Answer:
7.6m/s
Step-by-step explanation:
Find the time the Olympian swam
Speed=distance/time ⇒⇒Time=distance/speed
Distance=200m , speed= 1.8m/s t= 200/1.8 = 111.11 seconds
Find the speed of the Olympic runner
Distance=200m time = 21.3 sec
s=200/21.3 = 9.4 m/s
Difference in speed= 9.4-1.8= 7.6m/s
Answer:
7.6 m/s faster
Step-by-step explanation:
Speed of swimmer = 1.8 meters per second
The distance covered by runner = 200
Time of runner = 21.3 sec
We have to find the speed of the runner first so that we can compare with the speed of swimmer.
Speed = Distance/Time
=> 200/21.3
=> 9.4 m/s
So we have to find the difference between both speeds
Difference = 9.4 - 1.8
=> 7.6 m/s
So the runner was 7.6 m/s faster..
Please help and explain!!!!!
A metalworker has a metal alloy that is 30% copper and another alloy that is 60% copper. How many kilograms of each alloy should the metalworker combine to create 100 kg of a 54% copper alloy?
Let [tex]x[/tex] be the amount of the 30% alloy and [tex]y[/tex] the amount of the 60% alloy the metalworker will use. However much is used, the final alloy will have a mass of
[tex]x+y=100[/tex]
kilograms. For each kg of the 30% alloy used, 0.3 kg is copper; similary, each kg of the 60% alloy contributes 0.6 kg, so that
[tex]0.3x+0.6y=0.54(x+y)=54[/tex]
Now,
[tex]x+y=100\implies y=100-x[/tex]
[tex]\implies0.3x+0.6(100-x)=54[/tex]
[tex]\implies60-0.3x=54[/tex]
[tex]\implies0.3x=6[/tex]
[tex]\implies x=20[/tex]
[tex]\implies y=100-20=80[/tex]
Type the correct answer in each box. If necessary, use / for the fraction bar. A bag contains 5 blue marbles, 2 black marbles, and 3 red marbles. A marble is randomly drawn from the bag. The probability of not drawing a black marble is . The probability of drawing a red marble is .
Answer:
Step-by-step explanation:
Problem One
Blue = 5
Black =2
Red = 3
First of all there are 10 marbles, 2 of which are black.
That means that 8 others are not black
You can draw any one of the 8.
P(not black) = 8/10 = 4/5
Problem Two
There are 10 marbles in all
3 of them are red.
P(Red) = 3/10
Answer:
See image
Step-by-step explanation:
Palto
Which amount should be entered for the balance after Anna transfers money from savings on 6/3/18?
A) $1416.42
B) $1516.42
C)$1660.32
D) $1670.52
B is the correct answer
evaluate S lnx/x dx?
The value of the integral ∫ ln(x)/x dx is ln²(x)/2 + c
How to evaluate the integralFrom the question, we have the following parameters that can be used in our computation:
S lnx/x dx
Express properly
So, we have
∫ ln(x)/x dx
The above expression can be integrated using substitution method
Let u = ln(x)
So, we have
du/dx = 1/x
Make dx the subject
du = dx/x
So, we have
∫ u du
Apply the power rule to integrate
∫ u du = u²/2
Substitute u = ln(x)
When integrated, we have
∫ ln(x)/x dx = ln²(x)/2 + c
Where c is a constant
Hence, the value of the integral is ln²(x)/2 + c
Read more about derivatives at
brainly.com/question/5313449
#SPJ1
How many square feet of outdoor carpet will we need for this hole?
Answer:
6 ft^2 and 2ft^2
Step-by-step explanation:
Multiply the height and length of each hole to get the answers. Not sure if you wanted both or not.
Answer:
im on the same question but i think u just have to multiply length times width for all of them then u subtract. hope it helps
Step-by-step explanation:
Given: BD is a diameter
m 1 = 100°
m BC= 30°
m 3 =
30
60
100
Answer:
30°
Step-by-step explanation:
Given
BC=30°
Central abgle is equal to its arc
so <3=30°
Answer:
The answer is 30
Step-by-step explanation:
Find the circumference of a circle with an area of 615.75 square inches
Answer:
C ≈ 87.96in
Step-by-step explanation:
Find interest earned and the future value of an annuity with monthly payments of $150 for two years into an account that pays 4% interest per year compounded monthly.
Answer:
interest earned= 12.47
the future value of an annuity= 162.47
Step-by-step explanation:
Given Data:
Interest rate,r= 4%
time,t = 2 years
monthly payment, P= 150
n= 12 as monthly
At the end of 2 years, final investment A= ?
As per the interest formula for compounded interest
A= P(1+r/n)^nt
Putting the values in above equation
= 150(1+0.04/12)^24
= 162.47
Interest earned = A-P
= 162.47-150
= 12.47 !
Thirty percent of check engine lights turn on after 100,000 miles in a particular model of van. The remainder of vans continue to have check engine lights that stay off.
Simulate randomly checking 25 vans, with over 100,000 miles, for check engine lights that turn on using these randomly generated digits. Let the digits 1, 2, and 3 represent a van with check engine light that turn on.
96408 03766 36932 41651 08410
Approximately how many vans will have check engine lights come on?
Answer:
7
Step-by-step explanation:
Given:
Simulation of randomly checking 25 vans, with over 100,000 miles=
96408 03766 36932 41651 08410
Here the digits 1, 2, and 3 represent a van with check engine light that turn on.
Approximately how many vans will have check engine lights come on?
From the above given data the digits 1, 2 and 3 that represented the particular model of van having check engine lights on are repeated 7 times in the simulation of randomly checking 25 vans, with over 100,000 miles
Hence 7 vans will have check engine lights come on!
In a simulation using the provided set of digits, we find that out of 25 vans, approximately 6 have check engine lights that turn on.
Explanation:To solve this problem, we'd first identify all the digits that are either 1, 2, or 3 within the provided sequence of randomly generated digits. These digits, according to your problem, represent vans with check engine lights that turn on. The string you provided is 96408, 03766, 36932, 41651, and 08410.
Upon counting, the following digits in the string are 1, 2, or 3: '3', '2', '3', '1', '1', and '1'. This gives us a total of 6 occurrences.
Therefore, based on this simulation, if we were to randomly check 25 vans with over 100,000 miles, approximately 6 of them would have check engine lights that come on.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ12
Andrew estimated the weight of his dog to be 60 lb. The dog’s actual weight was 68 lb.
What was the percent error in Andrew’s estimate? Round your answer to the nearest tenth of a percent.
%
Answer:
11.76%
Step-by-step explanation:
use % error formula:[tex]\frac{|approx-exact|}{exact}[/tex]
where approx is 60
and exact is 68
so
[tex]\frac{|60-68|}{68}[/tex]
[tex]\frac{|-8|}{68}[/tex] =0.1176
0.1176=11.76%
hope this helps!
What solid will be produced if rectangle ABCD is rotated around line m? Assume that the line bisects both sides it intersects. What will the dimensions of the three-dimensional solid be?
rectangular prism; length = 12 in.; width = 6 in.; height = 5 in.
triangular prism; length = 12 in.; width = 6 in.;
height = 5 in.
cylinder; radius = 12 in.; height = 5 in.
cylinder; radius = 6 in.; height = 5 in.
Answer:
D) cylinder; radius = 6in.; height = 5 in.
The solid produced if rectangle ABCD is rotated around line m is a cylinder with radius of 6 in and height of 5 in.
What is a solid figure?
A solid figure is a three dimensional shape having length, width and height. Examples of three dimensional figures are prism, pyramid, cone, cylinder and so on.
The solid produced if rectangle ABCD is rotated around line m is a cylinder with radius of 6 in and height of 5 in.
Find out more on solid figure at: https://brainly.com/question/12663789
Solve the following system of equations. Enter the y-coordinate of the solution. Round your answer to the nearest tenth
5x+2y=7
-2x+6y=9
Answer:
1.7
Step-by-step explanation:
( 5x + 2y = 7 ) 2
( - 2x + 6y = 9 ) 5
10x + 4y = 14
-10x + 30y = 45
----------------------
34y = 59
y = 1.7
The y-coordinate of the solution to the system of equations 5x + 2y = 7 and -2x + 6y = 9 is 1.8 when rounded to the nearest tenth.
Explanation:To solve the system of equations 5x + 2y = 7 and -2x + 6y = 9, we'll use the method of substitution or elimination. I will demonstrate the elimination method:
Multiply the first equation by 3 and the second equation by 5 to align the coefficients of x for elimination: 15x + 6y = 21 and -10x + 30y = 45.Add the two new equations to eliminate x: (15x - 10x) + (6y + 30y) = 21 + 45, resulting in 36y = 66.Divide both sides of the equation by 36 to solve for y: y = 66 / 36, which simplifies to y = 1.8333.Round y to the nearest tenth: y = 1.8.This is the y-coordinate of the solution for the given system of equations.
Learn more about System of Equations here:https://brainly.com/question/29050831
#SPJ2
CAN SOMEONE PLEASE HELP ME. I NEED HELP ON THIS QUESTION
Answer:
a segment cd only
Step-by-step explanation:
segment cd is the only line that passes through segment ab at a right angle
The graph shows the feasible region for the system with constraints:
y ≤ 15 x + y ≤ 25 x + 2y ≥ 30
What are the vertices of the feasible region? Check all of the boxes that apply.
(0, 25)
(0, 15)
(10, 15)
(20, 5)
(25, 0)
(30, 0)
What is the minimum value of the objective function C = 4x + 9y?
C =
Answer:
The vertices feasible region are (0 , 15) , (10 , 15) , (20 , 5)
The minimum value of the objective function C is 125
Step-by-step explanation:
* Lets look to the graph to answer the question
- There are 3 inequalities
# y ≤ 15 represented by horizontal line (purple line) and cut the
y-axis at point (0 , 15)
# x + y ≤ 25 represented by a line (green line) and intersected the
x-axis at point (25 , 0) and the y- axis at point (0 , 25)
# x + 2y ≥ 30 represented by a line (blue line) and intersected the
x-axis at point (30 , 0) and the y-axis at point (0 , 15)
- The three lines intersect each other in three points
# The blue and purple lines intersected in point (0 , 15)
# The green and the purple lines intersected in point (10 , 15)
# The green and the blue lines intersected in point (20 , 5)
- The three lines bounded the feasible region
∴ The vertices feasible region are (0 , 15) , (10 , 15) , (20 , 5)
- To find the minimum value of the objective function C = 4x + 9y,
substitute the three vertices of the feasible region in C and chose
the least answer
∵ C = 4x + 9y
- Use point (0 , 15)
∴ C = 4(0) + 9(15) = 0 + 135 = 135
- Use point (10 , 15)
∴ C = 4(10) + 9(15) = 40 + 135 = 175
- Use point (20 , 5)
∴ C = 4(40) + 9(5) = 80 + 45 = 125
- From all answers the least value is 125
∴ The minimum value of the objective function C is 125
The vertices of the feasible region are (0, 15), (10, 15), and (20, 5). The minimum value of the objective function C = 4x + 9y is 190 at the vertex (10, 15).
The feasible region is the area on a graph where all the constraints of a system of inequalities are satisfied. To find the vertices of the feasible region, we need to find the intersection points of the lines formed by the given constraints. By solving the system of equations, we find that the vertices of the feasible region are (0, 15), (10, 15), and (20, 5).
To find the minimum value of the objective function C = 4x + 9y, we substitute the x and y values of each vertex into the objective function and determine which vertex gives the smallest value. By evaluating the objective function at each vertex, we find that the minimum value is obtained at the vertex (10, 15) with a value of 4(10) + 9(15) = 190.
Learn more about Feasible Region here:https://brainly.com/question/31686791
#SPJ6
Find The mass of a solid cone of platinum with a height of 21 cm and a diameter of 8 cm.
For this case we have that by definition, the density is given by:
ρ =[tex]\frac {M} {V}[/tex]
Where:
M: It's the mass
V: It's the volume
The volume of a solid cone is given by:
[tex]V = \frac {1} {3} \pi * r ^ 2 * h[/tex]
Where:
A: It's the radio
h: It's the height
Substituting the data we have:
[tex]V = \frac {1} {3} \pi * (4) ^ 2 * 21\\V = \frac {1} {3} \pi * 16 * 21\\V = 401.92 \ cm ^ 3[/tex]
On the other hand, we have that by definition, the density of the platini is given by:
[tex]21.45 \frac {g} {cm ^ 3}[/tex]
Substituting in the initial formula, we look for the mass:
[tex]M = 401.92 \ cm ^ 3 * 21.45 \frac {g} {cm ^ 3}\\M = 8621.184 \ g[/tex]
ANswer:
The mass of the platinum cone is 8621.2 grams.
To find the mass of a solid platinum cone with a height of 21 cm and a diameter of 8 cm, calculate the volume using the formula for a cone (⅓πr²h) and then multiply by platinum's density (21,450 kg/m³) to get approximately 30.342 kg.
Explanation:Calculate the Mass of a Platinum Cone
To determine the mass of a solid cone made of platinum with a given height and diameter, we must first calculate its volume and then use the density of platinum to find its mass. The density of platinum is approximately 21,450 kg/m³. The volume of a cone is given by the formula ⅓πr²h, where r is the radius and h is the height. For our cone with a height (h) of 21 cm and a diameter of 8 cm, the radius (r) would be half of the diameter, so r = 4 cm = 0.04 m. Plugging the values into the formula, we get:
Volume (V) = ⅓π(0.04 m)²×21 cm = ⅓π(0.0016 m²)× 0.21 m = 0.0014136 m³.
To find the mass (m), we multiply the volume by the density of platinum (ρ):
Mass (m) = Density (ρ) × Volume (V) = 21,450 kg/m³ × 0.0014136 m³ = 30.342 kg.
Therefore, the mass of the solid platinum cone is approximately 30.342 kilograms.
3x-4y=16 and 5x+2y=44 using elimination strategy and comparing strategy
[tex]
3x-4y=16 \\
5x+2y=44 \\ \\
3x-4y=16 \\
10x+4y=88 \\ \\
13x=104 \\
x=\boxed{104\div13=8}\\ \\
3\times8-4y=16 \\
24-4y=16 \\
-4y=-8 \\
y=\boxed{2}
[/tex]
If the endpoints of have the coordinates A(9, 8) and B(-1, -2), what is the midpoint of ?
A.
(5, 3)
B.
(4, 5)
C.
(5, 5)
D.
(4, 3)
Answer:
the answer is D (4,3)
Step-by-step explanation:
Find the value of y. Please help
4y-7=2y-1
Subtract 2y from both sides
2y-7=-1
Add 7 to both sides
2y=6
Y=3
If the zeros of the quadratic equation x^2+25=0 are +-5 (plus-minus 5), what is the correct factored form?
(x+5)(x-5)=0
(x+5i)(x-5i)=0
(x+12.5i)(x-12.5i)=0
(x+12.5)(x-12.5)=0
ANSWER
[tex](x + 5i)(x - 5i) = 0 [/tex]
EXPLANATION
The given function is
[tex] {x}^{2} + 25 = 0[/tex]
The zeros of this function are;
[tex]x = \pm5i[/tex]
Or
[tex]x = - 5i \: and \: x = 5i[/tex]
[tex]x + 5i = 0\: and \: x - 5i = 0[/tex]
Hence the factored form is:
[tex](x + 5i)(x - 5i) = 0 [/tex]
If the equation were:
[tex] {x}^{2} - 25 = 0[/tex]
Then the factored form is
[tex](x + 5)(x - 5) = 0 [/tex]
Help ASAP!! Math problems
Answer:
7. C
8. D
Step-by-step explanation:
7. The interest rate is 8% or .08. You find that by solving I=Prt (interest=original amount*rate*time in years)
8. The discounted price would be $48 (80*(1-.40)) Then you multiply that 48 by .08 and add that amount to the $48.
Which statements about the box plot are correct? Check all that apply.
Fifty percent of the data values lies between 34 and 46.
Seventy-five percent of the data values lies between 42 and 70.
It is unlikely that there are any outliers.
The interquartile range'is 24.
The range is 36
Answer:
The correct options are 1 and 3.
Step-by-step explanation:
From the given box plot it is clear that
[tex]\text{Minimum values}=34[/tex]
[tex]Q_1=42[/tex]
Q₁ is 25% of a data.
[tex]Median=46[/tex]
Median is 50% of a data.
[tex]Q_3=70[/tex]
Q₃ is 75% of a data.
[tex]\text{Maximum values}=76[/tex]
34 is minimum value of the data and 46 is median it means 50% of the data values lies between 34 and 46. Therefore option 1 is correct.
42 is first quartile and and 70 is third quartile. it means 50% of the data values lies between 42 and 70. Therefore option 2 is incorrect.
The difference between Minimum value and first quartile, Maximum value and third quartile is less than 1.5×(IQR), therefore it is unlikely to have any outliers in the data.
Hence option 3 is correct.
The interquartile range of the data is
[tex]IQR=Q_3-Q_1[/tex]
[tex]IQR=70-42=28[/tex]
The interquartile range is 28. Therefore option 4 is incorrect.
Range of the data is
[tex]Range=Maximum-Minimum[/tex]
[tex]Range=76-34=42[/tex]
The range is 42. Therefore option 5 is incorrect.
Answer:
A,C
Step-by-step explanation:
got it right on edge 2021
have a wonderful day
The points scored by a football team are shown in the stem-and-leaf plot below.
0| 6
1 | 2 3 4 7
2| 0 3 4 4 7 8 8 8
3| 0 7 8
Key
1 | 3 = 13 points
What was the median number of points scored by the football team?
4 + 4= 8/2= 4
the median number is 4
The answer is 24.
Hope this helps!
Kellianna drives 118 miles each day how many does she drive in 31 days?
Answer: 3,658 miles
Step-by-step explanation:
118 x 31 = 3,658 miles
Multiply the daily value by the number of days to find the total.
Answer:
3,658
Step-by-step explanation:
So if Kellianna drives 118 Miles each day you would simply multiply the 118 x 31 (Days) = 3,658
What is the maximum height of the apple equation which formula is -16x^2+56x+40
40; base it off of the y-intercept [C]. What is the unit of measurement?
Answer:
The maxima is the point where it is the highest it can possibly get. I promise this isn't a scam but I have a picture that shows what I mean
Step-by-step explanation:
So this graph shows that (1.75, 89) is the maximum height
I hope this helps:)
If x = -2, then x 2 - 7x + 10 equals
A) 0
B) 20
C) 28
Answer: OPTION C
Step-by-step explanation:
Given the quadratic equation [tex]x^2 - 7x + 10[/tex] and the value of the variable "x" [tex]x = -2[/tex], you need to substitute the given value of the variable. Then:
[tex]=(-2)^2 - 7(-2) + 10[/tex]
And finally, you need to evaluate.
Remember the multiplication of signs:
[tex](+)(+)=+\\(-)(-)=+\\(-)(+)=-[/tex]
Therefore, you get the following result:
[tex]=4+14 + 10[/tex]
[tex]=28[/tex]
This matches with the option C.
Determine the number of real solutions of -2x^2+5x-3=0
Answer:
Two distinct real solutions.
Step-by-step explanation:
Given the equation in the form [tex]ax^2+bx+c=0[/tex], you need to find the Discriminant with this formula:
[tex]D=b^2-4ac[/tex]
For the equation [tex]-2x^2+5x-3=0[/tex] you can identify that:
[tex]a=-2\\b=5\\c=-3[/tex]
Then, substituting these values into the formula, you get that the Discriminant is:
[tex]D=5^2-4(-2)(-3)[/tex]
[tex]D=1[/tex]
Since [tex]D>0[/tex], then [tex]-2x^2+5x-3=0[/tex] has two distinct real solutions.
How do you explain ratios?
A ratio is the part divided by the whole. Johnny took 3 pieces of pizza when the whole pizza had 8. Johnny has 3/8 (3 out of 8) pieces of pizza, or .375 parts. To find that number, literally divide your part from your whole to get the decimal form.
Kristin spent $131 on shirts. Fancy shirts cost $28 and plain shirts cost $15. If she bought a total of 7 then how many of each kind did she buy?
She bought 2 fancy shirts and 5 plain shirts.
2 x 28=$56, and 5x15=$75. 75 plus 56 is 131
Which of the following represents the value of the missing side?
Answer:
The value of the missing side is [tex]x=2\ units[/tex]
Step-by-step explanation:
In this problem i assume that the length side x is tangent to the circle
so
the length side x is perpendicular to the radius
Applying the Pythagoras Theorem in the right triangle
we have that
[tex](1.5+1)^{2}=1.5^{2}+x^{2}[/tex]
Solve for x
[tex](2.5)^{2}=1.5^{2}+x^{2}[/tex]
[tex]x^{2}=2.5^{2}-1.5^{2}[/tex]
[tex]x^{2}=4[/tex]
[tex]x=2\ units[/tex]
Answer:
x=2
Step-by-step explanation:
Pleas help I will mark brainliest
The area for one side is S^2 where S is the length of one side.
The area for one side = 1/2^2 = 1/4 square foot.
A cube has 6 sides. Total surface are = 1/4 x 6 = 1 1/2 square feet.
Volume of a cube is S^3
1/4^3 = 1/64 cubic foot.