Answer:
3/5 kg of nickel, 4/5 kg of zinc and 13/5 kg of copper
Step-by-step explanation:
we know that
An alloy is composed of nickel, zinc, and copper in a ratio of 3:4:13
so
(3+4+13)=20 kg
That means
For 20 kg of alloy is needed 3 kg of nickel, 4 kg of zinc and 13 kg of copper
so
using proportion
Find the kilograms of nickel needed for 4 kg of alloy
20/3=4/x
x=3*4/20
x=12/20
x=3/5 kg of nickel
Find the kilograms of zinc needed for 4 kg of alloy
20/4=4/x
x=4*4/20
x=16/20
x=4/5 kg of zinc
Find the kilograms of copper needed for 4 kg of alloy
20/13=4/x
x=13*4/20
x=52/20
x=13/5 kg of copper
To create 4 kg of an alloy with nickel, zinc, and copper in a 3:4:13 ratio, you will need 0.6 kg of nickel, 0.8 kg of zinc, and 2.6 kg of copper.
Explanation:In this problem, we are being asked to make 4 kilograms of an alloy for which the mixture ratio of nickel, zinc, and copper is given as 3:4:13 respectively.
To find the quantity of each metal needed, we first need to understand that the ratio represents parts of the whole. In this case, the whole is the total weight of the alloy, which is 4 kilograms. Therefore, the sum of the ratio numbers (3+4+13=20) represents this total weight. Each part of the ratio represents a fraction of this total weight, so for any individual metal, the weight in kilograms will be (its ratio number / the total ratio number) * the total alloy weight.
For nickel, it would be (3/20)*4 = 0.6 kg. For zinc, the calculation is (4/20)*4 = 0.8 kg. And for copper, it will be (13/20)*4 = 2.6 kg.
So, to make 4 kg of this alloy, 0.6 kg of nickel, 0.8 kg of zinc, and 2.6 kg of copper are required.
Learn more about Ratios here:https://brainly.com/question/32531170
#SPJ3
What is the perimeter and area of a triangle?
J(-5,6). K(3,4) L(-2,1)
Answer:
Perimeter of triangle JKL: [tex]2 \sqrt{17} + 2\sqrt{34}[/tex].
Area of triangle JKL: 17.
Step-by-step explanation:
None of the three sides of triangle JKL is parallel to either the x-axis or the y-axis. Apply the Pythagorean Theorem to find the length of each side.
[tex]\rm JK = \sqrt{(3 - (-5))^{2} + (4- 6)^{2}} = \sqrt{8^{2} + (-2)^{2}} = \sqrt{68} = 2\sqrt{17}[/tex].
[tex]\rm JL = \sqrt{(-2 - (-5))^{2} + (1- 6)^{2}} = \sqrt{3^{2} + (-5)^{2}} = \sqrt{34}[/tex].
[tex]\rm KL = \sqrt{(-2 - 3)^{2} + (1-4)^{2}} = \sqrt{(-5)^{2} + (-3)^{2}} = \sqrt{34}[/tex].
The perimeter of triangle JKL will be:
[tex]\rm JK + JL + KL = 2\sqrt{17} + \sqrt{34} + \sqrt{34} = 2 \sqrt{17} + 2\sqrt{34}[/tex].
Finding the Area of JKL:Method OneIn case you realized that [tex]\rm JK : JL : KL = \sqrt{2} : 1 : 1[/tex], which makes JKL an isosceles right triangle:
Area of a right triangle:
[tex]\begin{aligned}\displaystyle \rm Area &= \frac{1}{2} \times \text{First Leg} \times \text{Second Leg}\\ &=\frac{1}{2} \times \sqrt{34}\times\sqrt{34}\\&= 17\end{aligned}[/tex].
Method TwoAlternatively, apply the Law of Cosines to find the cosine of any of the three internal angles. This method works even if the triangle does not contain a right angle.
Taking the cosine of angle K as an example:
[tex]\displaystyle\begin{aligned}\rm \cos{K}&=\frac{(\text{First Adjacent Side})^{2} + (\text{Second Adjacent Side})^{2}-(\text{Opposite Side})^{2}}{2\times (\text{First Adjacent Side})\times(\text{Second Adjacent Side})}\\&\rm =\frac{(JK)^{2} + (JL)^{2} -(KL)^{2}}{2\times JK \times JL}\\&=\frac{(2\sqrt{17})^{2}+(\sqrt{34})^{2}-(\sqrt{34})^{2}}{2\times\sqrt{34} \times(2\sqrt{17})}\\ &=\frac{2^{2}\times 17}{2\times \sqrt{2}\times\sqrt{17}\times 2\times \sqrt{17}}\\&=\frac{1}{\sqrt{2}}\end{aligned}[/tex].
Apply the Pythagorean Theorem to find the sine of angle K:
[tex]\displaystyle \rm \sin{K} = \sqrt{1 - (\cos{K})^{2}} = \sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^{2} } = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}[/tex].
The height of JKL on the side JK will be:
[tex]\displaystyle \rm KL \cdot \sin{K} = \sqrt{34} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{68}}{2} = \frac{2\sqrt{17}}{2} = \sqrt{17}[/tex].
What will be the area of JKL given its height [tex]\sqrt{17}[/tex] on a base of length [tex]2\sqrt{17}[/tex]?
[tex]\displaystyle \rm Area = \frac{1}{2} \times Base\times Height = \frac{1}{2}\times (2\sqrt{17})\times \sqrt{17} = 17[/tex].
Suppose that y varies directly with x and y 12 when x--2. What is x when y -6?
Answer:
The ordered pair that satisfies this problem is (1, -6); x = 1 when y = -6.
Step-by-step explanation:
Please, rewrite your question as follows:
"Suppose that y varies directly with x and y = 12 when x = -2. What is x when
y = -6?" The " = " sign must be included.
The pertinent proportional relationship is y = kx, where k is the constant of proportionality.
We must find k here. Let y = 12 and x = -2. Then 12 = k(-2), or k = -6.
Then the relationship is y = -6x.
Now let y = -6 and find x: -6 = -6x, or x = 1.
The ordered pair that satisfies this problem is (1, -6)
What's the surface area?
Answer:
300cm
Step-by-step explanation:
First you get the length, width, and height. The length is 15, the width is 12, and the height is 10.
15*12=180
Since their is 2 you multiply by 2
180*2=360
12*10=120
Since their is 2 you multiply by 2
120*2=240
Then you divide by 2 since it is a triangle but before that you add the products up
360+240=600
600/2=300
Which of the following are In The correct order from least to greatest?
This ones a bit tricky but the answer is A
determine the rational zeros for the function f(x)=x^3+7x^2+7x-15
Answer:
1,-3,-5
Step-by-step explanation:
Given:
f(x)=x^3+7x^2+7x-15
Finding all the possible rational zeros of f(x)
p= ±1,±3,±5,±15 (factors of coefficient of last term)
q=±1(factors of coefficient of leading term)
p/q=±1,±3,±5,±15
Now finding the rational zeros using rational root theorem
f(p/q)
f(1)=1+7+7-15
=0
f(-1)= -1 +7-7-15
= -16
f(3)=27+7(9)+21-15
=96
f(-3)= (-3)^3+7(-3)^2+7(-3)-15
= 0
f(5)=5^3+7(5)^2+7(5)-15
=320
f(-5)=(-5)^3+7(-5)^2+7(-5)-15
=0
f(15)=(15)^3+7(15)^2+7(15)-15
=5040
f(-15)=(-15)^3+7(-15)^2+7(-15)-15
=-1920
Hence the rational roots are 1,-3,-5 !
Answer:
Actual rational zeros of f(x) are x=-5, x=-3, and x=1.
Step-by-step explanation:
Given function is [tex]f(x)=x^3+7x^2+7x-15[/tex].
constant term = p = -15
coefficient of leading term q= 1
then possible rational roots of given function f(x) are the divisors of [tex]\pm \frac{p}{q}=\pm 1, \quad \pm 3, \quad \pm 5, \quad \pm 15[/tex]
Now we can plug those possible roots into given function to see which one of them gives output 0.
test for x=1
[tex]f(x)=x^3+7x^2+7x-15[/tex]
[tex]f(1)=1^3+7(1)^2+7(1)-15[/tex]
[tex]f(1)=1+7+7-15[/tex]
[tex]f(1)=0[/tex]
Hence x=1 is the actual rational zero.
Similarly testing other roots, we get final answer as:
Actual rational zeros of f(x) are x=-5, x=-3, and x=1.
If you answer parts one and 2 ill give you brainiest and 30 points
Step-by-step explanation:
The center of the circle is moved 3 units to the left and 4 units down. So a = -3 and b = -4.
What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?
Answer:
[tex]x^{2}+y^{2} +4x-2y+1=0[/tex]
Step-by-step explanation:
we know that
The general form of the equation of a circle is
[tex]x^{2} +y^{2}+ Dx + Ey + F=0[/tex]
where D, E, F are constants
step 1
Find the radius of the circle
Remember that the distance from the center to any point on the circle is equal to the radius
so
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
[tex](-2,1)\\(-4,1)[/tex]
substitute the values
[tex]r=\sqrt{(1-1)^{2}+(-4+2)^{2}}[/tex]
[tex]r=\sqrt{(0)^{2}+(-2)^{2}}[/tex]
[tex]r=2\ units[/tex]
step 2
Find the equation of the circle in standard form
[tex](x-h)^{2} +(y-k)^{2}=r^{2}[/tex]
In this problem we have
center ( -2,1)
radius r=2 units
substitute
[tex](x+2)^{2} +(y-1)^{2}=2^{2}[/tex]
[tex](x+2)^{2} +(y-1)^{2}=4[/tex]
Step 3
Convert to general form
[tex](x+2)^{2} +(y-1)^{2}=4\\ \\x^{2}+4x+4+y^{2}-2y+1=4\\ \\x^{2}+y^{2} +4x-2y+1=0[/tex]
Use cross products to solve the proportion:
5/m = 15/9
M = 3
Is that what you were looking for?
Hope this helps. please add brainlist
Help me on question 6
Answer:
B.
Step-by-step explanation:
The line gets smaller left to right so that means the line is negative. Since the line is negative x must be negative. The line is also touching the y-axis at 6. We are going to use the formula y=mx+b. So our equation is going to be y=6-x.
The population Of a town in Utah in 1997 was 6000. After two years the population of the town was 145% of the 1997 population. What is the population of the town after two years?
A) 6145
B) 7000
C) 8700
D) 9000
Answer:
c 8700
Step-by-step explanation:
Answer:
The answer is (C. 8700
Step-by-step explanation:
I took the test
Help me, please easy Geometry question
A
Step-by-step explanation:
A is a midpoint and so is O, giving reason to why the distances are the same
2xsquared-9x+1=0 value of discriminant and number of real solutions
Answer:
• discriminant: 73
• # of real solutions: 2
Step-by-step explanation:
Comparing the equation ...
2x^2 -9x +1 = 0
to the generic form ...
ax^2 +bx +c = 0
we find the coefficient values to be ...
a = 2; b = -9; c = 1
That makes the value of the discriminant, (b^2 -4ac), be ...
(-9)^2 -4(2)(1) = 81 -8 = 73
Since the discriminant is positive, the number of real solutions is 2.
Please help me urgent IM REALLY DESPARATE lolol
Answer:
- [tex]\frac{2}{729}[/tex]
Step-by-step explanation:
The n th term of a geometric sequence is
[tex]a_{n}[/tex] = a₁ [tex](r)^{n-1}[/tex]
Given a₁ = 6 and r = - [tex]\frac{1}{3}[/tex], then
[tex]a_{8}[/tex] = 6 × [tex](-1/3)^{7}[/tex] = 6 × - [tex]\frac{1}{3^{7} }[/tex] = 6 × - [tex]\frac{1}{2187}[/tex] = - [tex]\frac{2}{729}[/tex]
What percent is represented by the shaded area?
flip your phone sideways
there are two pieces, both divided in 10 equal segments.
so each piece is 10/10, or namely 1 whole.
two pieces, 10/10 each, is 20/10 for the whole thing, but there are only 11 shaded, so if we take 20 to be the 100%, what is 11 off of it in percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \cline{1-2} 20&100\\ 11&x \end{array}\implies \cfrac{20}{11}=\cfrac{100}{x}\implies 20x=1100\\\\\\ x=\cfrac{1100}{20}\implies x=55[/tex]
Which is the correct way to model the equation 5x+6=4x+(-3) using algebra tiles?
5 positive x-tiles and 6 positive unit tiles on the left side; 4 positive x-tiles and 3 negative unit tiles on the right side
6 positive x-tiles and 5 positive unit tiles on the left side; 3 negative x-tiles and 4 positive unit tiles on the right side
5 positive x-tiles and 6 negative unit tiles on the left side; 4 positive x-tiles and 3 negative unit tiles on the right side
5 positive x-tiles and 6 positive unit tiles on the left side; 4 positive x-tiles and 3 positive unit tiles on the right side
A would be your best option. Choice A properly displays the equation, 5x+6=4x+(-3), using words. Let me know if you want an explanation of why the other options are invalid. :)
Answer:
A is correct.
Step-by-step explanation:
Which is the correct way to model the equation 5x+6=4x+(-3) using algebra tiles?
5 positive x-tiles and 6 positive unit tiles on the left side; 4 positive x-tiles and 3 negative unit tiles on the right side.
5 positive x-tiles = 5x
6 positive unit tiles = 6
4 positive x-tiles = 4x
3 negative unit tiles = -3
-----------------------------------------------------------------------
B - There are 5 x tiles but its given 6 x tiles.
C - There is 6 positive unit tile and its given 6 negative,
D - There is 3 negative unit tile but here its given positive.
Ms.Stewart teaches three science classes. Her students are freshman and sophomores. Her student data are shown in the relative frequency table. Which statement is false?
Answer:
Option A is correct that It is a FALSE Statement.
Step-by-step explanation:
Given:
Total number of student = 1
Number of student in Physical Science = 0.3
Number of student in Chemistry = 0.35
Number of student in Biology = 0.35
Number of student who are Sophomores = 0.55
To find: False Statement among given ones.
Percentage of the student in Physical Science = [tex]\frac{0.3}{1}\times100[/tex] = 30%
Percentage of the student in Chemistry = [tex]\frac{0.35}{1}\times100[/tex] = 35%
Percentage of the student in Biology = [tex]\frac{0.35}{1}\times100[/tex] = 35%
Percentage of the student who are Sophomores = [tex]\frac{0.55}{1}\times100[/tex] = 55%
Therefore, Option A is correct that It is a FALSE Statement.
Answer:
A is the answer
Step-by-step explanation:
Write the difference 16 -(-53) as a sum then simplify
Answer:
69Step-by-step explanation:
(-)(-) = (+)
(+)(+) = (+)
(-)(+) = (+)(-) = (-)
--------------------------------------
16 - (-53) = 16 + 53 = 69
Cone A has a diameter of 10 inches and Cone B has a diameter of 50 inches. If the cones are similar, find the volume ratio of Cone A to Cone B.
If the cone are similar, the volume ratio of Cone A to Cone B will be 1:25.
How do you calculate the volume of a right circular cone?
The right circular cone is one in which the line from the cone's peak to the center of the circle's base is perpendicular to the base's surface.
Assume that the radius of the right circular cone under consideration is 'r' units, and the height 'h' units. Then the volume is then expressed as;
[tex]\rm V = \dfrac{1}{3} \pi r^3 h \: \rm unit^3[/tex]
If the cone are similar, the volume ratio of Cone A to Cone B;
[tex]\rm \frac{V_A}{V_B}=(\frac{R_A}{R_B})^3 } \\\\\ \frac{V_A}{V_B}=( \frac{5}{25} )^3 \\\\\ \frac{V_A}{V_B}=\frac{1}{125}[/tex]
If the cone are similar, the volume ratio of Cone A to Cone B will be 1:25.
Learn more about cone volume here:
https://brainly.com/question/26093363
#SPJ2
Divide. 3.25 ÷ 0.5 =
Answer: The answer to 3.25÷0.5 is 6.5 :)
Step-by-step explanation:
10. PLEASE ANSWER ASAP
(08.03 MC)
A system of equations is shown below:
y = 5x + 3
y = 4x + 6
What is the solution to the system of equations? (1 point)
A. (–3, 18)
B. (–3, –18)
C. (3, –18)
D. (3, 18)
Answer:
D. (3, 18)Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}y=5x+3&(1)\\y=4x+6&(2)\end{array}\right\\\\\text{Substitute (1) to (2):}\\\\5x+3=4x+6\qquad\text{subtract 3 from both sides}\\5x=4x+3\qquad\text{subtract 4x from both sides}\\x=3\\\\\text{Put the value of x to (1):}\\\\y=5(3)+3\\y=15+3\\y=18[/tex]
Crop yield is the ratio of the number of bushels harvested to the number of acres used for the harvest. This year, the harvest at a farm was 94,010 bushels of grain, resulting in a crop yield of 170 bushels per acre.
To the nearest whole acre, how many acres were harvested?
acres
Answer:
[tex]553\ acres[/tex]
Step-by-step explanation:
Let
z------> the crop yield
x----> the number of bushels harvested
y----> the number of acres used for the harvest
[tex]z=\frac{x}{y}[/tex]
we have
[tex]x=94,010\ bushels[/tex]
[tex]z=170\ bushels/acre[/tex]
substitute and solve for y
[tex]170=\frac{94,010}{y}[/tex]
[tex]y=\frac{94,010}{170}=553\ acres[/tex]
Answer:
553
Step-by-step explanation:
Solve for the value of x:
Answer: 32
Step-by-step explanation:
Daniel earned $8.00 per hour at his job. .Daniel works 35 hours each week.
. He received a 5% pay increase
. How much more money will Daniel earn each week after the pay increase
Answer:
$14
Step-by-step explanation:
Wages earned by daniel in one hour = $8
Number of working hours spend by daniel in each week = 35
Wages earned by daniel in each week without pay increase = [tex]35\times 8 = 280[/tex]
Increase in pay per week = [tex]\frac{5}{100} \times 280= 14[/tex]
Therefore extra wages earned by Daniel will be $14.
$14
Step-by-step explanation:
Wages earned by daniel in one hour = $8
Number of working hours spend by daniel in each week = 35
Wages earned by daniel in each week without pay increase =
Increase in pay per week =
Therefore extra wages earned by Daniel will be $14.
Find the indicated limit
Answer:
[tex]\lim_{x \to 0} \frac{x^2}{sinx}=0[/tex]
Step-by-step explanation:
[tex]f(-0.03)=-0.0300\\f(-0.02)=-0.0200\\f(-0.01)=-0.0100\\f(0.01)=0.0100\\f(0.02)=0.0200\\f(0.03)=0.0300[/tex]
As the Left side of the function is approaching 0 as it gets closer to x=0 and the Right side is also approaching 0 as it gets closer to x=0, the limit would be 0.
PLEASE HELP AS SOON AS POSSIBLE
The diagram shows the floor plan for Harry’s new tree house. The entry Terrance on the tree house is shaped like an isosceles trapezoid
The entry has an area of (blank) square feet the total area of the tree house is (blank) square feet
Answer:
The entry has an area of __44___ square feet
The total area of the tree house is __345__ square feet
Step-by-step explanation:
Let's first calculate the area of the trapezoid entrance:
The area of a trapezoid is given by:
A =((b1 + b2) * h) / 2
Where b1 and b2 are the bases or parallel sides. So, we have:
A = ((6 + 16) * 4) / 2 = (22 * 4) / 2 = 44 sq ft
Now, let's look at the other areas... which are all rectangles, so easy to calculate (b * h).
Playroom: 16 x 14 = 224 sq ft
Side Deck: 3 x 14 = 42 sq ft
Back Porch: 6 x6 = 35 sq ft
So, in the total area of the tree house is:
TA = 44 + 224 + 42 + 35 = 345 sq ft
Answer:
The entry terrace has an area of
48
square feet. The total area of the tree house including the entrance, porch, and side deck is
350
square feet.
Step-by-step explanation:
I just took a test with this question and this was the right answer
~Please mark me as brainliest :)
ILL GIVE BRAINLIEST PLS HELP ASAP
What are the 3 methods for solving systems of equations? And which is the most difficult in ur opinion?
The three methods are graphing, substitution and elimination.
In my opinion they are all easy but if I had to choose one it would be graphing because when I did homework assignments for this I always took the longest graphing than just solving the systems using substitution or elimination
Find the standard form of the equation of the parabola with a focus at (5, 0) and a directrix at x = -5. (5 points) y = 1 divided by 20 x2 20y = x2 x = 1 divided by 20 y2 y2 = 20x
The standard form of the equation of the parabola with a focus at (5, 0) and a directrix at x = -5 is (x - 5)^2 = 20y.
Explanation:The standard form of the equation of a parabola with a focus at (h, k) and a directrix at x = d is given by (x - h)^2 = 4p(y - k), where p is the distance between the vertex and the focus or directrix.
In this case, the focus is at (5, 0) and the directrix is at x = -5. Since the directrix is a vertical line, the parabola opens to the right. The distance between the vertex and the focus or directrix is given by p = |5 - (-5)|/2 = 5 units.
Substituting the values into the standard form equation gives (x - 5)^2 = 4(5)(y - 0), which simplifies to (x - 5)^2 = 20(y - 0). Therefore, the standard form of the equation of the parabola is (x - 5)^2 = 20y.
Learn more about Equation of a parabola here:https://brainly.com/question/11911877
#SPJ12
Which of the following is equivalent to a real number?
Among the given options, only ((-196)^(1/4)) is equivalent to a real number, as it involves the fourth root of a negative number, which results in a real value.
The correct answer is option B.
To determine which expression is equivalent to a real number, we need to consider the roots involved and whether they result in a real value.
Let's analyze each option:
A. (-1503)^(1/6): The expression involves the sixth root of a negative number. Odd roots of negative numbers are real, but even roots are not. Therefore, this expression is not guaranteed to be real.
B. (-196)^(1/4): The expression involves the fourth root of a negative number. Similar to option A, the fourth root of a negative number is real, so this expression is valid.
C. (-144)^(1/2): This expression involves the square root of a negative number. Square roots of negative numbers are not real; hence, this expression is not equivalent to a real number.
D. (-1024)^(1/2): The expression involves the square root of a negative number as well. Like option C, this expression is not equivalent to a real number.
In summary, option B ((-196)^(1/4)) is equivalent to a real number because it involves the fourth root of a negative number, and odd roots of negative numbers are real.
Solve the equation for x.
Answer:
[tex]x=55[/tex]
Step-by-step explanation:
The given equation is [tex]\sqrt{x-6}+3=10[/tex]
Group similar terms to get:
[tex]\sqrt{x-6}=10-3[/tex]
[tex]\sqrt{x-6}=7[/tex]
Square both sides to obtain:
[tex]x-6=7^2[/tex]
[tex]x-6=49[/tex]
Add 6 to both sides
[tex]x=49+6[/tex]
Simplify the right hand side to obtain;
[tex]x=55[/tex]
jim can paint a house in 12 hours. alex can paint the same house in 8 hours. Enter an equation that can be used to find the time in hours, t, it would take alex and jim to paint the house together assuming they both work at the wages they work when working alone
Answer:
4.8 hr, or 4 hr 48 min
Step-by-step explanation:
Let '1' represent 'the whole house-painting job.'
Then perform a dimensional analysis:
1 whole house job
-------------------------------- = 12 hours. →This restates the obvious: Jim can
1 job/ 12 hrs paint a house in 12 hours.
Now if both people work together, the total time required to paint the house is:
1 house job 1 house job
----------------------------------------- = ------------------------------ = t for whole job
1 job 1 job 8 job-hr + 12 job-hr with both people
------------ + ------------ ----------------------------- working
12 hours 8 hours 96 hr
This turns out to be:
1
-------------------------- = 96/20 hr = 4.8 hr, or 4 hr 48 min
20/96
It would take Jim and Alex 4.8 hours to paint the house together if they both work at their individual rates.
Now, Let's start by finding the individual rates of Jim and Alex in terms of the fraction of the house they can paint per hour.
Jim can paint a house in 12 hours, so his rate is 1/12 of the house per hour.
Similarly, Alex can paint the same house in 8 hours, so his rate is 1/8 of the house per hour.
Now, let's suppose they work together for t hours to complete the job.
During this time, Jim will be able to paint t/12 of the house and Alex will be able to paint t/8 of the house.
The sum of their individual rates is equal to the combined rate at which they can paint the house together.
So we can set up the following equation:
t/12 + t/8 = 1
Solving for t, we get:
t = 4.8 hours
Therefore, it would take Jim and Alex 4.8 hours to paint the house together if they both work at their individual rates.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ6