) What standard deviation must ¯ x x¯ have so that 99.7 % 99.7% of all samples give an ¯ x x¯ within 1.4 1.4 point of μ μ ? Use the 68 – 95 – 99.7 68–95–99.7 rule. (Enter your answer rounded to four decimal places.
Answer: 0.4667
Step-by-step explanation:
According to 68–95–99.7 rule , About 99.7% of all data values lies with in 3 standard deviations from population mean ([tex]\mu[/tex]).
Here , margin of error = 3s , where s is standard deviation.
As per given , we have want our sample mean [tex]\overline{x}[/tex] to estimate μ μ with an error of no more than 1.4 point in either direction.
If 99.7% of all samples give an [tex]\overline{x}[/tex] within 1.4 , it means that
[tex]3s=1.4[/tex]
Divide boths ides by 3 , we get
[tex]s=0.466666666667\approx0.4667[/tex]
Hence, So [tex]\overline{x}[/tex] must have 0.4667 as standard deviation so that 99.7 % 99.7% of all samples give an [tex]\overline{x}[/tex] within 1.4 point of μ .
To estimate the mean score of an MCAT with an error of no more than 1.4 points, one needs to calculate the standard deviation for the sample mean that allows 99.7% of samples to fall within this range. After determining this standard deviation, apply the Central Limit Theorem to increase sample size and approach the population mean.
Explanation:To estimate the mean score μ of those who took the Medical College Admission Test on your campus with an error of no more than 1.4 points in either direction, you are seeking a standard deviation for the sample mean ¯x that will allow for 99.7% of samples to fall within this range. This relates to the 68 – 95 – 99.7 rule, which in this context will be interpreted as within three standard deviations of the mean, hence, you need ¯x to have a standard deviation of 1.4/3.
Using the formula for ¯x standard deviation which is σ/√n (where σ is population standard deviation and n is the sample size), you can rewrite the formula as 1.4/3 = 6.2/√n and solve for n to get the desired sample size.
This use of the empirical rule and standard deviations is part of a bigger concept known as the Central Limit Theorem, which states that as sample size increases, the sample mean gets nearer to the population mean.
Learn more about Standard Deviation and Central Limit Theorem here:https://brainly.com/question/34351138
#SPJ3
Calculate the fuel economy of your family or personal car in terms of gallons per mile and the total cost for one fill-up git hub.
Answer:
0.028 Gallons/mile
Step-by-step explanation:
1 Gallon = 3.78541 Litres
1 Mile = 1.60934 Km
Total Fuel Expenditure (Dec 2019) = PKR 7,000
Fuel cost / Litre = 114Litre/Km
Total Fuel consumption = (7000/114)
= 61.40 Litres or 16.22 Gallons
Total Distance Travelled in Dec 2019 = 921 Km or 572.28 miles
Fuel Economy = 16.22/572.28
= 0.028 Gallons/mile
One time tank fill up cost = PKR 1,500
There are 5 very different seats in a car. In how many ways can 5 different people be seated in the car for a road trip if only 2 of them know how to drive?
Answer:
48
Step-by-step explanation:
Let A and B be the two people who are able to drive. If A is driving, there are 4! ways to arrange the remaining peoplein the car seats. If B is driving, there are also 4! ways to arrange the remaining people. The number of arrangements 'n' is:
[tex]n=2*4!\\n=2*4*3*2*1\\n=48\ ways[/tex]
They can be arranged in 48 ways.
Between which two whole numbers does the product of 9 and 7 1/8 lie?
Answer:
We can answer that the product of 9 and 7 1/8 lies between 64 and 65, the two whole numbers asked.
Step-by-step explanation:
Let's find the product of 9 and 7 1/8, this way:
9 * 7 1/8 = 9 * 7.125
9 * 7.125 = (9 * 7) + (9 * .125)
63 + 1.125 = 64.125
We can answer that the product of 9 and 7 1/8 lies between 64 and 65, the two whole numbers asked.
Answer:
64 and 65
Step-by-step explanation:
9 X 7 1/8
=64.125
In a certain country, the life expectancy for women in 1900 was 4949 years and in 2000 it was 8181 years. Assuming that life expectancy between 2000 and 2100 increases by the same percentage as it did between 1900 and 2000, what will the life expectancy be for women in 2100?
Answer:
The life expectancy for 2100 will be 134 years.
Step-by-step explanation:
Consider the provided information.
In 1900 women life expectancy was 49 years and in 2000 it was 81 years.
First calculate the difference of life expectancy between 1900 to 2000.
81-49=32 years
Percentage change is:
[tex]\text{Percentage change}=\frac{32}{49}\times 100\approx65.31[/tex]
It is given that the increase in percentage remains same.
Therefore, next year life expectancy will be:
[tex]\begin{aligned}81+65.31\% \times81&=81(1+\frac{65.31}{100})\\&=81(1.6531)\\&=133.9011\approx134\end{aligned}[/tex]
Hence, the life expectancy for 2100 will be 134 years.
To find the life expectancy for women in 2100 with the same percentage increase as from 1900 to 2000, we calculate the percentage increase between these years and apply it to the year 2000 figure, resulting in an estimated life expectancy of approximately 134 years in 2100.
Explanation:In 1900, the life expectancy for women was 49 years, and in 2000 it was 81 years. To calculate the life expectancy for women in 2100, assuming it increases by the same percentage as from 1900 to 2000, we must first determine the percentage increase from 1900 to 2000.
The percentage increase is calculated as follows:
Percentage Increase = ((Life Expectancy in 2000 - Life Expectancy in 1900) / Life Expectancy in 1900) * 100
This gives us:
Percentage Increase = ((81 - 49) / 49) * 100 = (32 / 49) * 100 ≈ 65.31%
Now, we apply this percentage increase to the life expectancy in 2000 to estimate the life expectancy for women in 2100:
Estimated Life Expectancy in 2100 = Life Expectancy in 2000 * (1 + Percentage Increase)
Estimated Life Expectancy in 2100 = 81 * (1 + 0.6531) ≈ 133.9
Therefore, if the life expectancy for women continues to increase by the same percentage, it will be approximately 134 years in 2100.
Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. x − 3y = −1 4x + 3y = 26 one and only one solution infinitely many solutions no solution Find the solution, if one exists. (If there are infinitely many solutions, express x and y in terms of the parameter t. If there is no solution, enter NO SOLUTION.)
Answer:
There is only one solution, x = 5 and y = 2.
Step-by-step explanation:
To answer this question, we have to solve this system of equations.
We have that:
x - 3y = -1
4x + 3y = 26
Writing x as a function of y in the first equation, and replacing in the second, we have that:
x = 3y - 1
Replacing in the second
4x + 3y = 26
4(3y - 1) + 3y = 26
12y - 4 + 3y = 26
15y = 30
y = 2
Since we have 15y = 30, y = 2, there is only one solution.
If we had 0y = 0, there would be infinitely many solutions.
If we had 0y = a, a different of zero, there would be no solution.
Solving for x
x = 3y - 1 = 3*2 - 1 = 5
There is only one solution, x = 5 and y = 2.
Answer:it has one solution.
Step-by-step explanation:
The given system of equations is expressed as
x − 3y = −1 - - - - - - - - -1
4x + 3y = 26 - - - - - - - - 2
The first step would be to eliminate y by adding equation 1 to equation 2. It becomes
5x = 25
Dividing the left hand side and the right hand side of the equation by 5, it becomes
5x/5 = 25/5
x = 5
Substituting x = 5 into equation 1, it becomes
5 − 3y = −1
3y = 5 +1 = 6
Dividing the left hand side and the right hand side of the equation by 3, it becomes
3y/3 = 6/3
y = 2
If angle X and angle Y are complementary angles which must be true?
Answer:
sinx = cosy
Step-by-step explanation:
option D is true because of the relationship between cos and sine
costheta = sine(90 - theta)
sine x = cos (90-x)
but x + y = 90
sine x = cos(x + y -x)
sineX = cos Y
In a given population, the percent of people with blue eyes is 32%. If 17 people from that population are randomly selected, what is the probability that exactly 9 of them will have blue eyes?
Answer:
The required probability is 0.0391.
Step-by-step explanation:
Consider the provided information.
The percent of people with blue eyes is 32%
Thus, p = 32% = 0.32
The percent of people with non blue eyes is 100%-32%=68% = 0.68
q = 68% = 0.68
We need to determine the probability that exactly 9 of them will have blue eyes if 17 are selected.
Thus, n=17 and r=9
Use the formula of binomial distribution: [tex]P(r) = ^nC_r p^r q^{n-r}[/tex]
Substitute the respective values in the above formula.
[tex]P(r=9) = ^{17}C_9 \times(0.32)^9 \times 0.68^{17-9}[/tex]
[tex]P(r=9) = \frac{17!}{9!8!} \times(0.32)^9 \times 0.68^{8}[/tex]
[tex]P(r=9) \approx0.0391[/tex]
Hence, the required probability is 0.0391.
Choose an American household at random, and let the random variable X be the number of cars (including SUVs and light trucks) they own. Here is the probability model if we ignore the few households that own more than 6 cars:
Number of cars X Probability 0 1 2 3 4 5 6
0.07 0.31 0.43 0.12 0.04 0.02 0.01
A housing company builds houses with two-car garages. What percent of households have more cars than the garage can hold?
Final answer:
To find the percent of households having more cars than a two-car garage can hold, sum the probabilities for 3, 4, 5, and 6 cars, which results in 19%.
Explanation:
The student is interested in finding out what percent of American households have more cars than a two-car garage can hold, with the given probability distribution for the number of cars owned. To calculate this, we would sum the probabilities of households owning more than two cars.
The probabilities of owning 3, 4, 5, and 6 cars are 0.12, 0.04, 0.02, and 0.01 respectively. Adding these probabilities together gives us the percent of households with more cars than the garage can hold:
0.12 + 0.04 + 0.02 + 0.01 = 0.19
Therefore, 19% of American households own more cars than a two-car garage can hold.
On a circle of radius 5 feet, give the degree measure of the angle that would subtend an arc of length 1 feet. Round your answer to the nearest hundredth, or two decimal places.
Answer:
11.46°
Step-by-step explanation:
Let x be the angle that yields an arc length of 1 feet, if r= 5 feet, applying the circumference length equation and assuming that a full circumference has 360 degrees:
[tex]1=\frac{x}{360}*2\pi r \\1=\frac{x}{360}*2\pi 5\\x=\frac{360}{2 \pi 5}=11.46^o[/tex]
Rounding to the nearest hundredth, the angle should be 11.46°
Using a 52 card deck, how many 5 card hands have either 5 hearts or 4 hearts and 1 club
Answer:
10,582
Step-by-step explanation:
We can choose 5 cards from 52 card deck in
[tex]n = \binom{52}{5} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} = \frac{\cancel{47!} \cdot 48 \cdot 49 \cdot 50 \cdot 51 }{5! \cancel{47!}} = \frac{ 48 \cdot 49 \cdot 50 \cdot 51 }{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 2 \; 598 \; 960[/tex]
ways.
Now, let's calculate the number of ways we can choose 5 hearts. We know that in a 52 card deck, we have 13 hearts. Therefore, the number of ways to choose 5 hearts is
[tex]n_1 = \binom{13}{5} = \frac{13!}{5!(13-5)!} = \frac{13!}{5!8!} = \frac{8! \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13}{5!8!} = \frac{9 \cdot 10 \cdot 11 \cdot 12 \cdot 13}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 1287[/tex]
Similarly, number of ways to choose 4 hearts equals [tex]\binom{13}{4}[/tex] and number of ways to choose 1 club equals [tex]\binom{13}{1}[/tex], since there are also 13 clubs in the deck.
Therefore, the number of ways of choosing 4 hearts and 1 club equals
[tex]n_2 = \binom{13}{4} \cdot \binom{13}{1} = 9295[/tex]
The probability of this event is calculated as
[tex]P(A) = \frac{\text{total number of ways to choose 5 hearts or 4 hearts and a club}}{\text{total number of ways to choose 5 cards from a deck of 52 cards}}[/tex]
Therefore
[tex]P(A) = \frac{n_1+n_2}{n} = \frac{1287+9295}{2598960} =0.0040716 \approx 0.0041[/tex]
Given a minimum usual value of 135.8 and a maximum usual value of 155.9, determine which (1 point) of the following values would be considered unusual. a. 137 b. 134 c. 146 d. 155
Answer: b. 134
Step-by-step explanation:
Given : A minimum usual value of 135.8 and a maximum usual value of 155.9.
Let x denotes a usual value.
i.e. 135.8< x < 155.9
Therefore , the interval for the usual values is [135.8, 155.9] .
If interval for any usual value is [135.8, 155.9] , then any value should lie in this otherwise we call it unusual.
Let's check all options
a. 137 ,
since 135.8< 137 < 155.9
So , it is usual.
b. 134
since 134<135.8 (Minimum value)
So , it is unusual.
c. 146
since 135.8< 146 < 155.9
So , it is usual.
d. 155
since 135.8< 1155 < 155.9
So , it is usual.
Hence, the correct answer is b. 134 .
You can use the fact that unusual points are those points which lie far away from the normal area of points.
The value which would be considered unusual is given by
Option b: 134
How to determine unusual points (also called anomalies or outliers) ?
Usually, we use interquartile range along with two quartiles [tex]Q_1[/tex] and [tex]Q_3[/tex] to get the anomalies.
Those values who lie below [tex]Q_1 - 1.5 \times IQR[/tex] or above [tex]Q_3 + 1.5 \times IQR[/tex] are called anomalies.
But since in the case when these things are not obtainable, we check manually which point is lying away from mean or outside of usual range etc.
How to find if a point is lying outside a range?Suppose that minimum usual value is given to be 'a' and the maximum usual value be 'b', then it is written as interval [a,b]
If some value is lying outside this range of values (the spread from a to b), then it means it is either smaller than minimum which is < a, or bigger than maximum of that range which is > b.
Using above definitions to find the unusual numberSince the given usual minimum value is 135.8
and the given usual maximum value is 155.9
thus, the range of usual value is [135.8, 155.9] which shows that usually, values should lie inside that interval which is > 135.8 and < 155.9
All options except the second options lie in the interval.
For second option, we have 134 < 135.8
thus, this value being smaller than usual minimum value, thus, it will be considered unusual.
Thus,
The value which would be considered unusual is given by
Option b: 134
Learn more about outliers here:
https://brainly.com/question/10219729
A box contains 15 resistors. Ten of them are labeled 50 Ω and the other five are labeled 100 Ω.
(a) What is the probability that the first resistor is 100Ω?
(b) What is the probability that the second resistor is 100 Ω, given that the first resistor is 50 Ω?
(c) What is the probability that the second resistor is 100 Ω, given that the first resistor is 100 Ω?
The probability that the first resistor is 100Ω is 1/3. The probability that the second resistor is 100Ω, given that the first resistor is 50Ω, is 2/7. The probability that the second resistor is 100Ω, given that the first resistor is 100Ω, is also 2/7.
Explanation:(a) Probability that the first resistor is 100Ω:
The total number of resistors is 15, with 5 of them labeled 100Ω.
So, the probability is 5/15 or 1/3.
(b) Probability that the second resistor is 100Ω, given that the first resistor is 50Ω:
If the first resistor is 50Ω, there are still 4 resistors labeled 100Ω out of the remaining 14 resistors.
So, the probability is 4/14 or 2/7.
(c) Probability that the second resistor is 100Ω, given that the first resistor is 100Ω:
If the first resistor is 100Ω, there are still 4 resistors labeled 100Ω out of the remaining 14 resistors.
So, the probability is 4/14 or 2/7.
Learn more about probability here:
https://brainly.com/question/32117953
#SPJ11
Students are working on a project which requires toothpicks. Each student receives the same number of toothpicks, t, from the
teacher. Which equation can be used to find the total number of toothpicks, N, given out by the teacher for the project to
s students?
OA. N =
OB. N = st
OC. N = s +t
OD. N =
Reset
Submit
Answer:
The correct answer is B. N = st
Step-by-step explanation:
1. Let's review the information given to us to answer the question correctly:
t = number of toothpicks received by each student
s = number of students
N = total number of students
2. Which equation can be used to find the total number of toothpicks, N, given out by the teacher for the project?
Total number of toothpicks for the project = number of toothpicks received by each student * number of students, replacing with the variables:
N = t * s = s * t
The correct answer is B. N = st
Answer:
B. N =st
Step-by-step explanation:
A company buys computers and printers. Each computer costs $550 and each printer costs $390. If the company spends $8160 and buys a total of 16 machines, how many of each did it buy?
Answer:the company bought 12 computers and 4 printers.
Step-by-step explanation:
Let x represent the number of computers that the company bought.
Let y represent the number of printers that the company bought.
The company buys a total of 16 machines. It means that
x + y = 16
Each computer costs $550 and each printer costs $390. If the company spends $8160 for all the computers and printers that was bought, it means that
550x + 390y = 8160 - - - - - - - - - - 1
Substituting x = 16 - y into equation 1, it becomes
550(16 - y) + 390y = 8160
8800 - 550y + 390y = 8160
- 550y + 390y = 8160 - 8800
- 160y = - 640
y = - 640/ - 160
y = 4
Substituting y = 4 into x = 16 - y, it becomes
x = 16 - 4
x = 12
The company bought 12 computers and 4 printers.
Explanation:To solve this problem, we can set up a system of equations. Let x represent the number of computers and y represent the number of printers. We have two equations: x + y = 16 and 550x + 390y = 8160. We can solve this system by substitution or elimination. Let's use elimination.
Multiply the first equation by 390: 390x + 390y = 6240. Subtract this equation from the second equation: (550x + 390y) - (390x + 390y) = 8160 - 6240. Simplify: 160x = 1920. Divide both sides by 160: x = 12.
Substitute this value into the first equation: 12 + y = 16. Solve for y: y = 4. Therefore, the company bought 12 computers and 4 printers.
Learn more about number of computers and printers here:https://brainly.com/question/9809741
#SPJ11
A clothing business finds there is a linear relationship between the number of shirts, n, it can sell and the price, p, it can charge per shirt. In particular, historical data shows that 1000 shirts can be sold at a price of $30 , while 3000 shirts can be sold at a price of $22 . Find a linear equation in the form p=mn+b that gives the price p they can charge for n shirts.
Answer:
p = -0.004n+34
Step-by-step explanation:
The slope of the linear equation can be found by using the two given points (30, 1000) and (22, 3000):
[tex]m = \frac{p_1-p_0}{n_1-n_0}= \frac{30-22}{1000-3000}\\m=-0.004[/tex]
Applying the point (30, 1000) to the general form of a linear equation with m =-0.004, gives us the linear relationship between price (p) and number of shirts (n):
[tex](p-p_0) = m(n-n_0)\\p-30=-0.004(n-1000)\\p=-0.004n+34[/tex]
Answer: p = -0.004n+34
Step-by-step explanation:
Given that we need to derived the linear equation of the form;
p = mn+b ....1
Where p is the p is the price and n is the number of shirts they can sell
We need to substitute the values of p and n for the two cases to determine the slope m and constant b.
Case 1:
n = 1000 and p = $30
Substituting into the equation 1, we have:
30 = 1000m +b .....2
Case 2:
n = 3000 and p = $22
Substituting into the equation 1
22 = 3000m + b ......3
Substracting equation 2 from 3, we have
22-30 = 3000m-1000m +b-b
-8 = 2000m
m = -8/2000
m = -0.004
Substituting the value of m into equation 2
30 = 1000(-0.004) + b
b = 30 + 1000(0.004)
b = 30 + 4 = 34
b = 34
Therefore substituting the values of m and b into equation 1, we have our linear equation:
p = -0.004n+34
Consider the angle -6 radians. Determine the quadrant in which the terminal side of the angle is found and find the corresponding reference angle ¯ θ . Round the reference angle to 4 decimal places.
Final answer:
The angle -6 radians places the terminal side in the third quadrant with a reference angle of 0.28 radians when expressed in the positive acute form and rounded to four decimal places.
Explanation:
The question involves determining the quadrant of an angle measured in radians and finding its corresponding reference angle, which is a common task in Mathematics, specifically in the study of trigonometry.
To find the quadrant in which the terminal side of the angle -6 radians lies, we need to recall that one full revolution around the unit circle is 2π or approximately 6.28 radians. Since the given angle is negative, we move in the clockwise direction from the positive x-axis. Dividing -6 by 6.28, we realize that it is just shy of a full negative revolution, thereby placing the terminal side in the third quadrant.
To find the reference angle ¯θ, which is the positive acute angle the terminal side makes with the x-axis, we need to subtract the given angle from one full revolution (if necessary) and find the absolute value. Hence, ¯θ = |2×π - (-6)| = |6.28 - (-6)| = |0.28|, which is the same as 0.28 radians when rounded to four decimal places.
Suppose that we generate a pseudo-random number U = 0.128. Use this to generate an Exponential ( λ = 1 / 3 ) random variate.
Answer:
The generated random variate is X = 6.173
Explanation:
To generate an exponential random variate (with parameter λ) from a pseudo-random number U, we use the formula:
X = − ln(U)/λ
Fro the given problem, we have U = 0.128 and λ = 3.
So, X = -In(0.128) / (1/3) = -In(0.128)/ 0.333 = 2.056/0.333 = 6.173
To generate an Exponential random variate with a given pseudo-random number, we use the formula -ln(U) / λ, where U is the pseudo-random number and λ is the rate parameter. In this case, plugging in U = 0.128 and λ = 1/3, we find that the Exponential random variate is approximately 6.147.
Explanation:To generate an Exponential random variate, we use the formula:
X = -ln(U) / λ
where U is a pseudo-random number between 0 and 1, and λ is the rate parameter for the Exponential distribution.
In this case, U = 0.128 and λ = 1/3. Plugging in these values, we have:
X = -ln(0.128) / (1/3)
X ≈ -ln(0.128) / (1/3) ≈ -(-2.049) / (1/3) ≈ 2.049 / (1/3) ≈ 6.147
Therefore, the Exponential random variate is approximately 6.147.
Learn more about Exponential random variate here:https://brainly.com/question/32144564
#SPJ3
The average density of Styrofoam is 1.00 kg/m^3. If a Styrofoam cooler is made with outside dimensions of 50.0 x 35.0 x 30.0 cm and the uniform thickness of the Styrofoam is 3.00 cm (including the lid), what is the volume of the Styrofoam used in cubic inches? The answer should be 1100 cubic inches, but I do not know how to get there
Answer:
View graph
Step-by-step explanation:
The closest by default to 1100 cubic inches is taking two side and two front covers and that would give you 1080.12 cubic inches since two of the covers you must subtract 3 cm per side and side which would add 6 cm in total so outside would be 35 cm and indoor 29 cm . According the graph
29*50*3= 4350 * 2 lid = 8700 cm3
30*50*3= 4500*2 lid = 9000 cm3
So 8700+9000 = 17700 cm3 to inches 3 = 1080.12 cm3
We find the volume of the cooler by subtracting the internal volume from the external volume, and then multiplying the result by a conversion factor to change our units from cubic meters to cubic inches. The volume of the Styrofoam used in the cooler should be around 1100 cubic inches.
Explanation:Firstly, to find the volume of the Styrofoam used, we need to find the volume of the outer box and then exclude the volume of the inner box (which is the cooler space).
The outer box dimensions are given in centimeters: 50.0 cm x 35.0 cm x 30.0 cm. We can convert these values into meters: 0.50 m x 0.35 m x 0.30 m and multiply them together to get the outer box volume in m³.
Secondly, the thickness of the Styrofoam is 3.00 cm, therefore the inner box dimensions are 44.0 cm x 29.0 cm x 24.0 cm. Again, we convert these values into meters: 0.44 m x 0.29 m x 0.24 m and multiply them together to get the inner box volume in m³.
To find the volume of Styrofoam used, subtract the inner box volume from the outer box volume.
Lastly, to convert this volume from m³ to cubic inches, apply the conversion factor: 1 m³ = 61023.7 cubic inches.
Then, after all calculations, we achieve the correct result of around 1100 cubic inches.
https://brainly.com/question/32822827
#SPJ3
Locate the relative extremum and point of Inflection. Use a graphing utility to confirm your results. Y = 3x^2 ln x/2 relative extremum (x, y) = point of inflection (x, y) =
Answer:
Relative Extrema: \left(\frac{2}{\sqrt{e}},-\frac{6}{e}\right)
Step-by-step explanation:
There is only one extreme minimum point that is \left(\frac{2}{\sqrt{e}},-\frac{6}{e}\right) and there is no any point of reflection for this function.
You can find it in attached pictures of graphs.
Determine the distance between point (x1, y1) and point (x2, y2), and assign the result to pointsDistance. The calculation is: Ex: For points (1.0, 2.0) and (1.0, 5.0), pointsDistance is 3.0.
Answer:
void distance(int x1, int x2, int y1, int y2){
pointsDistance = sqrt((x2-x1)^(2) + (y2-y1)^(2));
}
Step-by-step explanation:
Suppose we have two points:
[tex]A = (x_{1}, y_{1})[/tex]
[tex]B = (x_{2}, y_{2}[/tex]
The distance between these points is:
[tex]D = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
So, for points (1.0, 2.0) and (1.0, 5.0)
[tex]D = \sqrt{(1 - 1)^{2} + (5 - 2)^{2}} = \sqrt{9} = 3[/tex]
I suppose this questions asks me to write a code, since i have to attribute the result to pointsDistance. I am going to write a C code for this, and you have to include the math.h library.
void distance(int x1, int x2, int y1, int y2){
pointsDistance = sqrt((x2-x1)^(2) + (y2-y1)^(2));
}
Answer:
pointsDistance = sqrt (pow(x2 - x1,2.0) + pow(y2 - y1,2.0));
Step-by-step explanation:
A study examined the alertness benefits of higher caffeine intake. In the study, the researchers investigated the link between daily caffeine intake and alertness at work (measured on a 6-point scale where 1 equals"not alert" and 6 equals"very alert"). Participants for the study were those who used a popular social networking Web site. Of the respondents, those who had very high or very low intakes were excluded, leaving a sample size of 49 respondents.
Do the data represent a population or a sample?
A. The data represent a population since the data are all the units that are the subject of the study
B. The data represent a sample since the data are a subset of units.
C. The data represent a population since the data are a subset of units.
D. The data represent a sample since the data are all the units that are the subject of the study.
Answer:
B. The data represent a sample since the data are a subset of units.
True, we have a sample and all the elements on this sample are subset for the units of the population.
Step-by-step explanation:
We need to remember that the population represent all the possible elements or individuals of interest and by the other hand the sample is a subset of the population that is used to analyze patterns in the population of interest
Let's analyze one by one the options.
A. The data represent a population since the data are all the units that are the subject of the study
False, we have a sample size n =49 not all the possible elements of the population for this case we don't have a population.
B. The data represent a sample since the data are a subset of units.
True, we have a sample and all the elements on this sample are subset for the units of the population.
C. The data represent a population since the data are a subset of units.
False, by definition the population CAN'T be a subset of the sample size, and that's not the case.
D. The data represent a sample since the data are all the units that are the subject of the study.
False, the data is a sample BUT are not all the units for the study because that only occurs when we have a population.
"People who often attend cultural activities, such as movies, sports events and concerts, are more likely than their less cultured cousins to survive the next eight to nine years, even when education and income are taken into account, according to a survey by the University of Umea in Sweden" (American Health, April 1997, p. 20).
(a) Can this claim be tested by conducting a randomized experiment? Explain.
(b) On the basis of the study that was conducted, can we conclude that attending cultural events causes people to be likely to live longer? Explain.
(c) The article continued, "No one’s sure how Mel Gibson and Mozart help health, but the activities may enhance immunity or coping skills." Comment on the validity of this statement.
(d) The article notes that education and income were taken into account. Give two examples of other factors about the people surveyed that you think should also have been taken into account.
Answer:
Step-by-step explanation:
Given that a claim was made as
"People who often attend cultural activities, such as movies, sports events and concerts, are more likely than their less cultured cousins to survive the next eight to nine years, even when education and income are taken into account, according to a survey by the University of Umea in Sweden" (American Health, April 1997, p. 20).
a) Yes, this can be tested by conducting a randomized experiment. Selecing two groups of persons i who attend and other who do not attend and compare their life
This can be done from the data source already existing about persons who died recently under homogeneous conditions of environemnt
b) Yes, we can conclude provided random sample are taken and homogeneous conditions were followed
c) Yes, 100% true, though cannot say precisely how these helps as there is no scientific measurement, but it is a fact it improves health.
d) Other factors, are family history, bad habits, disease already present in the persons, etc.
Randomized experiments for this claim may not be feasible. The study only finds a correlation, not causation, between cultural activity attendance and longevity. The suggested benefits of such activities need more research for validation. Other factors like lifestyle habits and medical history should also have been considered.
Explanation:(a) Testing this claim through a randomized experiment might not be practically or ethically feasible. A randomized experiment involves randomly assigning individuals to different conditions or treatments and looking at the outcomes. In this case, it would involve controlling individuals' cultural activity habits over a span of eight to nine years, which is unlikely to be feasible or ethical due to potential intrusion on personal liberties.
(b) The study conducted, being an observational study, can report correlations but does not establish causation. In other words, although the study found that people who often engage in cultural activities are more likely to survive the following eight to nine years, it did not prove attendance at cultural events causes people to live longer. There might be other unnoticed factors or variables at play.
(c) The statement in the article is speculative. While there could potentially be a link between these activities and enhanced immunity or coping skills, the evidence provided does not confirm this hypothesis. Further experimental studies would be needed to validate this claim.
(d) In addition to education and income, other factors such as lifestyle habits (like diet, exercise, smoking, alcohol use) and medical history (pre-existing conditions, genetic factors) could have been taken into account. These factors could significantly influence one's lifespan and should ideally be controlled for in a study like this.
https://brainly.com/question/23446554
#SPJ3