Answer : The value of q, w and U for the reversible, isothermal compression are, -52271.69 J, 52271.69 J and 0 J respectively.
Explanation : Given,
Moles of gas = 10 mole
Initial pressure of gas = 1 atm
Final pressure of the gas = 10 atm
Temperature of the gas = [tex]0^oC=273+0=273K[/tex]
According to the question, this is the case of isothermal reversible compression of gas.
As per first law of thermodynamic,
[tex]\Delta U=q+w[/tex]
where,
[tex]\Delta U[/tex] = internal energy
q = heat
w = work done
As we know that, the term internal energy is the depend on the temperature and the process is isothermal that means at constant temperature.
So, at constant temperature the internal energy is equal to zero.
The expression used for work done will be,
[tex]w=-2.303nRT\log (\frac{P_1}{P_2})[/tex]
where,
w = work done on the gas
n = number of moles of gas
R = gas constant = 8.314 J/mole K
T = temperature of gas
n = moles of the gas
[tex]P_1[/tex] = initial pressure of gas
[tex]P_2[/tex] = final pressure of gas
Now put all the given values in the above formula, we get the work done.
[tex]w=-2.303\times 10mole\times 8.314J/moleK\times 273K\times \log (\frac{1atm}{10atm})[/tex]
[tex]w=52271.69J[/tex]
And we know that, the heat is equal to the work done with opposite sign convention.
So, [tex]q=-52271.69J[/tex]
Therefore, the value of q, w and U for the reversible, isothermal compression are, -52271.69 J, 52271.69 J and 0 J respectively.
A compound is 54.53% C,54.53% C, 9.15% H,9.15% H, and 36.32% O36.32% O by mass. What is its empirical formula? Insert subscripts as needed. empirical formula: CHOCHO The molecular mass of the compound is 132 amu.132 amu. What is its molecular formula? Insert subscripts as needed. molecular formula: CHO
The empirical formula and the molecular formula for the given compound will be [tex]C_2H_4O[/tex] and [tex]C_6H_{12} O_3[/tex] respectively.
The simplest whole-number ratio of atoms in a molecule is the empirical formula of a chemical compound in chemistry.
Let us consider that, we have 100g of the sample, then carbon would be 54.53 g, hydrogen would be 9.15g and oxygen would be 36.32g and the number of moles for each element will be = [tex]\frac{GivenMass}{Molar Mass}[/tex]
Number of moles of carbon = [tex]\frac{54.53}{12} = 4.544[/tex] mol
Similarly, the number of moles of Hydrogen and Oxygen would be:
Number of moles of Oxygen = [tex]\frac{36.32}{16} = 2.27\\[/tex] mol
Number of moles of Hydrogen = [tex]\frac{9.15}{1} = 9.15 mol[/tex]
Molar ratio of the elements = C:H:O = 4.54 : 9.15 : 2.27
The molar ratio = 2:4:1,
So, the empirical formula = [tex]C_2H_4O[/tex] and empirical mass = [tex]2*12 + 4*1 + 16 = 44[/tex]
The empirical formula and the molecular formula are often related in the following way: (Molecular Formula = n [tex]*[/tex] Empirical Formula). This may be used to determine the compound's empirical formula as well as its molecular formula. The term “n” in the relationship denotes the proportion between the compound's molecular mass and empirical mass.
[tex]n = \frac{Molecular Mass}{Empirical Mass} = \frac{132}{44} = 3[/tex]
So, molecular formula = [tex]3* C_2H_4O = C_6 H_{12} O_3[/tex]
Thus, the molecular formula and empirical formula for the given compound are [tex]C_2H_4O[/tex] and [tex]C_6H_{12} O_3[/tex].
Learn more about empirical formula here:
brainly.com/question/32125056
#SPJ12
The empirical and molecular formula of a compound with 54.53% carbon, 9.15% hydrogen, and 36.32% oxygen and molar mass 132 amu, is CH₄O₂.
Explanation:The process to find the empirical and molecular formula of a compound uses percentage composition of its constituent elements and molar mass. First, we convert the percentage to grams (assuming 100g of the compound) which gives: C 54.53g, H 9.15g, and O 36.32g. Using atomic masses of C(12.01), H(1.01), and O(16.00), we find moles of C, H, and O.
Dividing the obtained values by the smallest number of moles, gives us the ratio of the elements. In this case, the empirical formula comes out to be CH₄O₂. We then calculate the molecular mass of the empirical formula and divide the molar mass of the compound by the empirical formula mass. The quotient gives the number of empirical formula units present in the compound's molecular formula. If this quotient is anything other than '1', we must multiply the subscript of each element in the empirical formula by this number to get the molecular formula. However, in this case, the empirical and molecular formulas are the same, i.e., CH₄O₂.
Learn more about Empirical and Molecular Formulas here:https://brainly.com/question/35167780
#SPJ3
Electron configurations are a shorthand form of an orbital diagram, describing which orbitals are occupied for a given element. For example, 1s22s22p1 is the electron configuration of boron. Use this tool to generate the electron configuration of arsenic (As).
Answer:
[Ar] 4s² 3d¹⁰ 4p³
Explanation:
Arsenic has an atomic number of 33, thus 33 protons and 33 electrons. The electron configuration is:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p³
The shorthand notation includes the previous noble gas to represent the inner electrons. The gas previous to arsenic is argon, with 18 electrons. The shorthand notation for arsenic is:
[Ar] 4s² 3d¹⁰ 4p³
Arsenic (Ar) is located in the 5th period (row) and 15th group (column) of the periodic table. Its atomic number is 33, which means it has 33 electrons. The electrons' configuration is: [tex]1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^3[/tex].
This is the electron configuration of arsenic (Ar). It indicates that arsenic has two electrons in the 1s orbital, two electrons in the 2s orbital, six electrons in the 2p orbital, two electrons in the 3s orbital, six electrons in the 3p orbital, two electrons in the 4s orbital, ten electrons in the 3d orbital, and three electrons in the 4p orbital.
The electronic configuration of Arsenic is [tex]1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^3[/tex].
To learn more about Arsenic, follow the link:
https://brainly.com/question/32094477
#SPJ6
Phosgene (carbonyl chloride), COCl2, is an extremely toxic gas that is used in manufacturing certain dyes and plastics. Phosgene can be produced by reacting carbon monoxide and chlorine gas at high temperatures: CO(g) Cl2(g)⇌COCl2(g) Carbon monoxide and chlorine gas are allowed to react in a sealed vessel at 477 ∘C . At equilibrium, the concentrations were measured and the following results obtained: Gas Partial Pressure (atm) CO 0.830 Cl2 1.30 COCl2 0.220 What is the equilibrium constant, Kp, of this reaction
The equilibrium constant for the phosgene formation reaction, given the partial pressures of carbon monoxide, chlorine gas, and phosgene at equilibrium, is approximately 0.204.
The student has asked to calculate the equilibrium constant (Kp) for the formation of phosgene (COCl₂) from carbon monoxide (CO) and chlorine gas (Cl₂) at a given temperature. The equilibrium constant for a reaction can be determined using the partial pressures of the gases at equilibrium. The equation for Kp in this reaction is Kp = PCOCl₂ / (PCO * PCl₂). Given the partial pressures at equilibrium (PCO = 0.830 atm, PCl₂ = 1.30 atm, PCOCl₂ = 0.220 atm), we can calculate Kp as follows:
Kp = 0.220 atm / (0.830 atm * 1.30 atm) = 0.220 / 1.079 = 0.204
Therefore, the equilibrium constant, Kp, for the reaction under the given conditions is approximately 0.204.
A student needs to determine the volume occupied by a gas in a 125 mL flask using the experimental setup described in the procedure. The student measures the volume of the flask to be 157 mL to the top of the flask. The student measures the volume of the flask with a stopper in it to be 140 mL. The student performs the experiment by reacting the strip of magnesium with 5 mL of HCl solution. What is the volume of the flask occupied by the hydrogen gas?
Answer:
see explanation...
Explanation:
Given 125ml standard flask
Measured volume to top = 157ml
Measured volume with stopper = 140ml
------------------------------------------------------------------------------------------
Based on the wording of the question, the volume of the flask is ...
= 157ml without stopper*, or
= 140ml with stopper.
If interest is in volume occupied by H₂(g) above 5ml of rxn solution ...
=> Volume without stopper* = 157ml - 5ml = 152ml above rxn solution
=> Volume with stopper = 140ml - 5ml = 135ml (Assuming stopper doesn't pop out of container). :-)
*Assuming gas fills available volume without escaping container.
Answer:
Volume of flask without stopper=157 mL-5mL=152 mL
Volume of flask with stopper=140-5=135 mL
Directions: Using the definition of molarity, the given balanced equations, and stoichiometry, solve the following problems.
Sodium chloride solution and water react to produce sodium hydroxide and chlorine gas according to the following balanced equation: 2NaCl(aq) + 2H20(l) <-> 2Na0H(aq) + Cl2(g)
a. How many liters of 0.4 M sodium chloride do you need in order to have 3.0 moles of chlorine gas?
b. Find the number of moles of water needed to produce 3.0 L of chlorine gas at STP.
Answer:
15L of 0.40M NaCl(aq) solution
Explanation:
2NaCl(aq) + 2H₂O(l) → 2NaOH(aq) + Cl₂(g)
2Na⁺(aq) + 2Clˉ(aq) + 2H₂O(l) → 2Na⁺(aq) + 2OHˉ(aq) + Cl₂(g)
Na⁺(aq) is a spectator ion in the given reaction and does not enter into the reaction process…
Net Ionic Equation is then 2Clˉ(aq) + 2H₂O(l) → 2OHˉ(aq) + Cl₂(g)
From Rxn, 2 moles Clˉ(aq) is needed to produce 1 mole of Cl₂(g)
Therefore, 6 moles Clˉ(aq) is needed to produce 3 moles of Cl₂(g)
That is, 6 moles NaCl(aq) → 6 moles Clˉ(aq) = 0.40M x V(NaCl)liters
V(NaCl) liters = 6 moles Clˉ(aq)/(0.40mole/liter) = 15 liters of 0.40M NaCl(aq)
7.5 liters of 0.4M sodium chloride solution are needed to produce 3.0 moles of chlorine gas, and 0.134 moles of water are needed to produce 3.0 liters of chlorine gas at STP.
Explanation:The question is related to molarity and stoichiometry. Let's solve part (a) and (b).
Part A:
Molarity is represented by moles of solute / liters of solution. The balanced equation gives a 1:1 ratio between NaCl and Cl2. The question gives us 3.0 moles of Cl2 gas, implying that we need the same moles of NaCl.
So, Moles = Molarity x Volume, Volume = Moles / Molarity, Volume = 3.0 moles / 0.4 M = 7.5 liters of NaCl solution are needed.
Part B:
For part (b), we see from the stoichiometry of the balanced reaction that the number of moles of water is equal to the number of moles of chlorine. According to the ideal gas law (PV=nRT), at standard temperature and pressure (STP), 1 mole of any gas occupies 22.4L. So, 3.0L of Cl2 gas corresponds to 3.0 L / 22.4 L/mole = 0.134 moles. Therefore, you'll need 0.134 moles of water.
Learn more about Molarity & Stoichiometry here:https://brainly.com/question/9402899
#SPJ3
A 298 lb person must receive Heparin, determine the number of units given every hour (Heparin 8.0 units/kg per hour). Enter your answer with 1 decimal place and no units (the understood unit in this problem is units).
Answer:
1,081.1 units of heparin should be given to 298 lb person.
Explanation:
We are given:
Weight of the person = 298 lb = 135.143 kg
Conversion factor used:
1 lb = 0.4535 kg
Number of unit of heparin to be given in an hour = 8.0 units/kg
Number of units given to the patient weighing 135.143 kg :
[tex]8.0 units/kg\times 135.143 kg=1,081.144 units\approx 1,081.1 units[/tex]
1,081.1 units of heparin should be given to 298 lb person.
What is the net ionic equation of the reaction of MgSO4 with Pb(NO3)2? Express you answer as a chemical equation including phases. View Available Hint(s)
Answer : The net ionic equation will be,
[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]
Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The same number of ions present on reactant and product side which do not participate in a reactions.
The given balanced ionic equation will be,
[tex]MgSO_4(aq)+Pb(NO_3)_2(aq)\rightarrow Mg(NO_3)_2(aq)+PbSO_4(s)[/tex]
The ionic equation in separated aqueous solution will be,
[tex]Mg^{2+}(aq)+SO_4^{2-}(aq)+Pb^{2+}(aq)+2NO^{3-}(aq)\rightarrow PbSO_4(s)+Mg^{2+}(aq)+2NO^{3-}(aq)[/tex]
In this equation, [tex]Mg^{2+}\text{ and }NO_3^-[/tex] are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,
[tex]Pb^{2+}(aq)+SO_4^{2-}(aq)\rightarrow PbSO_4(s)[/tex]
Given the following equation: 2 C4H10 13 O2 > 8 CO2 10 H20 + How many grams of CO2 are produced if 12.4 grams of C4H10 reacts with 56.9 grams of O2?
Answer : The mass of [tex]CO_2[/tex] produced will be, 37.488 grams.
Explanation : Given,
Mass of [tex]C_4H_{10}[/tex] = 12.4 g
Mass of [tex]O_2[/tex] = 56.9 g
Molar mass of [tex]C_4H_{10}[/tex] = 58 g/mole
Molar mass of [tex]O_2[/tex] = 32 g/mole
Molar mass of [tex]CO_2[/tex] = 44 g/mole
First we have to calculate the moles of [tex]C_4H_{10}[/tex] and [tex]O_2[/tex].
[tex]\text{Moles of }C_4H_{10}=\frac{\text{Mass of }C_4H_{10}}{\text{Molar mass of }C_4H_{10}}=\frac{12.4g}{58g/mole}=0.213moles[/tex]
[tex]\text{Moles of }O_2=\frac{\text{Mass of }O_2}{\text{Molar mass of }O_2}=\frac{56.9g}{32g/mole}=1.778moles[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]2C_4H_{10}+13O_2\rightarrow 8CO_2+10H_2O[/tex]
From the balanced reaction we conclude that
As, 2 moles of [tex]C_4H_{10}[/tex] react with 13 mole of [tex]O_2[/tex]
So, 0.213 moles of [tex]C_4H_{10}[/tex] react with [tex]\frac{13}{2}\times 0.213=1.385[/tex] moles of [tex]O_2[/tex]
From this we conclude that, [tex]O_2[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]C_4H_{10}[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]CO_2[/tex].
As, 2 moles of [tex]C_4H_{10}[/tex] react to give 8 moles of [tex]CO_2[/tex]
So, 0.213 moles of [tex]C_4H_{10}[/tex] react to give [tex]\frac{8}{2}\times 0.213=0.852[/tex] moles of [tex]CO_2[/tex]
Now we have to calculate the mass of [tex]CO_2[/tex].
[tex]\text{Mass of }CO_2=\text{Moles of }CO_2\times \text{Molar mass of }CO_2[/tex]
[tex]\text{Mass of }CO_2=(0.852mole)\times (44g/mole)=37.488g[/tex]
Therefore, the mass of [tex]CO_2[/tex] produced will be, 37.488 grams.
When CO2(g) reacts with H2(g) to form CO(g) and H2O(g) , 9.85 kcal of energy are absorbed for each mole of CO2(g) that reacts. Write a balanced equation for the reaction with an energy term in kcal as part of the equation.
Answer: The balanced chemical equation is written below.
Explanation:
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side must be equal to the total number of individual atoms on the product side.
For the reaction of carbon dioxide with hydrogen gas, 9.85 kcal of energy is absorbed. So, this energy term will be written on the reactant side.
Thus, the balanced chemical equation for the reaction of carbon dioxide with hydrogen gas follows:
[tex]CO_2(g)+H_2(g)+9.85kcal\rightarrow CO(g)+H_2O(g)[/tex]
Hence, the balanced chemical equation is written above.
I need help knowing how to find the name of the element. I am able to do the calculations to find the relative atomic mass of the element. Please help.
Isotope ?-35 has an atomic mass of 35.
75% of all atoms of element ? are of this form.
Isotope ?-37 has an atomic mass of 37.
25% of all atoms of element ? are of this form.
What is the relative atomic mass of the element?
Now, what is this element's name?
Answer: Chlorine, amu 35.45
Calculate the relative atomic mass by multiplying the mass of each isotope by its percentage, then sum. The relative atomic mass is 35.5, which corresponds to the element chlorine.
Explanation:The relative atomic mass of an element is the weighted average mass of the atoms in a naturally occurring sample of the element, taking into account the percentages of each isotope present. You seem to have two isotopes of the same element present: Isotope-35 and Isotope-37.
To calculate the relative atomic mass, you multiply the mass of each isotope by the percentage (in decimal form) in which it is found, and then sum those values. Let's see how this works:
Isotope-35: 35 * 0.75 = 26.25 Isotope-37: 37 * 0.25 = 9.25
Add these two values together (26.25 + 9.25) to find the relative atomic mass: 35.5. The element with a relative atomic mass of approximately 35.5 is chlorine (Cl).
Learn more about Relative Atomic Mass here:https://brainly.com/question/35559122
#SPJ12
Lattice energy is __________. A. the energy required to convert a mole of ionic solid into its constituent ions in the gas phase B. the sum of ionization energies of the components in an ionic solid C. the sum of electron affinities of the components in an ionic solid D. the energy required to produce one mole of an ionic compound from its constituent elements in their standard states E. the energy given off when gaseous ions combine to form one mole of an ionic solid
Answer: Option (A) is the correct answer.
Explanation:
Lattice energy is defined as the energy needed by an ionic solid to break its constituent components into gaseous ions.
For example, [tex]NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)[/tex]
Two factors that help in determining lattice energy are changes on the ions and size of ions.
So, larger is the charge on ions, smaller will be the size of ions. As a result, more energy is required to break the bond between ions. Hence, lattice energy will also increase.
Whereas when smaller is the charge on ions, larger will be the size of ions. As a result, less energy is required to break the bond between ions. Hence, lattice energy will also decrease.
Lattice energy is the energy required to convert a mole of ionic solid into its constituent ions in the gas phase. It is an important factor in the ionic bond strength and varies depending on the charges of the ions and the distances between them. The lattice energy can be calculated via Coulomb's law.
Explanation:Lattice energy is the energy required to convert a mole of ionic solid into its constituent ions in the gas phase, as option A suggests. Just to give an example, for the ionic solid MX, the lattice energy is the enthalpy change of the process: AH lattice MX (s) Mn+ (g) + X(g). Lattice energy gives us an insight into ionic bond strength, which varies depending on the charges of the ions and the distances between them.
The lattice energy of an ionic crystal can be expressed by an equation derived from Coulomb's law, which governs the forces between electric charges. The lattice energy increases as the charges of the ions increase and the sizes of the ions decrease. For instance, the lattice energy of LiF is 1023 kJ/mol, whereas that of MgO is significantly higher at 3900 kJ/mol due to increased charges.
Learn more about Lattice Energy here:https://brainly.com/question/34679410
#SPJ3
The rate constant k of the second-order reaction CH3CHO→CH4+CO is 6.73×10−3Lmol s. The concentration of CH3CHO at t=50.0 seconds is 0.151 mol/L. What was the initial concentration of CH3CHO?
Answer:
The initial concentration of ethanal was 0.1590 mol/L.
Explanation:
Integrated rate law for second order kinetic:
[tex]k=\frac{1}{t}(\frac{1}{[A]}-\frac{1}{[A]_o})[/tex]
k = Rate constant =[tex]6.73\times 10^{-3} L mol s[/tex]
t = Time elapsed = 50.0 s
[tex][A]_o[/tex] =initial concentration of ethanal
[A] = Concentration of ethanal left after time t = 0.151 mol/L
On substituting the value:
[tex]6.73\times 10^{-3} L mol s=\frac{1}{50.0 s}(\frac{1}{0.151 mol/L}-\frac{1}{[A_o]})[/tex]
[tex][A]_o=0.1590 mol/L[/tex]
The initial concentration of ethanal was 0.1590 mol/L.
When titrating a strongmonoprotic acid and KOH at 25°C, theA) pH will be less than 7 at the equivalence point.B) pH will be greater than 7 at the equivalence point.C) titration will require more moles of base than acid to reach the equivalence point.D) pH will be equal to 7 at the equivalence point.E) titration will require more moles of acid than base to reach the equivalence
Answer:
D => pH will be equal to 7 at equivalence point
Explanation:
For Strong Acid + Strong Base titrations, pH = 7 as neither ion of the salt produced will undergo hydrolysis as would weak electrolyte titrations.
BOTH CASES ARE PRESENTED FOR CONTRAST ...
Stong monoprotic acid being titrated with NaOH ...
=> HX + NaOH => NaCl + H₂O
=> NaCl => Na⁺ + Cl⁻
=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)
=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)
This leaves only the Auto Ionization of Water as the reaction affecting the pH of the solution at the equivalence point of a strong acid + strong base titration. That is ...
HOH ⇄ H⁺ + OH⁻ & [H⁺] = [OH⁻] = 1 x 10⁻⁷M
pH = -log[H⁺] = -log(1 x 10⁻⁷) = -(-7) = 7
----------------------------------
Weak Acid + Strong Base titration => pH > 7 at equivalence point
Assume => HA = weak acid
=> HA + NaOH => NaA + H₂O
=> NaA => Na⁺ + A⁻ & A⁻ is the conjugate base of a weak acid HA
=> Na⁺ + H₂O => No Rxn ( formation of NaOH will not occur as a strong electrolyte prefers to remain 100% ionized)
=> A⁻ + H₂O => HA + OH⁻ => Excess OH⁻ at equivalence pt => pH > 7
-------------------------------------
Weak Base + Strong Acid titration => pH < 7 at equivalence point
Weak Bases => ammonia (NH₃) or ammonia derivatives (RNH₂)* in water.
(ammonia in water) => :NH₃ + H₂O => NH₄OH ⇄ NH₄⁺ + OH⁻
(ammonia derivative in water) => RN:-H₂ + H₂O => RNH₃OH ⇄ RNH₃⁺ + OH⁻
Titration of weak base with strong acid ...
=> NH₄OH + HX => NH₄X + H₂O
=> NH₄X => NH₄⁺ + X⁻
=> X⁻ + H₂O => No Rxn (formation of HX will not occur as a strong electrolyte prefers to remain 100% ionized)
=> NH₄⁺ + HOH ⇄ NH₄OH + H⁺ => Weak base is in molecular form with excess hydronium ions (H₃O⁺ = H⁺) at equivalence point => pH < 7.
----------------------
*RNH₂ is a primary amine used in the illustration, but the above process will also occur for secondary (R₂N:-H) and tertiary amines (R₃N:) in water also.
Classify each of these reactions. Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g)Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g) acid–base neutralization precipitation redox none of the above 2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq)2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq) acid–base neutralization precipitation redox none of the above CaO(s)+CO2(g)⟶CaCO3(s)CaO(s)+CO2(g)⟶CaCO3(s) acid–base neutralization precipitation redox none of the above KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s)KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s) acid–base neutralization precipitation redox none of the above
The first reaction is a redox reaction, the second and third reactions are none of the above, and the fourth reaction is a precipitation reaction.
Explanation:The reactions asked in the question can be classified as follows:
Ba(ClO₃)₂(s)⟶BaCl₂(s)+3O₂(g): This is a redox reaction. It involves a transfer of electrons which is characterized by changes in oxidation states. Here, chlorine is reduced from +5 in ClO₃⁻ to -1 in Cl⁻, and oxygen is oxidized from -2 in ClO₃⁻ to 0 in O₂.2NaCl(aq)+K₂S(aq)⟶Na₂S(aq)+2KCl(aq): This is a type of double displacement reaction known as 'metathesis', but it can't be classified as acid-base neutralization, redox, or precipitation, so it would fall under none of the above.CaO(s)+CO₂(g)⟶CaCO₃(s): It's a combination reaction resulting in the formation of a single product, calcium carbonate. Given the options, this reaction would also be classified as none of the above.KOH(aq)+AgNO₃(aq)⟶KNO₃(aq)+AgOH(s): This is a precipitation reaction where soluble ions in solution react to form an insoluble product, AgOH(s), which precipitates out of solution.Learn more about Chemical reaction classification here:https://brainly.com/question/8117294
#SPJ3
The first reaction is an oxidation-reduction (combustion) reaction, the second reaction is a precipitation reaction, the third reaction is an acid-base neutralization reaction, and the fourth reaction is also an acid-base neutralization reaction.
Explanation:The first reaction, Ba(ClO3)2(s)⟶BaCl2(s)+3O2(g), is a decomposition reaction also known as oxidation-reduction (combustion). The solid compound breaks down into a solid product and a gas.
The second reaction, 2NaCl(aq)+K2S(aq)⟶Na2S(aq)+2KCl(aq), is a precipitation reaction. The combination of two aqueous solutions forms an insoluble product.
The third reaction, CaO(s)+CO2(g)⟶CaCO3(s), is an acid-base neutralization reaction. The solid oxide reacts with a gas to form a solid carbonate.
The fourth reaction, KOH(aq)+AgNO3(aq)⟶KNO3(aq)+AgOH(s), is also an acid-base neutralization reaction. The aqueous solutions react to form a solid hydroxide and an aqueous salt.
Learn more about Chemical Reactions here:
https://brainly.com/question/34137415
#SPJ11
In which main energy level does the 'd' sublevel first appear? K (first main energy level) L (second main energy level) M (third main energy level) N (fourth main energy level)
Answer:
M (third main energy level)
Explanation:
The third main energy level bears the first appearance of the 'd' sublevel. The principal quantum number(n) depicts the main energy levels in which an orbital is located. It takes values of n=1,2,3,4,5..... and it can be represented by the shells k,l,m,n.......
The subshells in these main orbitals are represented by s,p,d and f. For the K shell, the principal quantum number is m and its sublevel notations are s,p and d. This is where the d-sublevel first appears.
The 'd' sublevel first appears in the third main energy level (M). This is because the electron configuration in atoms is organized into main energy levels and sublevels, which define an electron's distance from the nucleus and energy.
Explanation:The 'd' sublevel first appears in the third main energy level, also labeled as M. The electron configuration in atoms is organized into main energy levels and sublevels, which help define an electron's relative distance from the nucleus and its energy. The main energy levels are generally labeled K, L, M, N, etc., starting from the nucleus. Each energy level has one or more sublevels: s, p, d, f. The 's' sublevel appears in all main energy levels, the 'p' sublevel starts from the second (L), and the 'd' sublevel commences from the third (M) main energy level. Therefore, the 'd' sublevel does not exist in the first (K) or second (L) main energy levels.
Learn more about 'd' sublevel here:https://brainly.com/question/34831957
#SPJ6
An amino acid A, isolated from the acid-catalyzed hydrolysis of a peptide antibiotic, gave a positive ninhydrin test and had a specific optical rotation (HCl solution) of 37.5 mL/(g·dm). Compound A was not identical to any of the 20 essential amino acids. The isoelectric point of compound A was found to be 9.4. Compound A can be prepared by the reaction of L-glutamine with Br2 in NaOH followed by acidification. Suggest a structure for A.
A possible structure for compound A is γ-Bromoglutamic acid (2-amino-4-bromobutanedioic acid).
What is this structure?
Ninhydrin test: A positive ninhydrin test indicates the presence of a primary or secondary amine. Glutamine has a primary amine, which would explain the positive test.
Specific optical rotation: The specific rotation (37.5 mL/(g·dm)) suggests chirality, which glutamine also possesses.
Not one of the 20 essential amino acids: This eliminates most common amino acids.
Isoelectric point (pI) of 9.4: This is consistent with γ-bromoglutamic acid, as the additional bromine group introduces a new acidic side chain (pKa ≈ 4.5) that lowers the pI compared to glutamine (pI ≈ 5.6).
Synthesis from L-glutamine and Br2/NaOH: This reaction is known to selectively brominate at the γ-carbon of glutamine, making it a plausible route for obtaining γ-bromoglutamic acid.
You want to remove as much CO2 gas as possible from a water solution. Which of the following treatments would?
a. cool the solution
b. filter the solution
c. boil the solution
d. aerate the solution
26. The heat of neutralization of HCl(aq) by NaOH(aq) is produced. If 50.00 mL of 1.05 M NaOH is added to 25.00 mL of 1.86 M HCl, with both solutions originally at what will be the final solution temperature? (Assume that no heat is lost to the surrounding air and that the solution produced in the neutralization reaction has a density of and a specific heat capacity of) Petrucci, Ralph H.. General Chemistry (p. 291). Pearson Education. Kindle Edition.
Answer:
T₂ = 33.2⁰C
Explanation:
Needed in problem text is the temperature of the acid and base solutions before reaction and the accepted (published) molar heat of neutralization (strong acids) for HCl by NaOH. => Assuming solution temperature is 25⁰C* for both acid and base solutions before reaction and the molar heat of neutralization for HCl by NaOH is 55.7Kj/mole,** then …
* Standard Thermodynamic conditions => 25⁰C (298K) & 1.00 Atm.
**(https://chemdemos.uoregon.edu/demos/Heat-of-Neutralization-HClaq-NaOHaq)
NaOH + HCl => NaCl + H₂O
=> 50ml(1.05M NaOH) + 25ml(1.86M HCl)
=> 0.05(1.05)mole NaOH + 0.025(1.86)mole HCl
=> 0.0525mole NaOH + 0.0465mole HCl
=> (0.0525 – 0.0465)mole NaOH excess + 0.0465mole NaCl + H₂O + Heat
=> 0.0060mole NaOH in excess + 0.0465mole NaCl + H₂O + Heat
Note => NaOH neutralizes 0.0465mole HCl (Limiting Reactant) and produces 0.0465mole NaCl & H₂O + Heat of Neutralization.
----------------------------------------------------------
Heat flow (Q) = Heat received by solvent water from the NaOH + HCl reaction
=> Q = mcΔT = mc(T₂ - T₁) = specific heat produced by 0.0465mole HCl
=> Q(m) = Molar Heat of Neutralization = Q/mole = mcΔT/n
- m = mass of solvent water receiving heat = (50ml + 25ml)1g/ml = 75g
- c = specific heat of water = 4.184j/g⁰C
- T₂ - T₁ = T₂ - 25⁰C
- Q(m) = 55,700 joules/mole (published heat of neutralization)
- n = moles of HCl neutralized = 0.0465mole HCl
=>Q(m) = mcΔT/n = 55,700j/mole = (75g)(4.184j/g⁰C)(T₂ - 25⁰C) /0.0465mole
Solving for T₂ => T₂ = 33.2⁰C
Final answer:
The final temperature for the neutralization of HCl by NaOH cannot be determined without specific values for initial temperatures, heat of neutralization, specific heat capacity, and density. For a similar reaction with provided values, the final temperature can be calculated based on the produced heat and the specific heat capacity.
Explanation:
The question pertains to the heat of neutralization of HCl(aq) by NaOH(aq). To find out the final temperature of the solution, we would typically calculate the amount of heat produced during the reaction and use it together with the specific heat capacity of the solution. However, the details required for calculation (initial temperatures, heat of neutralization value, specific heat capacity, density) are not provided in the question. In an example provided in the reference, when 50.0 mL of 1.00 M HCl and 50.0 mL of 1.00 M NaOH, both at 22.0 °C in a coffee cup calorimeter, the mixture reached 28.9 °C. The exothermic reaction between HCl and NaOH produces NaCl and H₂O, and the heat produced can be calculated using the change in temperature, the mass of the solution, and the specific heat capacity.
Calcium hydride (CaH2) reacts with water to form hydrogen gas: CaH2(s) + 2H2O(l) → Ca(OH)2(aq) + 2H2(g) How many grams of CaH2 are needed to generate 48.0 L of H2 gas at a pressure of 0.995 atm and a temperature of 32 °C?
Answer:
40.g CaH2
Explanation:
1. ideal gas law(PV = nRT) → use ideal gas law first when volume is given
P = 0.995atm
V = 48.0L H2
n = ?
R = 0.0821L atm/molK
T = 32 + 273 = 305K
n = (0.995atm x 48.0L H2)/(0.0821L atm/molK x 305K) → do not simplify as small decimals might change the answer
2. Conversions
2 H2 and 1 CaH2 → 1/2
(mole of H2) x 1/2 x (molar mass of CaH2)
(0.995atm x 48.0L H2)/(0.0821L atm/molK x 305K) x 1/2 x (40.08 + 2.02) = 40.g CaH2
the longer answer will be 40.14887882 but as the minimum sigfig given in the question is 2, it is 40.g CaH2.
Hope it helped!
If 3.50 g of the unknown compound contained 0.117 mol of C and 0.233 mol of H, how many moles of oxygen, O, were in the sample? Express your answer to three significant figures and include the appropriate units.
Answer:
0.116 g.
Explanation:
Firstly, we can find the mass of C and H in the unknown compound:mass of C = (no. of moles of C)(atomic mass of C) = (0.117 mol)(12.01 g/mol) = 1.405 g.
mass of H = (no. of moles of H)(atomic mass of H) = (0.233 mol)(1.01 g/mol) = 0.235 g.
∴ mass of O = mass of unknown sample - (mass of C + mass of H) = 3.50 g - (1.405 g + 0.235) = 1.86 g.
∴ no. of moles of O = (mass of O)/(atomic mass of O) = (1.86 g)/(16.0 g/mol) = 0.116 g.
(a) Write the balanced neutralization reaction that occurs between H2SO4 and KOH in aqueous solution. Phases are optional. (b) Suppose 0.750 L of 0.480 M H2SO4 is mixed with 0.700 L of 0.290 M KOH. What concentration of sulfuric acid remains after neutralization?
These are two questions and two answers
Answer:
Question 1:
H₂SO₄ (aq) + 2KOH (aq) → K₂SO₄ (aq) + 2H₂O (l)Question 2:
0.201 MExplanation:
Question 1:
The neutralization reaction that occurs between H₂SO₄ and KOH is an acid-base reaction.
The products of an acid-base reaction are salt and water.
This is the sketch of such neutralization reaction:
1) Word equation:
sulfuric acid + potassium hydroxide → potassium sulfate + water↑ ↑ ↑ ↑
acid base salt water
2) Skeleton equation (unbalanced)
H₂SO₄ + KOH → K₂SO₄ + H₂O#) Balanced chemical equation (including phases)
H₂SO₄ (aq) + 2KOH (aq) → K₂SO₄ (aq) + 2H₂O (l) ← answerQuestion 2:
1) Mol ratio:
Using the stoichiometric coefficients of the balanced chemical equation you get the mol ratio:
1 mol H₂SO₄ (aq) : 2 mol KOH (aq) : 1 mol K₂SO₄ (aq) : mol 2H₂O (l)2) Moles of H₂SO₄:
V = 0.750 literM = 0.480 mol/literM = n/V ⇒ n = M×V = 0.480 mol/liter × 0.750 liter = 0.360 mol3) Moles of KOH:
V = 0.700 literM = 0.290 mol/literM = n/V ⇒ n = M × V = 0.290 mol/liter × 0.700 liter = 0.203 mol4) Determine the limiting reagent:
a) Stoichiometric ratio:
1 mol H₂SO₄ / 2 mol NaOH = 0.500 mol H₂SO4 / mol NaOH
b) Actual ratio:
0.360 mol H₂SO4 / 0.203 mol NaOH = 1.77 mol H₂SO₄ / mol NaOH
Since hte actual ratio of H₂SO₄ is greater than the stoichiometric ratio, you conclude that H₂SO₄ is in excess.
5) Amount of H₂SO₄ that reacts:
Since, KOH is the limiting reactant, using 0.203 mol KOH and the stoichiometryc ratio 1 mol H₂SO₄ / 2 mol KOH, you get:x / 0.203 mol KOH = 1 mol H₂SO₄ / 2 mol KOH ⇒
x = 0.203 / 2 = 0.0677 mol of H₂SO₄
6) Concentration of H₂SO₄ remaining:
Initial amount - amount that reacted = 0.360 mol - 0.0677 mol = 0.292 molTotal volume = 0.700 liter + 0.750 liter = 1.450 literConcetration = MM = n / V = 0.292 mol / 1.450 liter = 0.201 M ← answer
The balanced neutralization reaction between H2SO4 and KOH is H2SO4 + 2KOH → K2SO4 + 2H2O. To calculate the concentration of sulfuric acid remaining after neutralization, use the moles of KOH reacted and the mole ratio in the balanced equation.
Explanation:(a) The neutralization reaction between H2SO4 (sulfuric acid) and KOH (potassium hydroxide) in aqueous solution can be represented as:
H2SO4 + 2KOH → K2SO4 + 2H2O
(b) To determine the concentration of sulfuric acid remaining after neutralization, we need to calculate the moles of KOH reacted using the given volumes and concentrations. Since H2SO4 has a 1:2 mole ratio with KOH in the equation, half of the moles of KOH reacted will be the moles of sulfuric acid neutralized. Therefore, the concentration of sulfuric acid remaining can be calculated by subtracting the moles of sulfuric acid neutralized from the initial concentration.
Learn more about Neutralization reaction here:https://brainly.com/question/11403609
#SPJ3
Which one of the following is an oxidation-reduction reaction?
NaOH + HNO3 --> H2O + KNO3
NaOH + HNO3 --> H2O + KNO3
SO3 + H2O --> H2SO4
CaCl2 + Na2CO3 --> CaCO3 + 2 NaCl
CH4 + 2 O2 --> CO2 + 2 H2O
Al2(SO4)3 + 6 KOH --> 2 Al(OH)3 + 3 K2SO4
Answer:
CH4 + 2 O2 --> CO2 + 2 H2O
Explanation:
CH4 + 2 O2 --> CO2 + 2 H2O is the only reaction where an element (oxygen) undergoes a change in oxidation state. In this reaction oxygen changes disproportionately to O⁻². That is ...
O₂ → CO₂ + 4e⁻ ==> oxidation
O₂ + 4e⁻ → H₂O ==> reduction
2O₂ + 4e⁻ → CO₂ + H₂O + 4e⁻ ==> Net oxidation-reduction
=> 4e⁻ gained by one mole O₂ in formation of CO₂ = 4e⁻ lost by the other mole O₂ in forming H₂O.
Then...
Including CH₄ (whose elements do not undergo changes in oxidation states) requires doubling reaction to balance by mass thus giving ...
2CH₄ + 2O₂ + 8e⁻ → 2CO₂ + 2H₂O + 8e⁻
Cancelling 8 reduction electrons on left with 8 oxidation electrons on right gives...
2CH₄ + 2O₂ → 2CO₂ + 2H₂O
Answer:
CH₄ + 2O₂ ⟶ CO₂ + 2H₂O
Explanation:
To identify an oxidation-reduction reaction, you must determine the oxidation number of every atom involved in the reaction and see if it changes.
The only reaction where two elements change oxidation number is the oxidation of methane.
Here's the oxidation number of every atom involved:.
[tex]\stackrel{\hbox{-4}}{\hbox{C}}\stackrel{\hbox{+1}}{\hbox{H}}_{4} +\stackrel{\hbox{0}}{\hbox{O}}_{2} \, \longrightarrow \, \stackrel{\hbox{+4}}{\hbox{C}}\stackrel{\hbox{-2}}{\hbox{O}}_{2} + \stackrel{\hbox{+1}}{\hbox{H}}_{2}\stackrel{\hbox{-2}}{\hbox{O}}[/tex]
We see that some elements change oxidation numbers.
C: -4 ⟶ +4; increase in oxidation number = oxidation
O: 0 ⟶ -2; decrease in oxidation number = reduction
H: +1 ⟶ +1; no change.
The reaction is an oxidation-reduction reaction, because carbon is oxidized, and oxygen is reduced.
Given the following information: Mass of proton = 1.00728 amu Mass of neutron = 1.00866 amu Mass of electron = 5.486 × 10^-4 amu Speed of light = 2.9979 × 10^8 m/s Calculate the nuclear binding energy (absolute value) of 3Li^6. which has an atomic mass of 6.015126 amu. J/mol.
Answer: The nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]
Explanation:
For the given element [tex]_3^6\textrm{Li}[/tex]
Number of protons = 3
Number of neutrons = (6 - 3) = 3
We are given:
[tex]m_p=1.00728amu\\m_n=1.00866amu\\A=6.015126amu[/tex]
M = mass of nucleus = [tex](n_p\times m_p)+(n_n\times m_n)[/tex]
[tex]M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu[/tex]
Calculating mass defect of the nucleus:
[tex]\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol[/tex]
Converting this quantity into kg/mol, we use the conversion factor:
1 kg = 1000 g
So, [tex]0.032694g/mol=0.032694\times 10^{-3}kg/mol[/tex]
To calculate the nuclear binding energy, we use Einstein equation, which is:
[tex]E=\Delta mc^2[/tex]
where,
E = Nuclear binding energy = ? J/mol
[tex]\Delta m[/tex] = Mass defect = [tex]0.032694\times 10^{-3}kg/mol[/tex]
c = Speed of light = [tex]2.9979\times 10^8m/s[/tex]
Putting values in above equation, we get:
[tex]E=0.032694\times 10^{-3}kg/mol\times (2.9979\times 10^8m/s)^2\\\\E=2.938\times 10^{12}J/mol[/tex]
Hence, the nuclear binding energy of the given element is [tex]2.938\times 10^{12}J/mol[/tex]
The binding energy of the lithium nucleus is 2.94 * 10^14 J/mol.
What is binding energy?The term binding energy refers to the energy that hold the nucleons in the atom together.
We know that the atomic mass of the Li is 6.015126 amu. Note that there are three protons and three neutrons. Hence;
Mass of protons= 3(1.00728 amu) = 3.02184
Mass of neutrons = 3(1.00866 amu) = 3.02598
Mass defect = (3.02184 + 3.02598) - 6.015126 amu = 0.032694 amu = 0.032694 g/mol
Now;
E = mc^2 = (0.032694 g/mol * (3 * 10^8)^2) = 2.94 * 10^14 J/mol
Learn more about binding energy: https://brainly.com/question/11334504
Which of the following reactions will not occur as written? Which of the following reactions will not occur as written? Sn (s) + 2AgNO3 (aq) → 2Ag (s) + Sn(NO3)2 (aq) Zn (s) + Pb(NO3)2 (aq) → Pb (s) + Zn(NO3)2 (aq) Co (s) + 2HI (aq) → H2 (g) + CoI2 (aq) Mg (s) + Ca(OH)2 (aq) → Ca (s) + Mg(OH)2 (aq) Co (s) + 2AgCl (aq) → 2Ag (s) + CoCl2 (aq)
Answer: Option (4) is the correct answer.
Explanation:
According to the reactivity series, a more reactive metal has the ability to replace a less reactive metal in a chemical reaction.
It is known that calcium is more reactive than magnesium. So, in a chemical reaction magnesium can never replace calcium.
For example, [tex]Mg(s) + Ca(OH)_2(aq) \rightarrow Ca(s) + Mg(OH)_2(aq)[/tex]
Therefore, this given reaction is not possible. But rest all given reactions are possible.
Thus, we can conclude that out of the given options [tex]Mg(s) + Ca(OH)_2(aq) \rightarrow Ca(s) + Mg(OH)_2(aq)[/tex] reaction will not occur as written.
OPTION D.
The reaction Mg (s) + Ca(OH)₂ (aq) → Ca (s) + Mg(OH)₂ (aq) will not occur as written because in the activity series of metals, magnesium (Mg) is more reactive than calcium (Ca), and hence, Mg cannot displace Ca from its compound.
Explanation:In the given set of reactions, Mg (s) + Ca(OH)₂ (aq) → Ca (s) + Mg(OH)₂ (aq) will not occur as written. The explanation is based on activity series of metals. In this series, magnesium (Mg) is more reactive than calcium (Ca). So, Mg cannot displace Ca from its compound. In other words, a more reactive metal can displace a less reactive metal from its compound in a solution, but not the other way round. The other reactions would occur as represented since in each of them the free metal is more reactive than the one in the compound.
Learn more about Chemical Reactions here:https://brainly.com/question/34137415
#SPJ3
A KCl solution is prepared by dissolving 40.0 g KCl in 250.0 g of water at 25°C. What is the vapor pressure of the solution if the vapor pressure of water at 25°C is 23.76 mm Hg?
Answer:
22.0 mmHgExplanation:
The vapor pressure of a solution is a colligative property, which means that it is determined by the number of particles (molecules or ions) of solute present in a solution.
Raoult's law permits the calculations of the change of the vapor pressure of a solvent when a solute is added.
The equation is:
P solvent - P solution = ΔP = X solute × P solvenWhere:
P solvent = vapor pressure of the pure solvent.P solution = vapor pressure of the solutionX solute = molar fraction of the soluteIn the case of ionic solutes, you must take into account the number of ions that result from the ionization.
Calculating the molar fraction:
number of moles = mass in grams / molar massnumber of moles of KCl: 40.0 g / 74.5513 g/mol = 0.567 molmoles of ions = 2× number of moles of KCl = 1.134 molmoles of water: 250.0g / 18.015 g/mol = 13.877 moltotal moles = 1.134 mol + 13.877 mol = 15.011 molX solute = moles of ions / total moles = 1.134 mol / 15.011 mol = 0.0755Calculating the change in the vapor pressure of the solution:
ΔP = X solute × P solvent = 0.0755 × 23.76 mmHg = 1.78 mmHgVapor pressure of the solution:
P solution = P solvent + ΔP = 23.76 mmHg - 1.79 mm Hg = 21.97mmHgRounding to three significant figures (because 40.0g has three significant figures): 22.0 mmHg ← answer.
Raoult's law states that for a given solution, the partial pressure of each component is equal to the mole fraction in that solution. The vapor pressure of the solution is 22 mmHg.
The vapor pressure is defined as the force exerted by the vapors in the walls of a container. It is a colligative property, such that the amount of substance increased or decreased is dependent on the amount of solute present.
The equation can be represented as:
P[tex]_{\text{solvent}}[/tex] - P[tex]_{\text{solution}}[/tex] = [tex]\Delta[/tex] P = X [tex]_{\text{solute}}[/tex] x P[tex]_{\text{solvent}}[/tex]where,
P[tex]_{\text{solvent}}[/tex] = vapor pressure of the pure solventP[tex]_{\text{solution}}[/tex] = vapor pressure of the solutionX[tex]_{\text{solute}}[/tex] = molar fraction of the soluteNow, calculating the mole fraction, where:
Moles of ions = 2 × number of moles of KCl = 1.134 molNumber of moles KCl = [tex]\dfrac{40}{74.55}&= 0.567[/tex] molesTotal moles are: 1.134 mol + 13.877 mol = 15.011 molX[tex]_{\text{solute}}[/tex] = [tex]\dfrac{1.134}{15.01}&= 0.075[/tex]Now, the vapor pressure of the solution can be calculated as:
[tex]\Delta[/tex] P = X[tex]_{\text{solute}}[/tex] x P[tex]_{\text{solvent}}[/tex]
[tex]\Delta[/tex] P = 0.0755 × 23.76 mmHg = 1.78 mmHg
Hence, the vapor pressure of the solution:
P[tex]_{\text{solution}}[/tex] = [tex]\Delta[/tex] P + P[tex]_{\text{solvent}}[/tex]
P[tex]_{\text{solution}}[/tex] = 23.76 mmHg - 1.79 mm Hg = 21.97mmHg
Therefore, the vapor pressure of the solution is approximately 22 mmHg.
To know more about vapor pressure, refer to the following link:
https://brainly.com/question/7991371?referrer=searchResults
H2 (g) + Br2 (g) <=> 2 HBr (g)
the equilibrium constant is 13485. At equilibrium the H2 concentration is 0.05 M, while the Br2 concentration is 0.023 M. Calculate the HBr concentration at equilibrium, to 1 decimal. Be careful with the units.
Answer:
[HBr] = 4.7M at equilibrium
Explanation:
When 10.g of CH3COOH is combusted in a sealed calorimeter, it releases enough energy to heat 2000. g of water from 23.5 °C to 34.3 °C. a. Calculate the energy released per 10 g of CH3COOH. b. Calculate the energy released per mole of CH3COOH.
Answer:
a. 90.288 kJ.
b. - 54.06 kJ/mol.
Explanation:
a. Calculate the energy released per 10 g of CH₃COOH.
We can calculate the amount of heat (Q) released to water using the relation:Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = ??? J).
m is the mass of water (m = 2000.0 g).
c is the specific heat capacity of solution (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = 34.3°C - 23.5°C = 10.8°C).
∴ Q = m.c.ΔT = (2000.0 g)(4.18 J/g.°C)(10.8°C) = 90288 J = 90.288 kJ.
b. Calculate the energy released per mole of CH₃COOH.
To find ΔH:∵ ΔH = Q/n
no. of moles of CH₃COOH (n) = mass/atomic mass = (10.0 g)/((60.052 g/mol) = 0.167 mol.
∴ ΔH = - Q/n = - (90.288 kJ)/(0.167 mol) = - 54.06 kJ/mol.
The negative sign is not from calculation, but it is an indication that the reaction is exothermic.
The vapor pressure of liquid acetone, CH3COCH3, is 100 mm Hg at 281 K. A 6.06E-2 g sample of liquid CH3COCH3 is placed in a closed, evacuated 360. mL container at a temperature of 281 K. Calculate what the ideal gas pressure would be in the container if all of the liquid acetone evaporated.
Final answer:
The ideal gas pressure in the container if all the liquid acetone evaporated is calculated by converting the sample mass to moles, ensuring all units are consistent, and applying the Ideal Gas Law. The result is an ideal gas pressure of approximately 0.064 atm.
Explanation:
To calculate the ideal gas pressure in the container if all of the liquid acetone evaporated, we need to determine the amount of acetone in moles and use the Ideal Gas Law. Given that the vapor pressure of acetone is 100 mm Hg at 281 K, we will first convert the 6.06E-2 g of acetone into moles using acetone's molar mass.
The molar mass of acetone (CH3)2CO is approximately 58.08 g/mol. By dividing the mass of the acetone sample by its molar mass, we obtain:
Number of moles = mass/molar mass = 6.06E-2 g / 58.08 g/mol ≈ 1.04E-3 mol
Next, we apply the Ideal Gas Law which is PV=nRT. To use this law, we must ensure all units are consistent. The vapor pressure must be in atmospheres, temperature in Kelvin, and volume in liters. The conversion from mm Hg to atm is 1 atm = 760 mm Hg, so 100 mm Hg = 100/760 atm. Also, convert the volume from mL to L by dividing by 1000.
Using these conversions and the Ideal Gas Law:
P = (nRT)/V = (1.04E-3 mol * 0.0821 L atm/(K mol) * 281 K) / (360 mL * 1 L/1000 mL) ≈ 0.064 atm
This is the ideal gas pressure if all of the acetone vaporizes at 281 K in the 360 mL container.
When 1.50g of Ba is added to 100g of water in a container open tothe atmosphere, the reaction shown below occurs and the temperatureof the resulting solution rises from 22 degrees to 33.10 degrees.If the specific heat of the solution is 4.18J/(g*C), calculatedelta H for the reaction, as written.Ba (s)+2H2O(l) yields Ba(OH)2(aq)+H2
Answer:
- 431.15 kJ/mol.
Explanation:
Firstly, we can calculate the amount of heat (Q) released by the solution using the relation:Q = m.c.ΔT,
where, Q is the amount of heat released from the solution (Q = ??? J).
m is the mass of solution (m = 1.5 g + 100 g = 101.5 g).
c is the specific heat capacity of solution (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = 33.1°C - 22°C = 11.1°C).
∴ Q = m.c.ΔT = (101.5 g)(4.18 J/g.°C)(11.1°C) = 4709.4 J.
To find ΔH:∵ ΔH = Q/n
no. of moles of Ba (n) = mass/atomic mass = (1.50 g)/(137.3270 g/mol) = 0.011 mol.
∴ ΔH = - Q/n = (4709.4 J)/(0.011 mol) = - 431.15 kJ/mol.
The negative sign is not from calculation, but it is an indication that the reaction is exothermic.
The vapor pressure of water at 65oC is 187.54 mmHg. What is the vapor pressure of a ethylene glycol (CH2(OH)CH2(OH)) solution made by dissolving 22.37 g of ethylene glycol in 82.21 g of water?
Answer:
173.83 mmHg is the vapor pressure of a ethylene glycol solution.
Explanation:
Vapor pressure of water at 65 °C=[tex]p_o= 187.54 mmHg[/tex]
Vapor pressure of the solution at 65 °C= [tex]p_s[/tex]
The relative lowering of vapor pressure of solution in which non volatile solute is dissolved is equal to mole fraction of solute in the solution.
Mass of ethylene glycol = 22.37 g
Mass of water in a solution = 82.21 g
Moles of water=[tex]n_1=\frac{82.21 g}{18 g/mol}=4.5672 mol[/tex]
Moles of ethylene glycol=[tex]n_2=\frac{22.37 g}{62.07 g/mol}=0.3603 mol[/tex]
[tex]\frac{p_o-p_s}{p_o}=\frac{n_2}{n_1+n_2}[/tex]
[tex]\frac{187.54 mmHg-p_s}{187.54 mmHg}=\frac{0.3603 mol}{0.3603 mol+4.5672 mol}[/tex]
[tex]p_s=173.83 mmHg[/tex]
173.83 mmHg is the vapor pressure of a ethylene glycol solution.