Answer:
Speed of car A = 40 mph
Speed of car B = 50 mph
Step-by-step explanation:
Given:
Distance travelled by car A = 120 miles
Distance travelled by car B = 120 miles
To Find:
speed of each car = ?
Solution:
Let the speed of car A be x
then speed of car B is (x +10)
The Time taken for each car is same
Time taken for car A = Time taken for car B
We know that time = [tex]\frac{distance}{speed}[/tex]
Time taken for car A
=> [tex]\frac{120}{x}[/tex]---------------------------(1)
Similarly
Time taken for car B
=> [tex]\frac{150}{x+10}[/tex]-----------------------(2)
Equating (1) and (2), we get
[tex]\frac{120}{x}[/tex] = [tex]\frac{150}{x+10}[/tex]
[tex]120 \times (x+10) = 150 \times x[/tex]
120x + 1200 = 150x
1200 = 150x-120 x
1200 = 30x
[tex]x= \frac{1200}{30}[/tex]
x= 40
Speed of car A = 40mph
Speed of car B = (x+10) = (x+40) = 50mph
Please help me no one even bothers to help so plzzzz i BEGGGGGGGGGGG
Answer:
Here's what I get.
Step-by-step explanation:
When you dilate an object by a scale factor, you multiply its coordinates by the same number.
If the scale factor is 4, the rule is (x, y) ⟶ (4x, 4y)
Your table then becomes
[tex]\begin{array}{lcl}\textbf{Vertices of}& \, & \textbf{Vertices of}\\\textbf{VWXY}& \, & \textbf{V'W'X'Y'}\\V(-1 ,1) & \quad & V'(-4, 4)\\W(-1, 2) & \quad & W'(-4, 8)\\X(2, -1) & \quad & X'(8 ,-4)\\Y(2, 2) & \quad & Y'(8, 8)\\\end{array}[/tex]
The diagram below shows figure VVXY as a green bow-tie and its image V'W'X'Y' in orange.
The scale factor is greater than one, so the dilation is an enlargement.
PLEASE HELP ASAP!!! IM GONNA FAIL
Explain why the x-coordinates of the points where the graphs of the equations y = 2^−x and y = 4^x + 3 intersect are the solutions of the equation 2^−x = 4^x + 3.
Answer:
Explained.
Step-by-step explanation:
The graph of a line on the coordinate system represents the points that are on the graph that will satisfy the equation of the line.
Now, if two lines on the coordinate plane are graphed and they pass through the same point (h,k) that means the point satisfies both the equations of the lines.
Let us have two curve equations [tex]y = 2^{(- x)}[/tex] and [tex]y = 4^{x} + 3[/tex] and they pass through the same point (h,k) on the coordinate plane.
Then we can write [tex]k = 2^{(- h)}[/tex] ......... (1) and
[tex]k = 4^{h} + 3[/tex] .......... (2)
Now, solving equations (1) and (2) we get
[tex]2^{(- h)} = 4^{h} + 3[/tex] ........... (3)
Therefore, we have to solve the above equation (3) to get the value of h i.e. the x-coordinate of the point/s where the graph of the equations (1) and (2) intersect.
Now, converting h to x we will get the same result. (Answer)
Farmer Jones has 140 feet of fencing to construct a rectangular corral.
If x represents the width of the corral, which function can be used to express the area A of
the corral as a function of x?
A. A(x) = 70x
B. A(x) = x(70 - X)
C. A(x) = x(140 - X)
D. A(X) = X(140 - 2x)
The correct function to express the area of the rectangular corral as a function of its width, given a fixed amount of fencing, is A(x) = x(70 - x).
Explanation:The student is asking about expressing the area of a rectangular corral as a function of its width when a fixed amount of fencing is used. Given that Farmer Jones has 140 feet of fencing to construct the corral and the width is represented by x, the perimeter of the rectangle is twice the sum of its width and length.
Therefore, if x is the width, the length will be (140 - 2x)/2 or 70 - x. We can then express the area A as a function of x by multiplying the width by the length, leading to the function A(x) = x(70 - x).
Given constraints: x>=0, y>=0, 2x+2y>=4, x+y<=8 explain the steps for maximizing the objective function P=3x+4y.
Answer:
The maximum value of P is 32
Step-by-step explanation:
we have following constraints
[tex]x\geq 0[/tex] ----> constraint A
[tex]y\geq 0[/tex] ----> constraint B
[tex]2x+2y\geq 4[/tex] ----> constraint C
[tex]x+y\leq 8[/tex] ----> constraint D
Solve the feasible region by graphing
using a graphing tool
The vertices of the feasible region are
(0,2),(0,8),(8,0),(2,0)
see the attached figure
To find out the maximum value of the objective function P, substitute the value of x and the value of y of each vertex of the feasible region in the objective function P and then compare the results
we have
[tex]P=3x+4y[/tex]
so
For (0,2) ---> [tex]P=3(0)+4(2)=8[/tex]
For (0,8) ---> [tex]P=3(0)+4(8)=32[/tex]
For (8,0) ---> [tex]P=3(8)+4(0)=24[/tex]
For (2,0) ---> [tex]P=3(2)+4(0)=6[/tex]
therefore
The maximum value of P is 32
Answer:
Graph the inequalities given by the set of constraints. Find points where the boundary lines intersect to form a polygon. Substitute the coordinates of each point into the objective function and find the one that results in the largest value.
Step-by-step explanation:
the sample answer
The height of right circular cylinder P is twice the height of right circular
cylinder Q. The radis of the cylinders are of equal length. What number
times the volume of cylinder Q is equal to the volume of cylinder P?
Final answer:
The volume of cylinder P is twice the volume of cylinder Q because the height of cylinder P is twice that of cylinder Q, while the radii are equal.
Explanation:
The question is asking how many times larger the volume of cylinder P is as compared to cylinder Q, given that cylinder P has twice the height of cylinder Q but both have equal radii. To find the volume of a cylinder, we use the formula V = πr²h, where V is the volume, π is the constant pi (approximately 3.14159), r is the radius, and h is the height of the cylinder.
Since both cylinders have equal radii, the ratio of their volumes will only depend on the ratio of their heights. If we let the height of cylinder Q be h, then the height of cylinder P is 2h. Using the volume formula:
Volume of cylinder P, VP = πr²(2h) = 2πr²h.
By dividing the volume of P by the volume of Q, we get:
VP / VQ = (2πr²h) / (πr²h) = 2.
Therefore, the volume of cylinder P is twice the volume of cylinder Q.
Gerald has 10 cards, numbered 1-10. He shuffles the cards and fans them out on a table.
He will randomly draw one card from the deck.
Determine if the following statements are true or false
1. it is likely that the card greater then 6 will be drawn true or false
2. it is unlikely that a card that is a multiple of 3 will be drawn true or false 3. it is certain that a card with an even or odd number will be drawn. true or false 4. it is unlikely that a card with a number less than 8 will be drawn .
Answer:
1- false; 2- true; 3- true; 4-false
Final answer:
The statements about drawing a card higher than 6 and certain to draw an even or odd number are true. It's false that drawing a multiple of 3 is unlikely and that drawing a card less than 8 is unlikely.
Explanation:
The question involves determining the likelihood of drawing a specific card from a shuffled deck of 10 cards numbered 1-10. Let's assess each of the four statements provided.
Card greater than 6: There are 4 cards greater than 6 (7, 8, 9, 10), so the probability is 4 out of 10 or 0.4. This means it is likely, making the statement true.
Multiple of 3: There are 3 multiples of 3 (3, 6, 9), so the probability is 3 out of 10 or 0.3. This is less than half, but not very small, so the statement is subjective; however, we would not generally describe a 30% chance as 'unlikely', hence the statement might be considered false.
Even or odd number: Every card is either even or odd, so it is certain that an even or odd card will be drawn, making the statement true.
Number less than 8: There are 7 cards less than 8 (1 through 7), so the probability is 7 out of 10 or 0.7. This means it's more likely to draw a card less than 8, which means the statement is false.
1 3/8 - y = 4 1/2
find y
It gives you a lot of pts
Answer:
Exact Form:
y = − 25 /8
Decimal Form:
y = − 3.125
6 * (-7/3)
.......::::..,,,,................:
Answer:
-14
Step-by-step explanation:
6(-7/3)=-42/3=-14
There are 500 rabbits in Lancaster on February 1st. If the amount of rabbits triples every month. Write a function that represents the number of rabbits in Lancaster after “m” months. How many rabbits are there in Lancaster on August 1st?
Please explain
Answer:
10,93,500.
Step-by-step explanation:
On first February total number of rabbits were 500.
Now it is given that after each month rabbit population will become triple of initial.
So, after one month rabbits will become 3×500.
After two months they will become [tex]3^{2}[/tex]×500.
Thus , after m months total number of rabbits will become [tex]3^{m}[/tex]×500.
Now,
On August 1 , 7 months will get passed from February 1 so putting m = 7 in the equation we get ,
Total number of rabbits = [tex]3^{7}[/tex]×500 = 10,93,500.
The function that represents the number of rabbits is f(m) = 500 * 3^m. Replacing m with 6, which represents the 6 months from February 1st to August 1st, we get that there would be 145800 rabbits in Lancaster on August 1st.
Explanation:This question is about an exponential function, specifically a geometric sequence, where each term is tripled to get the next. The general form of an exponential function is f(m) = ab^m, where a is the initial amount, b is the rate of growth, and m is the time period.
In this case, the initial amount (a) of rabbits is 500, the rate of growth (b) is 3 (as the population triples every month), and m represents the months passed. Hence, the function relating to the rabbit population becomes f(m) = 500 * 3^m.
For the rabbit population on August 1st, we have to consider that February 1st to August 1st is 6 months. Thus, replacing m with 6 in our function: f(6) = 500 * 3^6, which equals 145800, so there would be 145800 rabbits in Lancaster on August 1st.
Learn more about Exponential function here:https://brainly.com/question/15352175
#SPJ3
Which of the following sets of numbers is a Pythagorean Triple?
I. 1, 1, 2
II. 3, 4, 7
III. 6, 10, 60
IV. 9, 12, 15
Answer:
i think IV.
Step-by-step explanation:
A ball is thrown vertically from the top of a building. The height of the ball after t seconds can be given by the function s(t)= -0.1(t-2)^2 + 10
meters. What is the estimated instantaneous velocity of the ball after 4 seconds.
The instantaneous velocity of the ball after 4 seconds is -0.4 m/s
Step-by-step explanation:
If f(x) is the function which represents the distance that a particle moves after x seconds, with velocity v and acceleration a, then
v(x) = f'(x) ⇒ first derivativea(x) = f"(x) ⇒ second derivative∵ A ball is thrown vertically from the top of a building
∵ The height of the ball after t seconds can be given by the
function s(t)= -0.1(t -2)² + 10
- To find the function of the velocity differentiate s(t)
∵ s(t) = -0.1(t - 2)² + 10
- Solve the bracket
∵ (t - 2)² = t² - 4t + 4
∴ s(t) = -0.1(t² - 4t + 4) + 10
- Multiply the bracket by -0.1
∴ s(t) = -0.1t² + 0.4t - 0.4 + 10
- Add the like terms
∴ s(t) = -0.1 t² + 0.4t + 9.6
Now let us differentiate s(t)
∵ s'(t) = -0.1(2)t + 0.4(1)
∴ s'(t) = -0.2t + 0.4
- s'(t) is the function of velocity after time t seconds
∵ s'(t) = v(t)
∴ v(t) = -0.2t + 0.4
We need to find the instantaneous velocity of the ball after 4 seconds
Substitute t by 4
∴ v(4) = -0.2(4) + 0.4
∴ v(4) = -0.8 + 0.4
∴ v(4) = -0.4
∴ The v is -0.4 m/s ⇒ -ve means the velocity is downward
The instantaneous velocity of the ball after 4 seconds is -0.4 m/s
Learn more:
You can learn more about the instantaneous velocity in brainly.com/question/2234298
#LearnwithBrainly
Final answer:
To determine the estimated instantaneous velocity of the ball after 4 seconds, calculate the derivative of the height function s(t) and evaluate it at t = 4 seconds to find the velocity of -0.2 m/s.
Explanation:
The estimated instantaneous velocity of the ball after 4 seconds can be found by calculating the derivative of the height function s(t) with respect to time t, which gives the velocity function v(t) = -0.2(t - 2). Evaluating this at t = 4 seconds, we get a velocity of -0.2 m/s.
Select the correct answer.
The revenue function of a company that sells gaming consoles is R(x) = 6x2 + 100x + 300. The cost function is CX) = 25x + 100. Which function
describes the profit function of the company?
A. PX) = 6x2 + 75x + 200
B. Pax) = 100x2 - 6x2
oc. P(x) = 75x² - 6x²
D. PlX= 6x + 200
Option A: 6x^2+75x+200 is the correct answer
Step-by-step explanation:
The profit is obtained by subtracting the cost from the revenue.
Given
[tex]R(x) = 6x^2+100x+300\\C(x) = 25x+100[/tex]
The Profit function will be obtained by subtracting the cost function from the revenue function
So,
[tex]P(x) = R(x) - C(x)\\= (6x^2+100x+300)-(25x+100)\\=6x^2+100x+300-25x-100\\=6x^2+100x-25x+300-100\\P(x)=6x^2+75x+200[/tex]
Hence,
Option A: 6x^2+75x+200 is the correct answer
Keywords: Functions, function operations
Learn more about functions at:
brainly.com/question/982457brainly.com/question/9817377#LearnwithBrainly
how do i solve this?
Hint:
Diameter(d)= 2 radius(r)
circumference= 2πr= πd
1. diameter= 19 × 2 = 38 inches
circumference= 3.18(38) = 119 inches (3 s.f.)
Note that I use 3.18 instead of π because the question states to use 3.14 for π.
Likewise, if you are given the diameter, divide it by 2 to find radius. Let's try a question which only gives you the diameter.
4. radius= 22 ÷ 2 = 11cm
circumference= 3.14(22) = 69.1cm (3 s.f.)
At a certain grocery store 65% of the customers regularly use coupons.
What is the approximate standard deviation of the sampling distribution of the proportion for
samples of size 340?
A.11.1%
B.6.7%
C.4.4%
D.2.6%
Answer:
Option D 2.6% is right.
Step-by-step explanation:
Given that at a certain grocery store 65% of the customers regularly use coupons.
Proportion of the customers regularly use coupons.=0.65
Proportion of customers who do not regularly use coupons.
=1-0.65 = 0.35
Sample size = 340
In usual notation we write this as
[tex]p=0.65\\q=0.35\\n = 340[/tex]
Std deviation = [tex]\sqrt{\frac{pq}{n} } \\=\sqrt{\frac{0.65*0.35}{340} } \\=0.025867[/tex]
In percentage this can be written as 2.5867% ~2.6%
Option D 2.6% is right.
Answer:
D
Step-by-step explanation:
BECAUSE
WHEN
YOU
LOOK
AT
A
B
OR
C
OH
NO
THERE
IS
NO
MORE
SPACE
!!!!!!!!!!!!!!
PLEASE HELP!! WILL MARK BRAINLIEST NEED ANSWERS NOW!!
Is the system of equations consistent and independent, consistent and dependent, or inconsistent?
y=−x−13y=−3x+2
Select the correct answer from the drop-down menu.
Inconsistent
Step-by-step explanation:
When you graph a system of equations then ;
They are consistent and independent, they have exactly one solution
If they are consistent and dependent, they have infinite number of solutions
If they there is no solution, the system is inconsistent
In this case, the lines are parallel, no intersecting for a solution.
Learn More
Consistent equations :https://brainly.com/question/548583
Keywords: equations, independent, consistent, dependent, inconsistent
#LearnwithBrainly
Answer:
inconsistent
Step-by-step explanation:
because they dont cross eachother
An old truck has a fuel efficiency rating of 12 mpg. What is the cost
of gasoline if the truck uses 5 gallons to drive 60miles?
Answer:
The cost of 5 gallons of fuel would be 5x assuming the cost of 1 gallon to be x.
Step-by-step explanation:
An old truck has a fuel efficiency rating of 12 mpg.
We have to find the cost of gasoline that will be used up after we drive 60 miles.
To drive 60 miles , it uses 5 gallons.
let the cost of 1 gallon of fuel be x.
We have to find the cost of 5 gallons of fuel.
So the cost of 5 gallons of fuel = 5[tex]\times coat of 1 gallon of fuel[/tex]
= 5x
77.86 divided by 0.85
Answer:
91.6
Step-by-step explanation:
Answer:91.6
Step-by-step explanation:
Write the equation of the line that passes through (4, -8) and is parallel to the line y = -2x - 13.
Answer:
y=-2x
Step-by-step explanation:
Parallel means same slope.
y-y1=m(x-x1)
y-(-8)=-2(x-4)
y+8=-2x+8
y=-2x+8-8
y=-2x
Which of the following is the midpoint of the line segment with endpoints - 3 and 2?
Choose the correct answer below.
O A. 1
a
OB. -1
min
ת |
DE
2
Answer:
-1/2.
Step-by-step explanation:
( - 3 + 2) / 2
= -1 / 2.
The midpoint of a line segment with endpoints -3 and 2 is -0.5. This is calculated by adding the endpoints and dividing by 2.
Explanation:The midpoint of a line segment is the average of its endpoints. We can find it by adding the two endpoints and dividing by 2. So, for the line segment with endpoints -3 and 2, we would calculate
(-3 + 2) / 2
The answer to this calculation is -0.5. Therefore, the midpoint of the line segment with endpoints -3 and 2 is -0.5.
Learn more about Midpoint here:https://brainly.com/question/33812804
#SPJ2
Why is the information in the diagram enough to determine
that ALMN - APON using a rotation about point N and a
dilation?
Answer:
Corresponding angles of similar triangles are congruent.
The true statement is (c) one pair of congruent corresponding angles is sufficient to determine similar triangles
From the complete question (see attachment), we have:
∠
�
�
�
≅
∠
�
�
�
∠NOP≅∠NML
This means that:
Angles NOP and NML are congruent
When the corresponding angles of similar triangles are congruent, then the triangles can be assumed to be similar.
Simplify the expression and combine like terms.
2 (x+6) + 3x + 4
Answer:
x = 16/5
Step-by-step explanation:
2x+12+3x+45x+16 x = 16/5Reshma is making a necklace using green beads and purple beads in a ratio represented on the following double number line. Fill in the missing values on the diagram and then answer the following question.
If Reshma uses 20 green beads, how many purple beads will she use?
Answer: 25 purple beads
Step-by-step explanation: Hope this helps :)
Answer:
25 beads
Explanation For 4 to get to 20 you need to multiply it by 5. You then do the same thing with 5 to get 25 beads.
Bao can eat
12 chicken wings in 3 minutes. She eats the chicken wings at a constant rate.
Answer:
48 chicken wings in 12 minutes.
Step-by-step explanation:
Answer:
4 chicken wings per minute
Step-by-step explanation:
12/3=4
the domain of the relation is
The domain of a relation is the set of all the x-terms of the relation.
Let's look at an example.
In the image provided I have attached a relation and we want to list the domain.
So, I will list all the x-terms. Notice however that I listed 7 once even though it appears twice in the relation. When listing the domain, you don't repeat the x-terms.
What is the time 5 minutes before noon
Answer:
11:55
Step-by-step explanation:
Jamel bought 2 pounds of red apples and 3.2 pounds of green apples from the grocery store, where both kinds of apples are $1.65 a pound. How munch did Jamel spend on apples?
Answer with Step-by-step explanation:
Jamel' spend on apples
= Jamel' spend on Green apples + on Red apples
= Cost per pound of apples *( Pounds of green apples + Pounds of red apples)
= 1.65*(2+3.2)
= 1.65*5.2
= $8.58
Answer: $8.58 is Jamel' total spend on apples.
Solve the system of equations using elimination. Make sure to show all work and find the value of both x and y
x-3y = 7
3x + 3y = 9
8x+ 3y = 1
4x + 2y = 0
Answer:
x=4, y=-1. (4, -1).
Step-by-step explanation:
x-3y=7
3x+3y=9
---------------
x=3y+7
3(3y+7)+3y=9
9y+21+3y=9
12y+21=9
12y=9-21
12y=-12
y=-12/12
y=-1
x-3(-1)=7
x+3=7
x=7-3
x=4
Please help?!
Determine if the triangles, ΔPQT and ΔQRS, are similar. If so, identify the similarity criterion.
Answer:
Δ PQT ~ Δ QRS .....{S-S-S test for similarity}...Proof is below.
Step-by-step explanation:
Given:
In Δ PQT
PQ = 30 ft
QT = 28 ft
TP = 20 ft
In Δ QRS
QR = 15 ft
RS = 14 ft
SQ = 10 ft
To Prove:
Δ PQT ~ Δ QRS
Proof:
First we consider the ratio of the sides
[tex]\frac{PQ}{QR}=\frac{30}{15} = \frac{2}{1}[/tex] ..............( 1 )
[tex]\frac{QT}{RS}=\frac{28}{14} = \frac{2}{1}[/tex] ..............( 2 )
[tex]\frac{TP}{SQ}=\frac{20}{10} = \frac{2}{1}[/tex] ..............( 3 )
So By equation ( 1 ), ( 2 ) and ( 3 ) we get
[tex]\frac{PQ}{QR}=\frac{QT}{RS} = \frac{TP}{SQ}[/tex]
Now in Δ PQT and Δ QRS we have
[tex]\frac{PQ}{QR}=\frac{QT}{RS} = \frac{TP}{SQ}[/tex]
Which are corresponding sides of a similar triangle in proportion.
∴ Δ PQT ~ Δ QRS .....{S-S-S test for similarity}...Proved
Answer:
sss similarity
Step-by-step explanation:
i took the test
Explain how to prepare, use and review a budget.
Answer:
Use a spreadsheet.
Step-by-step explanation:
If you mean a household budget you could use a spreadsheet.
The columns would be months and the rows would be items of expenditure and income.
You use formulae ( provided by the spreadsheet) to do additions, subtractions and so on.
An apple grower finds that if he plants 80 trees per acre, each tree will yield 26 bushels of fruit. He estimates that for each additional tree planted per acre, the yield of each tree will decrease by 4 bushels. Given a price of $1.00 per bushel, find the maximum revenue and how many trees he should plant per acre to maximize his harvest.
Answer: The maximum revenue is $7482 . To get a maximum yield , The number of trees per acre needed is 43.
Step-by-step explanation:
Solution:
Let x represent the extra tree
So for an additional tree the yield of each tree will decrease by 4 bushels.
(80 +x)(26-4x) by expanding
2080 - 320x +26x -4x^2
Using x= -b/2a
X= 294/ -8
X= - 36.75
So apparently he currently has far too many trees per acre. To get the maximum yield , she needs to reduce the number of trees per acre by 36.75
So the number of trees per acre for maximum yield is
80-36.75
=43.25
Approximately x=43
So by reducing he get extra bushel in the tune of 174.
Total revenue= 174 ×43× 1$
=$7482