Analyzing the Light Bulb: You should have noticed that the light bulb doesn't have a single well-defined "resistance," since the current vs. voltage plot is nonlinear. Nevertheless, one can define a "voltage-dependent resistance" as R(V)=V/I(V)as the ratio of voltage to current.1Basic Behavior: According to your data, does this resistance increase or decrease with voltage? A reasonable (and correct) thought is that the impact is really with temperature, as the light bulb heats up with more power going into it. How does your data imply resistance varies with temperature?Thermal Expansion: One hypothesis you might have is that the reason is that the resistor expands slightly with increased temperature (since most materials do), and hence the cross-sectional area and length of the resistor change.Supposing the resistor increases in size by the same factor in every direction, what direction does the resistance change? (I.e., does the resistance get larger or smaller?) Is this the direction that you expect based on your answer to the previous part?

Answers

Answer 1

Answer:

Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.

Thermal expansion will make resistance larger.

Explanation:

Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.

The filament heats up when an electric current passes through it, and produces light as a result.

The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.

tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.

In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.

Resistance therefore get larger.


Related Questions

(e) Imagine the Moon, with 27.3% of the radius of the Earth, had a charge 27.3% as large, with the same sign. Find the electric force the Earth would then exert on the Moon.

Answers

Explanation:

Below is an attachment containing the solution.

Final answer:

To find the electric force the Earth would exert on the Moon, we can use Coulomb's law. The ratio of the electric force between the Earth and the Moon compared to the electric force between two charges with the same sign is 0.273^3.

Explanation:

To find the electric force the Earth would exert on the Moon, we can use Coulomb's law. Coulomb's law states that the electric force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. The formula for electric force is:

F = k * (q1 * q2) / r^2

Where F is the electric force, k is the electrostatic constant, q1 and q2 are the charges, and r is the distance between the charges. In this case, the charge of the Moon is 27.3% of the charge of the Earth, and the radius of the Moon is also 27.3% of the radius of the Earth. Using these values, we can calculate the electric force.

Let's assume the charge of the Earth is q1 and the charge of the Moon is q2. Since the charge of the Moon is 27.3% as large as the charge of the Earth, we can write q2 = 0.273 * q1. Similarly, the radius of the Moon is 27.3% of the radius of the Earth, so we can write r = 0.273 * R, where R is the radius of the Earth. Plugging these values into Coulomb's law formula:

F = k * (q1 * (0.273 * q1)) / (0.273 * R)^2

Simplifying the equation, we get:

F = k * (q1^2 * 0.273) / (0.273^2 * R^2)

The ratio of the electric force between the Earth and the Moon compared to the electric force between two charges with the same sign is 0.273^3.

Learn more about Electric Force here:

https://brainly.com/question/21093704

#SPJ3

Two particles, one with charge − 7.97 μC and one with charge 3.55 μC, are 6.59 cm apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer:

58.6 N

Explanation:

We are given that

[tex]q_1=-7.97\mu C=-7.97\times 10^{-6} C[/tex]

[tex]q_2=3.55\mu C=3.55\times 10^{-6} C[/tex]

Using [tex]1\mu C=10^{-6} C[/tex]

[tex]r=6.59 cm=6.59\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2} m[/tex]

The magnitude of force that one particle exerts on the other

[tex]F=\frac{kq_1q_2}{r^2}[/tex]

Where [tex]k=9\times 10^9[/tex]

Substitute the values

[tex]F=\frac{9\times 10^9\times 7.97\times 10^{-6}\times 3.55\times 10^{-6}}{(6.59\times 10^{-2})^2}[/tex]

F=58.6 N

after a circuit has been turned off, so it is important to make sure they are discharged before you touch them. Suppose a 120 mF capacitor from a camera flash unit retains a voltage of 150 V when an unwary student removes it from the camera. If the student accidentally touches the two terminals with his hands, and if the resistance of his body between his hands is 1.8 kΩ, for how long will the current across his chest exceed the danger level of 50 mA?

Answers

Answer:

The time is [tex]110.16\times10^{-3}\ sec[/tex]

Explanation:

Given that,

Capacitor = 120 μF

Voltage = 150 V

Resistance = 1.8 kΩ

Current = 50 mA

We need to calculate the discharge current

Using formula of discharge current

[tex]i_{0}=\dfrac{V_{0}}{R}[/tex]

Put the value into the formula

[tex]i_{0}=\dfrac{150}{1.8\times10^{3}}[/tex]

[tex]i_{0}=83.3\times10^{-3}\ A[/tex]

We need to calculate the time

Using formula of current

[tex]i=\dfrac{V_{0}}{R}e^{\frac{-t}{RC}}[/tex]

Put the value into the formula

[tex]50=\dfrac{150}{1.8\times10^{3}}e^{\frac{-t}{RC}}[/tex]

[tex]\dfrac{50}{83.3}=e^{\frac{-t}{RC}}[/tex]

[tex]\dfrac{-t}{RC}=ln(0.600)[/tex]

[tex]t=0.51\times1.8\times10^{3}\times120\times10^{-6}[/tex]

[tex]t=110.16\times10^{-3}\ sec[/tex]

Hence, The time is [tex]110.16\times10^{-3}\ sec[/tex]

Final answer:

The current across the student's chest will exceed the danger level for approximately 216 seconds.

Explanation:

The current that flows through the student's chest when he accidentally touches the terminals of the 120 mF capacitor can be calculated using Ohm's law: I = V/R, where I is the current, V is the voltage, and R is the resistance. In this case, the voltage is 150 V and the resistance of the student's body is 1.8 kΩ. Plugging in these values, we can find the current.

I = (150 V)/(1.8 kΩ) = 0.0833 A

To find how long the current will exceed the danger level of 50 mA, we need to calculate the time it takes for the charge on the capacitor to dissipate through the student's body. Since the current is constant, we can use the formula Q = I*t, where Q is the charge and t is the time. Rearranging the formula, we can solve for t.

t = Q/I = (120 mF * 150 V) / (0.0833 A) = 216 s

Therefore, the current will exceed the danger level of 50 mA for approximately 216 seconds.

Learn more about Circuit Discharge here:

https://brainly.com/question/35876531

#SPJ12

A phone cord is 4.67 m long. The cord has a mass of 0.192 kg. A transverse wave pulse is produced by plucking one end of the taunt cord. The pulse makes four trips down and back along the cord in 0.794 s.
What is the tension in the cord?

Answers

Answer:

91.017N

Explanation:

Parameters

L=4.67m, m=0.192kg, t = 0.794s, The pulse makes four trips down and back along the cord, we have 4 +4 =8 trips( to and fro)

so N= no of trips = 8, From  Wave speed(V) = N *L/t , we have :

V= 8*4.67/0.794 = 47.0529 m/s.

We compute the cords mass per length,  Let it be P

P = M/L = 0.192/4.67 = 0.04111 kg/m

From  T = P * V^2  where T = Tension, we have

T = 0.04111 * (47.0529)^2

T =  91.017N.

The tension in the cord is 91.017N

You sit at the middle of a large turntable at an amusement park as it begins to spin on nearly frictionless bearings, and then spins freely. When you crawl toward the edge of the turntable, does the rate of the rotation increase, decrease, or remain unchanged, and why

Answers

Answer:

Explanation:

As there is no external torque is applied so the angular momentum remains constant.

L = I ω = constant

Where, I is the moment of inertia of the system and ω is the angular velocity

As we move towards the edge, the moment of inertia increases, hence the angular velocity decreases.

Two coils of wire are placed close together. Initially, a current of 1.80 A exists in one of the coils, but there is no current in the other. The current is then switched off in a time of 4.02 x 10-2 s. During this time, the average emf induced in the other coil is 4.38 V. What is the mutual inductance of the two-coil system?

Answers

Answer: the mutual inductance is - 0.0978H

Explanation:

Detailed explanation and calculation is shown in the image below

Answer:

M = 0.1H

Explanation:

Please see attachment below.

A 4-kg toy car with a speed of 5 m/s collides head-on with a stationary 1-kg car. After the collision, the cars are locked together with a speed of 4 m/s. How much kinetic energy is lost in the collision?

Answers

Kinetic energy lost in collision is 10 J.

Explanation:

Given,

Mass, [tex]m_{1}[/tex] = 4 kg

Speed, [tex]v_{1}[/tex] = 5 m/s

[tex]m_{2}[/tex] = 1 kg

[tex]v_{2}[/tex] = 0

Speed after collision = 4 m/s

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

Before collision, the kinetic energy is

[tex]\frac{1}{2} m1 (v1)^2 + \frac{1}{2} m2(v2)^2[/tex]

By plugging in the values we get,

[tex]KE = \frac{1}{2} * 4 * (5)^2 + \frac{1}{2} * 1 * (0)^2\\\\KE = \frac{1}{2} * 4 * 25 + 0\\\\[/tex]

K×E = 50 J

Therefore, kinetic energy before collision is 50 J

Kinetic energy after collision:

[tex]KE = \frac{1}{2} (4 + 1) * (4)^2 + KE(lost)[/tex]

[tex]KE = 40J + KE(lost)[/tex]

Since,

Initial Kinetic energy = Final kinetic energy

50 J = 40 J + K×E(lost)

K×E(lost) = 50 J - 40 J

K×E(lost) = 10 J

Therefore, kinetic energy lost in collision is 10 J.

A 640 kg automobile slides across an icy street at a speed of 63.9 km/h and collides with a parked car which has a mass of 816 kg. The two cars lock up and slide together. What is the speed of the two cars just after they collide?

Answers

Answer:

V3 = 7.802 m/s

Explanation:

m1 = 640 Kg, M2 = 816 kg, V1 = 63.9 Km/h = 17.75 m/s, V2 =0 m/s

Let V3 is the combine velocity after collision.

According to the law of conservation of momentum

m1 v1 + m2 v2 = (m1 + m2) v3

⇒ V3 =( m1 v1 + m2 v2 ) / (m1 + M2)

V3 =  ( 640 Kg × 17.75 m/s + 816 kg × 0m/s) / (640 Kg + 816 kg)

V3 = 7.802 m/s

Answer:

28.088 km/h or 7.802 m/s

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m')....................... Equation 1

Where m = mass of the automobile, m' = mass of the car, u = initial velocity of the car, u' = initial velocity of the car, V = velocity of the two car after collision

Make V the the subject of the equation

V = (mu+m'u')/(m+m')................ Equation 2

Given: m = 640 kg, m' = 816 kg, u = 63.9 km/h, u' = 0 m/s (parked).

Substitute into equation 2

V = (640×63.9+816×0)/(640+816)

V = 40896/1456

V = 28.088 km/h = 28.088(1000/3600) m/s = 7.802 m/s

Hence the speed of the two cars after they collide = 28.088 km/h or 7.802 m/s

A certain monatomic gas inside a cylinder is at a temperature of 22°C. It takes 353 J of work done on the gas to compress it and increase the temperature to 145°C. If there are originally 8.2 moles of gas inside the cylinder, calculate the quantity of heat flowing into or out of the gas. (Indicate the direction with the sign of your answer. Let "into the gas" be positive, and "out of the gas" be negative.)

Answers

The calculated heat Q is [tex]\( 1.22 \times 10^4 \mathrm{~J} \),[/tex] and the positive sign indicates that heat is being added to the system.

Let's break down the given answer step by step:

1. Given Values:

Temperature of gas, [tex]\( T = 22^{\circ} \mathrm{C} = 295 \mathrm{~K} \)[/tex]

Work done on the gas to compress it, [tex]\( W = -353 \mathrm{~J} \)[/tex](negative because work is done on the gas)

  Final temperature, [tex]\( T_f = 145^{\circ} \mathrm{C} = 418 \mathrm{~K} \)[/tex]

  Number of moles,[tex]\( n = 8.2 \) moles[/tex].

2. First Law of Thermodynamics:

The first law of thermodynamics is given by [tex]\( Q = \Delta U + W \),[/tex] where Q is the heat added to the system, [tex]\( \Delta U \)[/tex] is the change in internal energy, and W is the work done on the system.

For a monoatomic gas,[tex]\( C_v = \frac{3}{2} R \),[/tex]

where R is the universal gas constant [tex](\( R = 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \)). So, \( Q = n C_v \Delta T + W \).[/tex]

3. Calculation:

  Substituting the given values into the equation:

[tex]\[ \begin{aligned} Q & = \left(8.2 \times \frac{3}{2} \times 8.314 \times (418 - 295)\right) + (-353) \\ & = 12225 \mathrm{~J} = 1.22 \times 10^4 \mathrm{~J} \end{aligned} \][/tex]

4. Interpretation:

  Since Q is positive, it means heat is flowing inside the cylinder. A positive value of Q indicates that the system is gaining heat, and in this case, it's due to both the compression work done on the gas and the increase in internal energy.

In summary, the calculated heat Q is [tex]\( 1.22 \times 10^4 \mathrm{~J} \),[/tex] and the positive sign indicates that heat is being added to the system.

The 2013 Toyota Camry has an empty weight of 3190 lbf, a frontal area of 22.06 ft2 , and a drag coeffi cient of 0.28. Its rolling resistance is Crr < 0.035. Estimate the maximum velocity, in mi/h, this car

Answers

Answer:

V = 144mi/h

Explanation:

Please see the attachment below.

Suppose that at a price of $2.60, the quantity of output demanded is 17, and at a price of $6.30, the quantity of output demanded is 8. What is the elasticity of demand? (Ignore the negative sign.)

Answers

Answer: elastic (e = 2.43)

Explanation:

The price elasticity formulae is given below as

Elasticy of price = change in quantity demanded / change in price.

P1 =$2.60, P2 = $6.30, q1 =17 and q2 = 8

e = q2 - q1/ P2 - P1

e = 8 - 17/ 6.30 - 2.60

e = - 9 /3.7

e = - 2.43

We take the modulus of e to have a positive value. Hence e = 2.43

Since e is greater than 1, then the elasticity of demand is elastic

Final answer:

The elasticity of demand between the given prices is calculated using the midpoint formula. It results in a value of -0.865 (ignoring the minus sign), indicating that the demand is elastic.

Explanation:

To calculate the elasticity of demand, we can use the midpoint formula, which is defined as the percentage change in quantity demanded divided by the percentage change in price. The formula for computing elasticity is:

Price Elasticity of Demand (Ed) = ([(Q2 - Q1) / ((Q2 + Q1)/2)] / [(P2 - P1) / ((P2 + P1)/2)]) * 100

Using the information provided: At a price of $2.60, quantity demanded is 17, and at a price of $6.30, quantity demanded is 8. We can fill in the values:

(Q2 - Q1) is (8 - 17) = -9

(Q2 + Q1)/2 is (8 + 17)/2 = 12.5

(P2 - P1) is ($6.30 - $2.60) = $3.70

(P2 + P1)/2 is ($6.30 + $2.60)/2 = $4.45

Now putting all these into the formula:

Ed = [(-9 / 12.5) / (3.70 / 4.45)] * 100

The percentage change in quantity is -72%, and the percentage change in price is 83.15%. Therefore:

Ed = (-0.72 / 0.8315) * 100

Ed = -0.865 (ignoring the minus sign)

This value is greater than 1, which indicates that the demand is elastic between these two prices; meaning, the quantity demanded is quite responsive to price changes.

Remember, we ignore the negative sign and use the absolute value when discussing elasticity, even though it is understood that price and quantity demanded move in opposite directions.

Air enters a horizontal, well-insulated nozzle operating at steady state at 12 bar, 500 K, with a velocity of 50 m/s and exits at 7 bar, 440 K. The mass flow rate is 1 kg/s. Determine the net force, in N, exerted by the air on the duct in the direction offlow.Answer:

Answers

Answer:

The net force is 300.8 N

Explanation:

∆H = Cp(T1 - T2) = 1/2(V2^2 - V1^2)

Cp is the heat capacity of air at constant pressure = 1005 J/kg

T1 is initial temperature of air = 500 K

T2 is the exit temperature of air = 440 K

V1 is the initial velocity of air = 50 m/s

V2 is the exit velocity of air

1005(500 - 440) = 1/2(V2^2 - 50^2)

60,300×2 = V2^2 - 2,500

V2^2 = 120,600 + 2,500 = 123,100

V2 = sqrt(123,100) = 350.8 m/s

Net force (F) = mass flow rate × change in velocity = 1 kg/s × (350.8 - 50)m/s = 1 kg/s × 300.8 m/s = 300.8 kgm/s^2 = 300.8 N

The net force exerted by the air on the duct in the direction of flow is approximately [tex]\( 0.00293 \) N[/tex].

Given:

- Inlet conditions (state 1):

 - [tex]\( P_1 = 12 \) bar = \( 12 \times 10^5 \) Pa[/tex]

 - [tex]\( T_1 = 500 \) K[/tex]

 - [tex]\( v_1 = 50 \) m/s[/tex]

- Exit conditions (state 2):

 - [tex]\( P_2 = 7 \) bar = \( 7 \times 10^5 \) Pa[/tex]

 - [tex]\( T_2 = 440 \) K[/tex]

- Mass flow rate, [tex]\( \dot{m} = 1 \) kg/s[/tex]

1. Calculate specific volumes:

 [tex]\( v_1 = \frac{RT_1}{P_1} = \frac{287 \times 500}{12 \times 10^5} \approx 0.02379 \) m^3/kg[/tex]

  [tex]\( v_2 = \frac{RT_2}{P_2} = \frac{287 \times 440}{7 \times 10^5} \approx 0.02086 \) m^3/kg[/tex]

2. Calculate the change in specific volume:

 [tex]\( \Delta v = v_2 - v_1 = 0.02086 - 0.02379 = -0.00293 \) m^3/kg[/tex]

3. Calculate the net force in the direction of flow:

  [tex]\( F = \dot{m} \cdot \Delta v = 1 \cdot (-0.00293) = -0.00293 \) N[/tex]

Since the force is negative, it indicates that the force is acting opposite to the direction of flow.

Therefore, the net force exerted by the air on the duct in the direction of flow is approximately [tex]\( 0.00293 \) N[/tex].

Two long, parallel wires are separated by a distance of 3.30 cm. The force per unit length that each wire exerts on the other is 5.00×10−5 N/m, and the wires repel each other. The current in one wire is 0.620 A.

a. What is the current in the second wire?
b. Are the two currents in the same direction or in opposite directions?

Answers

Answer with Explanation:

We are given that

Distance between two parallel long wires=r=3.3 cm=[tex]\frac{3.3}{100}=0.033m[/tex]

1 m=100 cm

[tex]\frac{F}{l}=5\times 10^{-5} N/m[/tex]

[tex]I_1=0.62 A[/tex]

a.We have to find the current in the second wire.

We know that

[tex]\frac{F}{l}=\frac{2\mu_0I_1I_2}{4\pi r}[/tex]

Using the formula

[tex]5\times 10^{-5}=\frac{2\times 10^{-7}\times 0.62\times I_2}{0.033}[/tex]

Where [tex]\frac{\mu_0}{4\pi}=10^{-7}[/tex]

[tex]I_2=\frac{5\times 10^{-5}\times 0.033}{2\times 10^{-7}\times 0.62}[/tex]

[tex]I_2=13.3 A[/tex]

Hence, the current in the second wire=13.3 A

b.We are given that the wires repel each other.When the current carrying in the wires in opposite direction then, the wires repel to each other.

Hence,the two  currents in opposite directions.

Ask Your Teacher Given the displacement vectors A with arrow = (5.00 î − 7.00 ĵ + 5.00 k) m and B with arrow = (3.00 î + 7.00 ĵ − 3.00 k) m, find the magnitudes of the following vectors and express each in terms of its rectangular components.

Answers

Answer: [tex]||\vec A|| \approx 9.95 m,||\vec B|| \approx 8.19 m[/tex]

Explanation:

Magnitudes can be calculated by using Pythagorean theorem:

[tex]||\vec A|| =\sqrt{(5m)^{2}+(-7m)^{2}+(5m)^{2}}\\||\vec A|| \approx 9.95 m\\||\vec B|| =\sqrt{(3m)^{2}+(7m)^{2}+(-3m)^{2}}\\||\vec B|| \approx 8.19 m\\[/tex]

Describe how an uncharged pith ball suspended from a string can be used to test whether an object is charged. Predict what will happen when an uncharged pith ball is brought near one of the poles of the magnet. Explain.

Answers

Answer:

Pithball electroscope is used to determine if any object has static charge.

It consists of one or two small balls of a lightweight non-conductive substance. When this material is moved near an object having static charge, polarization will be induced in the atoms of pithballs which will either attract or repel the object depending on the nature of the charge in it.

It will not move in case it is brought near to a neutral object.

Similarly, the pith ball will move when it will brought into the magnetic field of the magnet as it will also induce polarization within the atoms of the pithballs.

Consider a rotating object. On that object, select a single point that rotates. How does the angular velocity vector of that point compare to the linear velocity vector at that point? a. perpendicular b. parallel c. neither parallel or perpendicular d. Depends on the rotation

Answers

Answer:

a. Perpendicular.

Explanation:

The relation between angular velocity vector and linear velocity vector is described by a cross product:

[tex]\vec v = \vec \omega \times \vec r[/tex]

Where [tex]\vec r[/tex] is perpendicular to the rotation axis and [tex]\vec \omega[/tex] is parallel to the same axis. By definition of cross product, [tex]\vec v[/tex] is a vector which is perpendicular to both vectors. Therefore, linear velocity vector is perpendicular to angular velocity vector. The correct answer is A.

Final answer:

The angular velocity vector, which points along the rotation axis, is perpendicular (Option A) to the linear velocity vector, which is tangent to the rotation path.

Explanation:

The angular velocity of a point on a rotating object is a vector that points along the axis of rotation. This vector's direction is determined with respect to the right-hand rule: if the fingers on your right-hand curl from the x-axis toward the y-axis, your thumb points in the direction of the positive z-axis. For an angular velocity pointing along the positive z-axis, the rotation is counterclockwise, whereas for an angular velocity pointing along the negative z-axis, the rotation is clockwise.

On the other hand, the linear velocity of the same point is a vector that is tangent to the path of rotation. It represents the instantaneous linear speed of the point as it moves along the path.

Therefore, given the definitions and directions of both vectors, the angular velocity vector of a point on a rotating object is perpendicular to the linear velocity vector of that point.

Learn more about Rotational Kinematics here:

https://brainly.com/question/34170163

#SPJ11

At a given moment the particle is moving in the +x direction (and the magnetic field is always in the +z direction). If qqq is positive, what is the direction of the force on the particle due to the magnetic field?

Answers

Answer:

Therefore, the force exerted by the magnetic field on the particle goes along the positive y- direction

Explanation:

The equation for the force exerted on a particle due to the magnetic field is equal to:

F = q*(v * B)

If we replace vi for v, +q for q and -Bk for B, we have:

F = +q*(vi*(-Bk)) = -q*v*B*(i * k)

From this equation we have that the vector i is in direction -x and k in direction -z

We compute the cross product of two unit vectors:

i * k = -j, where j is the vector along -y direction

Replacing we have:

F = -q*v*B*(-j) = -q*v*B*j

Therefore, the force exerted by the magnetic field on the particle goes along the positive y- direction

A 1.83 kg book is placed on a flat desk. Suppose the coefficient of static friction between the book and the desk is 0.442 and the coefficient of kinetic friction is 0.240 . How much force is needed to begin moving the book?

Answers

Answer:7.92 N

Explanation:

Given

mass of book [tex]m=1.83\ kg[/tex]

coefficient of static friction [tex]\mu _s=0.442[/tex]

coefficient of kinetic friction [tex]\mu _k=0.240[/tex]

To move the book, one need to overcome  the static friction  

Static friction [tex]F_s=\mu _sN[/tex]

[tex]F_s=\mu _s\times 1.83\times 9.8[/tex]

[tex]F_s=0.442\times 1.83\times 9.8[/tex]

[tex]F_s=7.92\ N[/tex]

After overcoming the Static friction , Force needed to move the block is

[tex]F_k=\mu _kN[/tex]

[tex]F_k=0.240\times 1.83\times 9.8[/tex]

[tex]F_k=4.30\ N[/tex]

Final answer:

The force needed to begin moving a 1.83 kg book on a flat desk, given a coefficient of static friction of 0.442, is approximately 7.90 N. This is calculated using the book's weight and the static friction formula fs(max) = μs * N.

Explanation:

To calculate the force needed to begin moving the book, we need to use the coefficient of static friction and the book's weight. The formula to find the maximum static frictional force (fs max) that must be overcome to start moving the object is fs(max) = μs * N, where μs is the coefficient of static friction and N is the normal force.

The book's weight is given by W = m * g, where m is the mass of the book (1.83 kg) and g is the acceleration due to gravity (9.81 m/s²). The weight of the book is equivalent to the normal force (N) exerted by the desk on the book since the book is resting on a flat surface and there are no other vertical forces acting on it. This simplifies the normal force to N = W = m * g.

Using the given coefficient of static friction (0.442) and the calculated normal force, the force needed to begin moving the book is fs(max) = 0.442 * (1.83 kg * 9.81 m/s²) ≈ 7.90 N. Therefore, a force slightly greater than 7.90 N is required to overcome static friction and start moving the book.

During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of the car corresponds to a positive direction for the rotation of the tires (and that they do not slip on the pavement). Randomized Variables at = 6.2 m/s2 r = 0.275 m ω0 = 93 rad/s

a. What is the angular acceleration of its tires in rad/s2, assuming they have a radius of 0.275 m and do not slip on the pavement?
b. How many revolutions do the tires make before coming to rest, given their initial angular velocity is 93 rad/s ?
c. How long does the car take to stop completely in seconds?
d. What distance does the car travel in this time in meters?
e. What was the car’s initial speed in m/s?

Answers

Answer:

a) [tex]-22.5 rad/s^2[/tex]

b) 30.6 revolutions

c) 4.13 s

d) 52.9 m

e) 25.6 m/s

Explanation:

a)

The relationship between linear acceleration and angular acceleration for an object in circular motion is given by

[tex]a=\alpha r[/tex]

where

[tex]a[/tex] is the linear acceleration

[tex]\alpha[/tex] is the angular acceleration

r is the radius of the motion of the object

For the tires of the  car in this problem, we have:

[tex]a=-6.2 m/s^2[/tex] is the linear acceleration (the car is slowing  down, so it is a deceleration, therefore the negative sign)

r = 0.275 m is the radius of the tires

Solving for [tex]\alpha[/tex], we find the angular acceleration:

[tex]\alpha = \frac{a}{r}=\frac{-6.2}{0.275}=-22.5 rad/s^2[/tex]

b)

To solve this part of the problem, we can use the suvat equation for the rotational motion, in particular:

[tex]\omega^2 - \omega_0^2 = 2\alpha \theta[/tex]

where:

[tex]\omega[/tex] is the final angular velocity

[tex]\omega_0[/tex] is the initial angular velocity

[tex]\alpha[/tex] is the angular acceleration

[tex]\theta[/tex] is the angular displacement

Here we have:

[tex]\omega=0[/tex] (the tires come to a stop)

[tex]\omega_0 = 93 rad/s[/tex]

[tex]\alpha = -22.5 rad/s^2[/tex]

Solving for [tex]\theta[/tex], we find the angular displacement:

[tex]\theta=\frac{\omega^2-\omega_0^2}{2\alpha}=\frac{0^2-(93)^2}{2(-22.5)}=192.2 rad[/tex]

And since 1 revolution = [tex]2\pi rad[/tex],

[tex]\theta=\frac{192.2}{2\pi}=30.6 rev[/tex]

c)

To solve this part, we can use another suvat equation:

[tex]\omega=\omega_0 + \alpha t[/tex]

where in this case, we have:

[tex]\omega=0[/tex] is the final angular velocity, since the tires come to a stop

[tex]\omega_0 = 93 rad/s[/tex] is the initial angular velocity

[tex]\alpha=-22.5 rad/s^2[/tex] is the angular acceleration

t is the time

Solving for t, we can find the time required for the tires (and the car) to sopt:

[tex]t=\frac{\omega-\omega_0}{\alpha}=\frac{0-93}{-22.5}=4.13 s[/tex]

d)

The car travels with a uniformly accelerated motion, so we can find the distance it covers by using the suvat equations for linear motion:

[tex]s=vt-\frac{1}{2}at^2[/tex]

where:

v = 0 is the final velocity of the car (zero since it comes to a stop)

t = 4.13 s is the time taken for the car to stop

[tex]a=-6.2 m/s^2[/tex] is the deceleration for the car

s is the distance covered during this motion

Therefore, substituting all values and calculating s, we find the distance covered:

[tex]s=0-\frac{1}{2}(-6.2)(4.13)^2=52.9 m[/tex]

e)

The relationship between angular velocity and linear velocity for a rotational motion is given by

[tex]v=\omega r[/tex]

where

v is the linear velocity

[tex]\omega[/tex] is the angular speed

r is the radius of the circular motion

In this problem:

[tex]\omega_0 = 93 rad/s[/tex] is the initial angular speed of the tires

r = 0.275 m is the radius of the tires

Therefore, the initial velocity of the car is:

[tex]u=\omega_0 r = (93)(0.275)=25.6 m/s[/tex] is the initial velocity of the car

A conducting loop is placed in a magnetic field. What must be true for there to be a current induced in the loop? (1 point) There must be a source of charge The magnetic field must be changing Potential energy must change into kinetic energy The loop must be surrounded by insulating material

Answers

Answer:

EMF will induce in the conducting loop when

The magnetic field must be changing

Explanation:

As per Farady's law of EMI we know that the magnetic flux linked with the closed conducting loop must be changed with time

so we have

[tex]EMF = \frac{d\phi}{dt}[/tex]

so we know that

[tex]\phi = BAcos\omega t[/tex]

now if magnetic field is changing with time then we have

[tex]EMF = Acos\theta \frac{dB}{dt}[/tex]

so EMF will induce when magnetic field will change with time

a heavy box is pulled across the floor with a rope. The rope makes an angle of 60 degrees with the floor. A force of 75 N is exerted on the rope. What is the component of the force parallel to the floor

Answers

Answer:

37.5 N

Explanation:

Horizontal component is represented by Fx and  is given as

Fx = F cos θ

Here,

θ = 60 degrees

F= 75 N

So,

Fx= 75 cos (60°)

==> Fx = 75 ×  0.5 =37.5 N

Final answer:

The horizontal component of the force acting parallel to the floor when a 150 N force is applied at a 60-degree angle to the horizontal is 75 N, calculated using the cosine of the angle.

Explanation:

The question involves resolving a force into its components, which is a common problem in physics. When a force is applied at an angle to the horizontal, it has both horizontal and vertical components. The horizontal (parallel) component ([tex]F_{parallel}[/tex]) is found using the cosine function of the angle Θ , which in this case is 60 degrees. The formula is [tex]F_{parallel}[/tex] = F * cos(Θ), where F is the magnitude of the force.

Given that a force of 150 N is applied at an angle of 60 degrees to the horizontal, the horizontal component of the force can be calculated as follows:

[tex]F_{parallel}[/tex] = 150 N * cos(60°)
[tex]F_{parallel}[/tex] = 150 N * 0.5
[tex]F_{parallel}[/tex] = 75 N

The horizontal component of the force acting parallel to the floor is 75 N. To find the net force acting on the box and thus the acceleration, you would subtract the frictional force from the parallel component of the applied force and then use Newton's second law, F = m * a, where F is the net force, m is the mass of the object and a is the acceleration. However, the frictional force is not needed for this particular question about the horizontal component.

Suppose there are single-particle energy eigenvalues of 0, e, 2.::, and 3.:: which are non-degenerate. A total of 6.0 is to be shared between four particles. List the configuration of the particles and their degeneracies for: distinguishable particles; indistinguish3:ble Bose particles; indistinguishable Fermi particles

Answers

Answer:

so 40 ways for distinguishable

4 ways for bosons

1 way for fermions

Explanation:

The explanation is attached below

A Global Positioning System (GPS) functions by determining the travel times for EM waves from various satellites to a land-based GPS receiver. If the receiver is to detect a change in travel distance of the order of 3 m, what is the associated travel time in (in ns) that must be measured

Answers

Answer:

10ns

Explanation:

Suppose the EM wave travels at light speed [tex]c = 3\times10^8 m/s[/tex]. A change in travel distance of the order of 3 m would result of a change in travel time of

[tex] \Delta t = \frac{\Delta s}{c} = \frac{3}{3\times10^8} = 10^{-8} s = 10 ns[/tex]

Final answer:

To detect a change in travel distance of about 3 m, a GPS receiver must measure a change in travel time of approximately 10 nanoseconds. This is calculated using the speed of light and the time = distance/speed formula.

Explanation:

To determine the associated travel time that must be measured for a change in travel distance of 3 meters, we need to know the speed of electromagnetic waves, which is the speed of light, typically denoted 'c'. The speed of light is approximately 3.00 x 108 meters per second (m/s).

Now we can calculate the time it takes for light to travel a given distance using the formula time (t) = distance (d) / speed (s). Substituting for our given distance (3 m) and the speed of light, we get t = 3 m / 3.00 x 108 m/s. This results in a time of approximately 1 x 10-8 seconds or 10 nanoseconds (ns).

Therefore, to detect a change in travel distance of about 3 m, the GPS receiver must be able to measure a change in travel time of roughly 10 nanoseconds.

Learn more about GPS receiver here:

https://brainly.com/question/28275639

#SPJ11

A human being can be electrocuted if a current as small as 55 mA passes near the heart. An electrician working with sweaty hands makes good contact with the two conductors he is holding. If his resistance is 2300 Ω, what might the fatal voltage in volts be?

Answers

Answer:

The lethal voltage for the electrician under those conditions is 126.5 V.

Explanation:

To discover what is the lethal voltage to the electrician we need to find out what is the voltage that produces 55 mA = 0.055 A when across a resistance of 2300 Ohms (Electrician's body resistancy). For that we'll use Ohm's Law wich is expressed by the following equation:

V = i*R

Where V is the voltage we want to find out, i is the current wich is lethal to the electrician and R is his body resistance. By applying the given values we have:

V = 0.055*2300 = 126.5 V.

The lethal voltage for the electrician under those conditions is 126.5 V.

Answer:

126.5 V

Explanation:

Using Ohm's Law,

V = IR............................. Equation 1

Where V = Voltage, I = current, R = resistance.

Note: The current needed to bring about the fatal voltage is equal to the current that will cause human being to be electrocuted.

Given: I = 55 mA = 55/1000 = 0.055 A, R = 2300 Ω

Substitute into equation 1

V = 0.055×2300

V = 126.5 V.

Hence the fatal voltage = 126.5 V

In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A⃗ =(1,0,−3), B⃗ =(−2,5,1), and C⃗ =(3,1,1). Calculate and express your answers as ordered triplets of values separated by commas

Answers

(1) A - B

(2) B - C

(3) - A + B - C

(4) 3A - 2C

(5) - 2A + 3B - C

(6) 2A - 3 (B - C)

Answer:

(1)  (3,-5,-4)

(2) (-5, 4, 0)

(3) (-6, 4, 3)

(4) (-3, -2, -11)

(5) (-11, 14, 8)

(6) (17, -12, -6)

Explanation:

A⃗ =(1,0,−3)

B⃗ =(−2,5,1)

C⃗ =(3,1,1)

Vector additions and subtraction are done on a component by component basis, that is, only data from component î can be added to or subtracted from another Vector's component î. And so on for components j and k.

1) (A - B) = (1,0,−3) - (−2,5,1) = (1-(-2), 0-5, -3-1) = (3,-5,-4)

2)  (B - C) = (−2,5,1) - (3,1,1) = (-2-3, 5-1, 1-1) = (-5, 4, 0)

3) -A + B - C = -(1,0,−3) + (−2,5,1) - (3,1,1) = (-1-2-3, 0+5-1, 3+1-1) = (-6, 4, 3)

4) 3A - 2C = 3(1,0,−3) - 2(3,1,1) = (3,0,-9) - (6,2,2) = (3-6, 0-2, -9-2) = (-3, -2, -11)

5) -2A + 3B - C = -2(1,0,−3) + 3(−2,5,1) - (3,1,1) = (-2,0,6) + (-6,15,3) - (3,1,1) = (-2-6-3, 0+15-1, 6+3-1) = (-11, 14, 8)

6) 2A - 3 (B - C) = 2(1,0,−3) - 3[(−2,5,1) - (3,1,1)] = (2,0,-6) - 3(-5,4,0) = (2+15, 0-12, -6-0) = (17, -12, -6)

A proton moves through an electric potential created by a number of source charges. Its speed is 2.5 x 105 m/s at a point where the potential is 1500 V. What will be the proton’s speed a short time later when it reaches a point where the potential is −500 V? The mass of a proton is 27 m 1.67 10 kg.

Answers

Answer:

Proton’s speed, a short time later when it reaches a point of lower potential is 1.4 x 10⁵ m/s

Explanation:

Given;

initial speed of proton, u = 2.5 x 10⁵ m/s

initial potential, V = 1500 V

mass of proton = 1.67 x 10⁻²⁷ kg

Work done, W = eV= ΔK.E = ¹/₂mu²

eV = ¹/₂mu² (J)

where;

e is the charge of the proton in coulombs

V is the electric potential in volts

m is the mass of the proton in kg

u is the speed of the proton in m/s

[tex]m =\frac{2eV_1}{u_1{^2}} = \frac{2eV_2}{u_2{^2}} = \frac{V_1}{u_1{^2}}} =\frac{V_2}{u_2{^2}}[/tex]

[tex]\frac{V_1}{u_1{^2}}} =\frac{V_2}{u_2{^2}} = \frac{1500}{(2.5*10^5)^2} = \frac{500}{u_2{^2}} \\\\u_2{^2} =\frac{500*(2.5*10^5)^2}{1500} = 0.333*6.25*10^{10}\\\\u_2 = \sqrt{0.333*6.25*10^{10}} =1.4 *10^5 \ m/s[/tex]

Therefore, proton’s speed a short time later when it reaches a point of lower potential is 1.4 x 10⁵ m/s

An object of mass m is lowered at constant velocity at the end of a string of negligible mass. As it is lowered a vertical distance h, its gravitational potential energy changes by ∆Ug = −m g h. However, its kinetic energy remains constant, so that if we define E = K + Ug, we find ∆E = −m g h. Why isn’t the total energy E conserved? 1. Because the universe is accelerating in its expansion, the object is actually at rest and not descending ... the earth moves away as fast as it moves "down." 2. An external force is doing work on the system. 3. In reality, all objects are massless, so that m = 0 and ∆E = 0. 4. The acceleration of the system is zero. 5. The net force on the system is not zero. 6. Ug is defined incorrectly as if gravity were a constant force. 7. The total energy is indeed conserved, since ∆E = ∆Ug. 8. E is useless in real-world examples like this.

Answers

Answer:

Mechanical would have been conserved if only the force of gravity (the weight of the object does work on the system). The tension force does work also on the system but negative work instead. The net force acting of the system is zero since the upward tension in the string suspending the object is equal to the weight of the object but acting in the opposite direction. As a result they cancel out. In the equation above the effect of the tension force on the object has been neglected or not taken into consideration. For the mechanical energy E to be conserved, the work done by this tension force must be included into the equation. Otherwise it would seem as though energy has been generated in some manner that is equal in magnitude to the work done by the tension force.

The conserved form of the equation is given by

E = K + Ug + Wother.

In this case Wother = work done by the tension force.

In that form the total mechanical energy is conserved.

Final answer:

The correct answer is:  An external force is doing work on the system.

Explanation:

When the object is lowered at constant velocity, an external force (in this case, the force exerted by the person lowering the object) is doing work against gravity to keep the velocity constant. This work done by the external force results in a change in the object's gravitational potential energy (∆Ug = -mgh).

Since work is being done on the system externally, the total mechanical energy of the system (the sum of kinetic and potential energies) is not conserved.

However, in the scenario described, an external force is doing work on the system. Work is being done to counteract gravity and maintain a constant velocity. This work done by the external force results in a change in the object's gravitational potential energy (∆Ug = -mgh), where "m" is the mass of the object, "g" is the acceleration due to gravity, and "h" is the vertical distance through which the object is lowered.

As a result, the total mechanical energy of the system (the sum of kinetic and potential energies) is not conserved. The work done by the external force manifests as a change in the object's gravitational potential energy, causing a decrease in potential energy as the object is lowered. This decrease in potential energy is exactly balanced by the work done by the external force, so the total mechanical energy of the system remains constant, despite the fact that kinetic energy remains constant throughout the process.

If the potential in a region is given by the function V = 2 x − y 2 − cos(z), what is the y-component of the electric field at the point P = (x ′ , y ′ , z ′ )?

Answers

Answer:

2y

Explanation:

Electric field in terms of Electric potential is given as:

E = dV/dr(x, y, z)

Where r(x, y, z) = position in x, y, z plane

The y component of the Electric field will be:

Ey = -dV/dy

Given that

V = 2x - y² - cos(z)

dV/dy = -2y

=> E = - (-2y)

E = 2y

The specific surface energy for aluminum oxide is 0.90 N/m, and the elastic modulus is 393 GPa. Compute the critical stress, in MPa, required for propagation of a surface crack of length 0.25 mm. Round answer to 3 significant figures and report in the format: 12.3 MPa

Answers

Answer:

42.4 Npa

Explanation:

Explanation is attached in the picture below

Oxygen (O 2 ) is confined to a cubic container, 15 cm on a side, at a temperature of 300 K. Compare the average kinetic energy of a molecule of the gas to the change in its gravitational potential energy if it falls from the top of the container to the bottom.

Answers

Answer: Average kinetic energy is greater than gravitational potential energy.

Explanation: The average kinetic energy formulae for a molecule of a gas relative to temperature (in Kelvin) is given below as

E = 3/2 (KT).

Where E = average kinetic energy =?

K = boltzman constant = 1.381×10^-23 m²kg/s²k

T = temperature = 300 k

By substituting the parameters in the formulae, we have that

E = 3/2 ×( 1.381×10^-23 × 300)

E = 1.5 × 4.143×10^-21

E = 6.2145×10^-21 J

To get the gravitational potential energy, we use the fact that

Gravitational potential energy = gravitational energy at the top - gravitational energy at bottom.

At the top, the height of cube is h= 15cm = 0.15m, g = acceleration dude to gravity = 9.8m/s², m = mass of molecule of oxygen = 1.661×10^-27 kg

Gravitational potential energy = mgh = 1.661×10^-27× 9.8 × 0.15 = 2.442×10^-27 J

At the bottom, height is zero, hence gravitational potential energy is also zero.

Hence the final gravitational potential energy = potential energy at top - potential energy at bottom =

2.442×10^-27 - 0 = 2.442×10^-27 J.

Gravitational potential energy = 2.442×10^-27 J

Average kinetic energy = 6.2145×10^-21 J

As we can see that the average kinetic energy is bigger than the gravitational potential energy.

Compare the average kinetic energy of oxygen molecules at 300 K to the change in their gravitational potential energy if they fall from the top to the bottom of a container.

Oxygen (O2) molecules at 300 K have an average kinetic energy of 3kT, where k is Boltzmann's constant. If an oxygen molecule falls from the top of a container to the bottom, its change in gravitational potential energy is mgΔh, where m is the mass of the molecule, g is the acceleration due to gravity, and Δh is the height change.

Other Questions
Which statement is true of triangles P and Q? Sodium ions, oxygen (O2), and glucose pass directly through lipid bilayers at dramatically different rates. Which of the following choices presents the correct order, from fastest to slowest?A. Glucose, oxygen, sodium ions.B. Glucose, sodium ions, oxygen.C. Oxygen, glucose, sodium ions.D. Oxygen, sodium ions, glucose.E. Sodium ions, glucose, oxygen.F. Sodium ions, oxygen, glucose. 5x-6=10-3x solve for x a. The company provided $2,200 in services to customers that are expected to pay the company sometime in January following the company's year-end.b. Wage expenses of $1,200 have been incurred but are not paid as of December 31.c. The company has a $5,200 bank loan and has incurred but not recorded an 8% interest expense of $416 for the year ended December 31. The company will pay the $416 interest in cash on January 2 following the company's year-end.d. The company contracted with a firm for lawn services to be provided at a monthly fee of $520 with payment occurring on the 15th of the following month. Payment for December services will occur on January 15 following the company's year-end.e. The company has earned $220 in Interest revenue from investments for the year ended December 31. The interest revenue will be received on January 15 following the company's year-end.f. Salary expenses of $920 have been earned by supervisors but not paid as of December 31.Prepare year-end adjusting journal entries as of December 31, 2017, for each of the above separate cases. What is the critical angle critcrittheta_crit for light propagating from a material with index of refraction of 1.50 to a material with index of refraction of 1.00? A dockworker applies a constant horizontal force of 90.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves a distance 13.0 m in a time of 4.50 s .(a) What is the mass of the block of ice? a number w divided by 5 equals 6 January budgeted selling and administrative expenses for the retail shoe store that Craig Shea plans to open on January 1, year 1, are as follows: sales commissions, $50,000; rent, $30,000; utilities, $10,000; depreciation, $5,000; and miscellaneous, $2,500. Utilities are paid in the month after they are incurred. Other expenses are expected to be paid in cash in the month in which they are incurred. Required Determine the amount of budgeted cash payments for January selling and administrative expenses. Determine the amount of utilities payable the store will report on the January 31 pro forma balance sheet. Determine the amount of depreciation expense the store will report on the income statement for year 1, assuming that monthly depreciation remains the same for the entire year. Which product is typically made using hardwood?OA. Plywood shedOB. Utility poleOC. FencingOD. Flooring For the geometric sequence: 112.5, 225, 450, 900,..., find the 21st term. Appetizers can be made from many things . What does an appetizer plate usually contain? 24x-12-43x-6 Simplify.Please help!! ASAP!! quadrilateral PQRS is a kite. M A group of equations that have a common intersection point is called A construction firm needs to hire a construction superintendent, whose primary responsibilities involve organizing, supervising, and inspecting the work of several subcontractors. It administers a construction-error recognition test, where an applicant enters a room that has been specially constructed to have 10 common and expensive errors and where he/she is asked to record as many problems as he/she can detect. The firm is using a:______.a. concurrent validation.b. predictive validation.c. content validation.d. criterion-related validation. Of the three louse vectored pathogens here, which is or are unable to invade the insects gut and penetrate into its body cavity to grow and reproduce? Bonita mistakenly believes that there are more words that begin with the letter "k" than there are with the letter "k" in the third position due to the ________. Group of answer choices confirmation bias planning fallacy availability heuristic representativeness heuristic Hitler and his advisors thought that the invasionof the Soviet Union would be complete after just a few months. Whatdoes this suggest about the German view of the Soviet army? Which best synthesizes the information presented in "Winter Storms: The Deceptive Killers"?A) Discussing winter storms is unpleasant because people usually only like to talk about the weather when it is warmer outside.B) Discussing winter storms before they arrive prepares individuals for the severe risks that come with extremely cold weather conditions.C) Discussing winter weather is important because global warming will increase the risk of extremely cold weather conditions in the United States.D) Discussing winter weather is important because it convinces people to live in warmer climates to avoid the risks associated with winter weather. Discuss Mary Parker Folletts methods of dealing with conflict. What did she say about the value of each method? Steam Workshop Downloader