Choose the correct meaning of a double-blind, placebo-controlled experiment. In a double-blind, placebo-controlled experiment, a subject does not know whether he or she received a treatment or an inactive substance. subjects with similar characteristics are assigned to the same group. subjects are assigned to different treatment groups, one of which receives an inactive substance that appears to be a treatment, through random selection. a subject who received an inactive substance reports an improvement in health or behavior. neither the subjects nor the people administering the treatments know who received a treatment and who received an inactive substance.

Answers

Answer 1

Answer:

Step-by-step explanation:

Hello!

A double-blind experiment is a type of experiment where both the experimental units and the researchers that analyze the data don't know what kind of treatment was applied to each subject.

This means, that if it is a placebo-controlled experiment. The subjects will be randomly assigned either the medicament to test ("treatment" group) or the placebo ( "control" group) but they will not know which one they are taking. This way the placebo effect is eliminated.

On the other hand, in other to eliminate the observer bias, the researchers will also not know which patient belongs to the "control" group and wich patient belongs to the "treatment" group.

I hope it helps!


Related Questions

Conditional distribution. Give (in percents) the conditional distribution of income level among single men. Should your percents add to 100% (up to roundoff error)? Explain your reasoning.

Answers

Answer:

note:

solution is attached due to error in mathematical equation. please find the attachment

Final answer:

The conditional distribution of income level among single men should add up to 100%, since when calculating a conditional distribution we treat the subgroup as the total population. Thus, income levels among single men are all the possible outcomes for this group and should collectively correspond to 100% of cases.

Explanation:

The conditional distribution in this scenario is the distribution of income level among single men, being key to understanding he relative frequency of various income levels within this specific group. Since we are looking at a subset of the total population (in this case, single men), the percentages should indeed add up to 100%. This is because when we calculate the conditional distribution, we treat this subgroup as if it were the total population. Therefore, the total should be 100%, reflecting the entire subgroup, not compared to the entire population. An example could be: If 10% of single men are in low income, 30% are in middle income, and 60% are in high income, these percentages represent the income level distribution among single men, and add up to 100%.

Learn more about Conditional Distribution here:

https://brainly.com/question/31648231

#SPJ3

Mike brought a new car and financed $25,000 to make the purchase. He financed the car for 60 months with an APR of 6.5%. Determine each of the following:

A. Mike's monthly payment

B. Total cost if Mike's car

C. Total interest Mike pays over the life of the loan​

Answers

Final answer:

Mike's monthly car payment is approximately $489.99. The total cost of the car including interest over 60 months is $29,399.40, and the total interest Mike pays over the loan's lifetime is $4,399.40.

Explanation:

To determine Mike's monthly car payment, total cost of the car, and total interest paid over the life of the loan, we need to use the formula for the monthly payment on an installment loan, which can be found using the formula:

P = (Pv * r) / (1 - (1 + r)-n)

Where:

P is the monthly paymentPv is the present value or the amount of the loan, which is $25,000r is the monthly interest rate (annual rate divided by 12), which is 0.065/12n is the total number of payments (months), which is 60

Lets calculate the monthly payment (P):

P = ($25,000 * 0.065/12) / (1 - (1+0.065/12)-60)
= $489.99 approximately

Mike's total cost of the car is the monthly payment multiplied by the number of payments:

$489.99 * 60 = $29,399.40

The total interest Mike pays is the total cost minus the loan amount:

$29,399.40 - $25,000 = $4,399.40

Thus, Mike's monthly payment is approximately $489.99, the total cost of his car will be $29,399.40, and the total interest paid over the life of the loan is $4,399.40.

help, ill mark brainliest

Answers

Answer:

Marcus rents the car for 5 days

Step-by-step explanation:

For 5 days:

Plan A would equal $150 (30x5)

Plan B would equal $140 (125+15)

Plan b is cheaper only when Marcus rents the car for 5 days.

If mAC 93°, and mBD= 39°, what is m∠BED?

54°
32°
108°
27°

Answers

Answer: LAST OPTION.

Step-by-step explanation:

For this exercise it is important to remember that, by definition, the angle formed by two secants intersecting outside of a circle, can be found with the following formula:

[tex]Angle\ formed\ by\ two\ secants=\frac{Difference\ of\ intercepted\ arcs}{2}[/tex]

According to the information provided in the exercise, you know that:

[tex]mAC= 93\°\\\\mBD= 39\°[/tex]

Therefore, you can find the difference of the intercepted arcs:

[tex]Difference\ of\ intercepted\ arcs=93\°-39\°\\\\Difference\ of\ intercepted\ arcs=54\°[/tex]

The final step is to substitute  the difference of the intercepted arcs calculated above, into the formula, in order to find the measure of the angle  BED.

You get that this is:

[tex]Angle\ formed\ by\ two\ secants=\frac{54\°}{2}\\\\Angle\ formed\ by\ two\ secants=27\°[/tex]

Answer:

The answer should be 27

Step-by-step explanation:

Suppose that there are six prospective jurors, four men and two women, who might be impaneled to sit on the jury in a criminal case. Two jurors are randomly selected from these six to fill the two remaining jury seats.

a. List the simple events in the experiment
b. What is the probability that both impaneled jurors are women?

Exercise:

Jury Duty Three people are randomly selected from voter registration and driving records to report for jury duty. The gender of each person is noted by the county clerk.

a. Define the experiment.
b. List the simple events in S.
c. If each person is just as likely to be a man as a woman, what probability do you assign to each simple event?
d. What is the probability that only one of the three is a man?
e. What is the probability that all three are women?

Answers

Answer:

(1)

(a) Shown below.

(b) The probability that both impaneled jurors are women is 0.0667.

(2)

(a) Sampling 3 people and noting their gender.

(b) Shown below.

(c) The probability of each simple event is 0.125.

(d) The probability of selecting only one male is 0.375.

(e) The probability of selecting all 3 females is 0.125.

Step-by-step explanation:

(1)

Let the 4 men be denoted as: M₁, M₂, M₃ and M₄.

And the 2 women be denoted as: W₁ and W₂.

(a)

A jury of two is to be selected.

The simple events in this experiment are:

(M₁, M₂), (M₁, M₃), (M₁, M₄), (M₁, W₁), (M₁, W₂)

(M₂, M₃), (M₂, M₄), (M₂, W₁), (M₂, W₂)

(M₃, M₄), (M₃, W₁), (M₃, W₂)

(M₄, W₁), (M₄, W₂)

(W₁, W₂)

(b)

The total possible number of jury selections is, N = 15.

The possible combination such that both the jurors are woman is, n = 1.

Compute the probability of selecting  two women jurors as follows:

[tex]P(2\ juror\ are\ women)=\frac{n}{N} =\frac{1}{15}=0.0667[/tex]

Thus, the probability that both impaneled jurors are women is 0.0667.

(2)

(a)

The experiment consists of sampling 3 people from the voter registration and driving records and noting the gender of each person.

(b)

The simple events are:

S = {(M, M, M), (M, M, F), (M, F, M), (F, M, M), (M, F, F), (F, F, M), (F, M, F), (F, F, F)}

Total number of simple events = 8.

(c)

If the probability of selecting a male is same as the probability of selecting a female, i.e. P (M) = P (F) = [tex]\frac{1}{2}[/tex] then,

The probability of each simple event is:

[tex]\frac{1}{2} \times\frac{1}{2} \times\frac{1}{2}=\frac{1}{8}=0.125[/tex]

(d)

The number of simple events with only 1 male is n = 3.

Compute the probability that only one of the three is a man as follows:

[tex]P(1\ male)=\frac{n}{N} =\frac{3}{8} =0.375[/tex]

Thus, the probability of selecting only one male is 0.375.

(e)

The number of simple events with all 3 females is n = 1.

Compute the probability that all 3 females are selected as follows:

[tex]P(3\ female)=\frac{n}{N} =\frac{1}{8} =0.125[/tex]

Thus, the probability of selecting all 3 females is 0.125.

You are a waterman daily plying the waters of Chesapeake Bay for blue crabs (Callinectes sapidus), the best-tasting crustacean in the world. Crab populations and commercial catch rates are highly variable, but the fishery is under constant pressure from overfishing, habitat destruction, and pollution. These days, you tend to pull crab pots containing an average of 2.4 crabs per pot. Given that you are economically challenged as most commercial fishermen are, and have an expensive boat to pay off, you’re always interested in projecting your income for the day. At the end of one day, you calculate that you’ll need 7 legal-sized crabs in your last pot in order to break even for the day

Answers

The question given is incomplete, I googled and got the complete question as below:

You are a waterman daily plying the waters of Chesapeake Bay for blue crabs (Callinectes sapidus), the best-tasting crustacean in the world. Crab populations and commercial catch rates are highly variable, but the fishery is under constant pressure from over-fishing, habitat destruction, and pollution. These days, you tend to pull crab pots containing an average of 2.4 crabs per pot. Given that you are economically challenged as most commercial fishermen are, and have an expensive boat to pay off, you’re always interested in projecting your income for the day. At the end of one day, you calculate that you’ll need 7 legal-sized crabs in your last pot in order to break even for the day. Use these data to address the following questions. Show your work.

a. What is the probability that your last pot will have the necessary 7 crabs?

b. What is the probability that your last pot will be empty?

Answer:

a. Probability = 0.0083

b. Probability = 0.0907

Step-by-step explanation:

This is Poisson distribution with parameter λ=2.4

a)

The probability that your last pot will have the necessary 7 crabs is calculated below:

P(X=7)=  {e-2.4*2.47/7!} = 0.0083

b)

The probability that your last pot will be empty is calculated as:

P(X=0)=  {e-2.4*2.40/0!} = 0.0907

The probability of getting 7 crabs in the last pot is approximately 0.0082, while the probability of the last pot being empty is roughly 0.0907.

To solve this problem, we need to use the Poisson distribution. The Poisson distribution is a probability distribution that can be used to predict the number of events occurring within a fixed interval of time or space. Given that the average (λ) number of crabs per pot is 2.4, we can proceed to solve for the probabilities.

a. Probability of having 7 crabs in the last pot:

Calculate the average number of crabs per pot: 2.4 crabs.Using a Poisson distribution with an average of 2.4, find the probability of getting 7 crabs: P(X=7) = [tex]e^{-2.4}*\frac{(2.4^7)}{7!}[/tex]Calculate the probability, which is approximately 0.0082 or 0.82%.

b. Probability of the last pot being empty:

Using the same Poisson distribution, find the probability of getting 0 crabs: P(X=0) = [tex]e^{-2.4}*\frac{(2.4^0)}{0!}[/tex]Calculate the probability, which is approximately 0.0907 or 9.07%.

The complete question is

You are a waterman daily plying the waters of Chesapeake Bay for blue crabs (Callinectes sapidus), the best-tasting crustacean in the world. Crab populations and commercial catch rates are highly variable, but the fishery is under constant pressure from overfishing, habitat destruction, and pollution. These days, you tend to pull crab pots containing an average of 2.4 crabs per pot. Given that you are economically challenged as most commercial fishermen are, and have an expensive boat to pay off, you’re always interested in projecting your income for the day. At the end of one day, you calculate that you’ll need 7 legal-sized crabs in your last pot in order to break even for the day

Use these data to address the following questions. Show your work.

a. What is the probability that your last pot will have the necessary 7 crabs?

b. What is the probability that your last pot will be empty?

The daily sales at a convenience store produce a normal distribution with a mean of $1,250 and a standard deviation of $125. The probability that the sales on a given day at this store are less than $1,310 is:

Answers

Answer:

0.6844 is the required probability.        

Step-by-step explanation:

We are given the following information in the question:

Mean, μ = $1,250

Standard Deviation, σ = $125

We are given that the distribution of daily sales is a bell like shaped distribution that is a normal distribution.

Formula:

[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]

We have to find

P(sales less than $1,310)

[tex]P( x < 1310) = P( z < \displaystyle\frac{1310 - 1250}{125}) = P(z < 0.48)[/tex]

Calculation the value from standard normal z table, we have,  

[tex]P(x < 1310) =0.6844= 68.44\%[/tex]

0.6844 is the probability that sales on a given day at this store are less than $1,310.

The probability that sales on a given day at this store are less than $1,310 is [tex]68.44\%[/tex]

Probability:

It is given that, mean [tex]\mu=1250[/tex] and deviation [tex]\sigma=125[/tex]

The z- score is given as,

                   [tex]z-score=\frac{x-\mu}{\sigma} \\\\z=\frac{1310-1250}{125}=0.48 \\\\[/tex]

We have to find probability that the sales on a given day at this store are less than $1,310

                [tex]P(x < 1310)=P(z < 0.48)[/tex]

From z- value table.

           [tex]P(x < 1310)=68.44\%[/tex]

The probability that sales on a given day at this store are less than $1,310 is [tex]68.44\%[/tex]

Learn more about the Probability here:

https://brainly.com/question/24756209

Suppose that you randomly select freshman from the study until you find one who replies "yes." You are interested in the number of freshmen you must ask. What is the probability that you will need to ask fewer than three freshmen

Answers

Answer:

Incomplete question

Complete question: in the U.S. 71.3% of those students replied that, yes, they believe that same-sex couples should have the right to legal marital status. Suppose that you randomly select freshman from the study until you find one who replies "yes." You are interested in the number of freshmen you must ask. What is the probability that you will need to ask fewer than three freshmen?

Answer: P = 0.08656

Step-by-step explanation:

Using the concept of geometric distribution

P(X=x) = p(1-p)^1-x

Where x is the number of freshmen asked and p is the probability of success

Given probability of success as 71.3%

Therefore, P = 0.713

Probability that you'll need to ask less than 3 freshmen is given as

P = p(1-p)^1-x

x = 3 and p = 0.713

P = 0.713(1-0.713)^1-3

P = 0.713(0.287)^-2

P =0.713×12.140

P = 8.656%

P = 0.08656

The mean investment that employees put into their companies 401k per year is $10,000 with standard deviation of $500 Assuming the investment follow a normal distribution, determine the following a. what proportion of employees put between $9, 500 and $11,000 into the 401 k per year b. What proportion of employee put more than $11, 500 into the 401 k per year? c. What proportional of employees put less than $11,000 into the 401k per year?d. What proportional of employees put more than $9,000 into the 401k per year?e. What proportional of employees put between than $11,000 and $11, 500 into the 401k per year?f. How much would an employees need to put into his or her 401 K to be in the upper 10% of investors?

Answers

Answer:

a) 81.85% of employees put between $9, 500 and $11,000 into the 401 k per year

b) 0.13% of employee put more than $11, 500 into the 401 k per year

c) 97.72% of employees put less than $11,000 into the 401k per year.

d) 97.72% of employees put more than $9,000 into the 401k per year

e) 2.15% of employees put between than $11,000 and $11, 500 into the 401k per year

f) An employee would need to put $10,640 into his or her 401 K to be in the upper 10% of investors

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 10000, \sigma = 500[/tex]

a. what proportion of employees put between $9, 500 and $11,000 into the 401 k per year

This is the pvalue of Z when X = 11000 subtracted by the pvalue of Z when X = 9500. So

X = 11000

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{11000 - 10000}{500}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772.

X = 9500

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{9500 - 10000}{500}[/tex]

[tex]Z = -1[/tex]

[tex]Z = -1[/tex] has a pvalue of 0.1587

0.9772 - 0.1587 = 0.8185

81.85% of employees put between $9, 500 and $11,000 into the 401 k per year

b. What proportion of employee put more than $11, 500 into the 401 k per year?

This is 1 subtracted by the pvalue of Z when X = 11500. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{11500 - 10000}{500}[/tex]

[tex]Z = 3[/tex]

[tex]Z = 3[/tex] has a pvalue of 0.9987

1 - 0.9987 = 0.0013

0.13% of employee put more than $11, 500 into the 401 k per year

c. What proportional of employees put less than $11,000 into the 401k per year?

This is the pvalue of Z when X = 11000. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{11000 - 10000}{500}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772.

97.72% of employees put less than $11,000 into the 401k per year.

d. What proportional of employees put more than $9,000 into the 401k per year?

This is 1 subtracted by the pvalue of Z when X = 9000. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{9000 - 10000}{500}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228.

1 - 0.0228 = 0.9772

97.72% of employees put more than $9,000 into the 401k per year

e. What proportional of employees put between than $11,000 and $11, 500 into the 401k per year?

This is the pvalue of Z when X = 11500 subtracted by the pvalue of Z when X = 11000. So

X = 11500

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{11500 - 10000}{500}[/tex]

[tex]Z = 3[/tex]

[tex]Z = 3[/tex] has a pvalue of 0.9987

X = 11000

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{11000 - 10000}{500}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772.

0.9987 - 0.0972 = 0.0215

2.15% of employees put between than $11,000 and $11, 500 into the 401k per year

f. How much would an employees need to put into his or her 401 K to be in the upper 10% of investors?

This is the value of Z when X has a pvalue of 1-0.1 = 0.9. So it is X when Z = 1.28.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.28 = \frac{X - 10000}{500}[/tex]

[tex]X - 10000 = 500*1.28[/tex]

[tex]X = 10640[/tex]

An employee would need to put $10,640 into his or her 401 K to be in the upper 10% of investors

A relief fund is set up to collect donations for the families affected by recent storms. A random sample of 400 people shows that 28% of those 200 who were contacted by telephone actually made contributions compared to only 18% of the 200 who received first class mail requests. Which is the correct 95% confidence interval for the difference in the proportions of people who make donations if contacted by telephone or first class mail

Answers

Answer:

[tex](0.28-0.18) - 1.96 \sqrt{\frac{0.28(1-0.28)}{200} +\frac{0.18(1-0.18)}{200}}=0.0181[/tex]  

[tex](0.28-0.18) - 1.96 \sqrt{\frac{0.28(1-0.28)}{200} +\frac{0.18(1-0.18)}{200}}=0.182[/tex]  

And the 95% confidence interval would be given (0.0181;0.181).  

We are confident at 95% that the difference between the two proportions is between [tex]0.0181 \leq p_B -p_A \leq 0.182[/tex]

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

Solution to the problem

[tex]p_A[/tex] represent the real population proportion for telephone  

[tex]\hat p_A =0.28[/tex] represent the estimated proportion for telephone

[tex]n_A=200[/tex] is the sample size required for telephone

[tex]p_B[/tex] represent the real population proportion for mail

[tex]\hat p_B =0.18[/tex] represent the estimated proportion for mail

[tex]n_B=200[/tex] is the sample size required for mail

[tex]z[/tex] represent the critical value for the margin of error  

The population proportion have the following distribution  

[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]  

The confidence interval for the difference of two proportions would be given by this formula  

[tex](\hat p_A -\hat p_B) \pm z_{\alpha/2} \sqrt{\frac{\hat p_A(1-\hat p_A)}{n_A} +\frac{\hat p_B (1-\hat p_B)}{n_B}}[/tex]  

For the 95% confidence interval the value of [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.  

[tex]z_{\alpha/2}=1.96[/tex]  

And replacing into the confidence interval formula we got:  

[tex](0.28-0.18) - 1.96 \sqrt{\frac{0.28(1-0.28)}{200} +\frac{0.18(1-0.18)}{200}}=0.0181[/tex]  

[tex](0.28-0.18) - 1.96 \sqrt{\frac{0.28(1-0.28)}{200} +\frac{0.18(1-0.18)}{200}}=0.182[/tex]  

And the 95% confidence interval would be given (0.0181;0.181).  

We are confident at 95% that the difference between the two proportions is between [tex]0.0181 \leq p_B -p_A \leq 0.182[/tex]

Final answer:

The 95% confidence interval for the difference in the proportions of people who make donations if contacted by telephone or first class mail is between 1.14% and 18.86%.

Explanation:

To calculate a 95% confidence interval for the difference in the proportions of people who make donations if contacted by telephone or first class mail, we use the formula for comparing two proportions.

We are given that 28% of the 200 contacted by telephone donated, which is a proportion of p1 = 0.28, and 18% of the 200 contacted by first class mail donated, which is a proportion of p2 = 0.18. Each group size is n1 = n2 = 200.

The formula for the standard error of the difference between two independent proportions is:

SE = sqrt(p1(1-p1)/n1 + p2(1-p2)/n2)

So, the standard error (SE) for our example is:

SE = sqrt(0.28(1-0.28)/200 + 0.18(1-0.18)/200) = sqrt(0.001248 + 0.000792) = sqrt(0.00204)

The Z-score for a 95% confidence interval is approximately 1.96. Therefore, the margin of error (MOE) is calculated as:

MOE = 1.96 * SE

We then compute the confidence interval as:

(p1 - p2) ± MOE = (0.28 - 0.18) ± 1.96 * sqrt(0.00204)

Calculate the MOE:

MOE = 1.96 * sqrt(0.00204) ≈ 1.96 * 0.0452 ≈ 0.0886

Then the 95% confidence interval is:

(0.10 ± 0.0886) which is (0.0114, 0.1886)

This means that we are 95% confident that the true difference in the proportion of people who would donate when contacted by telephone versus first class mail is between 1.14% and 18.86%.

In class we derived the MOM and MLE for an exponential distribution with parameter ????. Conduct a Bootstrap simulation to compare the estimation of λ with sample sizes of n = 10, n = 100, and n = 500. Choose true value λ = 0.2 and use B = 1000. Calculate and compare the mean and standard error for each set of simulations to each other as well as their theoretical values.

Answers

Answer:

Below is the R code for the bootstrapping in exponential distribution. The result is attached below.

####################################

rm(list=ls(all=TRUE))

set.seed(12345)

N=c(10,100,500)

Rate=0.2

B=1000

MN=SE=rep()

for(i in 1:length(N))

{

n=N[i]

X=rexp(n,rate=Rate)

EST=1/mean(X)

ESTh=rep()

for(j in 1:B)

{

Xh=rexp(n,rate=EST)

ESTh[j]=1/mean(Xh)

}

MN[i]=mean(ESTh)

SE[i]=sd(ESTh)

}

cbind(N,Rate,MN,SE)

Step-by-step explanation:

At a large bank, account balances are normally distributed with a mean of $1,637.52 and a standard deviation of $623.16. What is the probability that a simple random sample of 400 accounts has a mean that exceeds $1,650?

Answers

Answer:

[tex]P(\bar X >1650)=P(Z>\frac{1650-1637.52}{\frac{623.16}{\sqrt{400}}}=0.401)[/tex]

And we can use the complement rule and we got:

[tex]P(Z>0.401) =1-P(Z<0.401) = 1-0.656= 0.344[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the bank account balances of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(1637.52,623.16)[/tex]  

Where [tex]\mu=1637.52[/tex] and [tex]\sigma=623.16[/tex]

Since the distribution of X is normal then the distribution for the sample mean [tex]\bar X[/tex] is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

And we can use the z score formula given by:

[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And using this formula we got:

[tex]P(\bar X >1650)=P(Z>\frac{1650-1637.52}{\frac{623.16}{\sqrt{400}}}=0.401)[/tex]

And we can use the complement rule and we got:

[tex]P(Z>0.401) =1-P(Z<0.401) = 1-0.656= 0.344[/tex]

Answer: the probability is 0.49

Step-by-step explanation:

Since the account balances at the large bank are normally distributed.

we would apply the formula for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = account balances.

µ = mean account balance.

σ = standard deviation

From the information given,

µ = $1,637.52

σ = $623.16

We want to find the probability that a simple random sample of 400 accounts has a mean that exceeds $1,650. It is expressed as

P(x > 1650) = 1 - P(x ≤ 1650)

For x = 1650,

z = (1650 - 1637.52)/623.16 = 0.02

Looking at the normal distribution table, the probability corresponding to the z score is 0.51

P(x > 1650) = 1 - 0.51 = 0.49

There are 98 balls in a box. 25 of them are red, 19 of them are green, 30 of them are purple,and 24 of them are blue. Suppose Hao draws 22 balls from the box with replacement (hedraws the ball, records its color, and then puts it back into the box). Find the probabilitythat he draws 2 red balls, 5 green balls, 10 purple balls, and 5 blue balls.

Answers

Answer:

Since the balls are drawn with replacement, it means the individual probability  remain constant,

I have solved this problem on paper (Figures Attached).

Thanks.

Answer:

Since this problem related to the replacement problem thus

Pr(2 red)=(25/98)(25/98)=0.0651

Pr(5 green)=(19/98)(19/98)(19/98)(19/98)(19/98)

Pr(5 green)=2.73*10^-4

Pr(10 purple)=((30/98))^10=7.22*10^-6

Pr(5 blue)=((24/98))^5=8.8*10^-4

The distribution of water fleas (Daphnia) in a given water pond is fairly random and the population density is fairly constant. The average number of water fleas caught by sweeping the water a single time with a standard net is 3.7 individuals. If tomorrow a net will be used once in the pond what is the probability of catching: a) 5 individuals?b) at least 2 individuals?

Answers

Answer:

(a) The probability of catching 5 individuals in the pond is 0.1429.

(b) The probability of catching at least 2 individuals in the pond is 0.8838.

Step-by-step explanation:

Let X = number of water fleas caught by sweeping the water a single time.

The random variable X follows a Poisson distribution with parameter λ = 3.7.

The probability mass function of the Poisson distribution is:

[tex]P(X=x)=\frac{e^{-3.7}3.7^{x}}{x!}[/tex]

(a)

Compute the value of P (X = 5) as follows:

[tex]P(X=5)=\frac{e^{-3.7}3.7^{5}}{5!}=\frac{17.1443}{120} =0.142869\approx0.1429[/tex]

Thus, the probability of catching 5 individuals in the pond is 0.1429.

(b)

Compute the value of P (X ≥ 2) as follows:

P (X ≥ 2) = 1 - P (X < 2)

              = 1 - P (X = 0) - P (X = 1)

              [tex]=1-\frac{e^{-3.7}3.7^{0}}{0!}-\frac{e^{-3.7}3.7^{1}}{1!}\\=1-0.0247-0.0915\\=0.8838[/tex]

Thus, the probability of catching at least 2 individuals in the pond is 0.8838.

In a city, the distance between the library and the police station is 3 miles less than twice the distance between the police

station and the fire station. The distance between the library and the police station is 5 miles. How far apart are the police

station and the fire station?

0

O

O

O

1 mile

3 miles

4 miles

6 miles

Answers

The answer is 4 miles

Answer: the distance between the the police station and the fire station is 4 miles.

Step-by-step explanation:

Let x represent the distance between the library and the police station.

Let y represent the distance between the the police station and the fires station.

In the city, the distance between the library and the police station is 3 miles less than twice the distance between the police station and the fire station. This is expressed as

x = 2y - 3

The distance between the library and the police station is 5 miles. This means that

5 = 2y - 3

2y = 5 + 3 = 8

y = 8/2 = 4

A student is asked to find the derivative of y = x sin2 (x) with respect to variable x, given x, y > 0. They provide the following answer: dy dx = sin2 (x) · x sin2 (x)−1 · cos2 (x) Is the student correct? If the student is correct, then explain how they used derivative rules correctly to find this derivative. If the student is incorrect, then give the correct answer and provide an explanation that you would use to correct the student’s thinking.

Answers

Answer:

[tex]\frac{dy}{dx} = 2x ( 2cos2x) +sin2x[/tex]

[tex]\frac{dy}{dx} = 4x( cos2x)+sin2x[/tex]

Step-by-step explanation:

Given y = x sin2x .....(1)

Applying UV formula [tex]\frac{d(UV)}{dx} = u \frac{dv}{dx} + v\frac{du}{dx}[/tex]

Differentiating with respective to 'x' we get

[tex]\frac{dy}{dx} = x ( 2cos2x)\frac{d(2x)}{dx} +sin2x (1)[/tex]

[tex]\frac{dy}{dx} = x ( 2cos2x)(2) +sin2x (1)[/tex]

Final answer:-

[tex]\frac{dy}{dx} = 4x( cos2x)+sin2x[/tex]

HELP PLEASE 100 POINTS! Review the diagram below. Apply the properties of angles to solve for the missing angles. Angle x is ____ degrees. And please show how you got it.




Answers

Step-by-step explanation:

<y+60+58=180 (angle sum property)

<y+118=180

<y=180-118=62

<ACB+<ACD=180(degree of a line )

58+x=180

x=122

(btw u cant get a 100 points by answering one question)

tems produced by a manufacturing process are supposed to weigh 90 grams. However, there is variability in the items produced, and they do not all weigh exactly 90 grams. The distribution of weights can be approximated by a Normal distribution with a mean of 90 grams and a standard deviation of 1 gram. What percentage of the items will either weigh less than 87 grams or more than 93 grams? Group of answer choices

Answers

Final answer:

Based on the properties of the Normal Distribution and Standard Deviations, we find that about 0.3% of the items will weigh either less than 87 grams or more than 93 grams.

Explanation:

To solve this question, we need to understand and apply concepts of the Normal Distribution and Standard Deviations. A normal distribution is a common type of statistical distribution representing various types of data, characterized by a bell-shaped curve symmetric about its mean.

In this case, the item weights are normally distributed with a mean (average) of 90 grams and a standard deviation of 1 gram. Standard deviation basically tells us how much the data varies around the mean value.

The question now asks us to find out what percentage of weights are either less than 87 grams or more than 93 grams. We know that within 1 standard deviation of the mean (between 89 and 91 grams in this case), we have about 68.2% of the data. Similarly, within 2 standard deviations of the mean (between 88 and 92 grams), we have about 95.4% of the data. And within 3 standard deviations (between 87 and 93 grams), we have about 99.7% of the data.

So, since 87 grams and 93 grams are 3 standard deviations away from the mean, we know that about 99.7% of the weights lie between these two values. This means that the other 0.3%, or 0.15% on either side, is either below 87 grams or above 93 grams. Hence, 0.3% of the items will either weigh less than 87 grams or more than 93 grams.

Learn more about Normal Distribution here:

https://brainly.com/question/30390016

#SPJ3

Before every​ flight, the pilot must verify that the total weight of the load is less than the maximum allowable load for the aircraft. The aircraft can carry 41 ​passengers, and a flight has fuel and baggage that allows for a total passenger load of 6 comma 683 lb. The pilot sees that the plane is full and all passengers are men. The aircraft will be overloaded if the mean weight of the passengers is greater than StartFraction 6 comma 683 l b Over 41 EndFraction equals 163 lb. What is the probability that the aircraft is​ overloaded? Should the pilot take any action to correct for an overloaded​ aircraft? Assume that weights of men are normally distributed with a mean of 180.5 lb and a standard deviation of 38.2.

Answers

Answer:

The probability that the plane is oveloaded is P=0.9983.

The pilot should take out the baggage and send it in another plain or have less passengers in the plain to not overload.

Step-by-step explanation:

The aircraft will be overloaded if the mean weight of the passengers is greater than 163 lb.

If the plane is full, we have 41 men in the plane. This is our sample size.

The weights of men are normally distributed with a mean of 180.5 lb and a standard deviation of 38.2.

So the mean of the sample is 180.5 lb (equal to the population mean).

The standard deviation is:

[tex]\sigma=\frac{\sigma}{\sqrt{N}} =\frac{38.2}{\sqrt{41}}=\frac{38.2}{6.4} =5.97[/tex]

Then, we can calculate the z value for x=163 lb.

[tex]z=\frac{x-\mu}{\sigma}=\frac{163-180.5}{5.97}=\frac{-17.5}{5.97}= -2.93[/tex]

The probability that the mean weight of the men in the airplane is below 163 lb is P=0.0017

[tex]P(\bar X<163)=P(z<-2.93)=0.00169[/tex]

Then the probability that the plane is oveloaded is P=0.9983:

[tex]P(overloaded)=1-P(X<163)=1-0.0017=0.9983[/tex]

The pilot should take out the baggage or have less passengers in the plain to not overload.

The number and frequency of Atlantic hurricanes annually from 1940 through 2007 is shown here:

a. Find the probabilities of 0-8 hurricanes each season using these data

b. Assuming a Poisson distribution and using the mean number of hurricanes per season from the empirical data, compute the probabilities of experiencing 0-8 hurricanes in a season.

Compare these to your answer to part (a).

How good does a Poisson distribution model this phenomenon?

Number Frequency
0 5
1 16
2 19
3 13
4 3
5 5
6 4
7 2
8 1
Total 68

Answers

Answer:

The probability table is shown below.

A Poisson distribution can be used to approximate the model of the number of hurricanes each season.

Step-by-step explanation:

(a)

The formula to compute the probability of an event E is:

[tex]P(E)=\frac{Favorable\ no.\ of\ frequencies}{Total\ NO.\ of\ frequencies}[/tex]

Use this formula to compute the probabilities of 0 - 8 hurricanes each season.

The table for the probabilities is shown below.

(b)

Compute the mean number of hurricanes per season as follows:

[tex]E(X)=\frac{\sum x f_{x}}{\sum f_{x}}=\frac{176}{68}= 2.5882\approx2.59[/tex]

If the variable X follows a Poisson distribution with parameter λ = 7.56 then the probability function is:

[tex]P(X=x)=\frac{e^{-2.59}(2.59)^{x}}{x!} ;\ x=0, 1, 2,...[/tex]

Compute the probability of X = 0 as follows:

[tex]P(X=0)=\frac{e^{-2.59}(2.59)^{0}}{0!} =\frac{0.075\times1}{1}=0.075[/tex]

Compute the probability of X = 1 as follows:

[tex]\neq P(X=1)=\frac{e^{-2.59}(2.59)^{1}}{1!} =\frac{0.075\times7.56}{1}=0.1943[/tex]

Compute the probabilities for the rest of the values of X in the similar way.

The probabilities are shown in the table.

On comparing the two probability tables, it can be seen that the Poisson distribution can be used to approximate the distribution of the number of hurricanes each season. This is because for every value of X the Poisson probability is approximately equal to the empirical probability.

Final answer:

To address this question, probabilities from the given data are calculated first, after which Poisson distribution is applied to compute the probabilities using the mean number of hurricanes per season. A comparison of both results offers an insight into the accuracy of the Poisson distribution in modeling this phenomenon.

Explanation:

To answer this question, we first have to calculate probabilities based on the empirical data and then compare them to probabilities computed under the assumption of a Poisson distribution.

First, we count total seasons from 1940 through 2007, which is 68. Using these frequencies, we can calculate the probability of having 0-8 hurricanes each season as follows: the number of seasons with a certain number of hurricanes divided by the total number of seasons.

For the Poisson distribution, we first need to calculate the average (mean) number of hurricanes per season, which is the sum of the product of the number of hurricanes and its frequency divided by the total number of seasons. After finding the mean, we can compute the probability of experiencing 0-8 hurricanes using the Poisson formula: e^(-mean) * (mean^n) / n!. After that, we can compare these probabilities with the ones derived from the empirical data.

Learn more about Probabilities and Poisson Distribution here:

https://brainly.com/question/7283210

#SPJ12

Dave’s Automatic Door, referred to in Exercise 29, installs automatic garage door openers. Based on a sample, following are the times, in minutes, required to install 10 door openers: 28, 32, 24, 46, 44, 40, 54, 38, 32, and 42.

Answers

The question is not complete and the full question says;

Calculate the (a) range, (b) arithmetic mean, (c) mean deviation, and (d) interpret the values. Dave’s Automatic Door installs automatic garage door openers. The following list indicates the number of minutes needed to install a sample of 10 door openers: 28, 32, 24, 46, 44, 40, 54, 38, 32, and 42.

Answer:

A) Range = 30 minutes

B) Mean = 38

C) Mean Deviation = 7.2

D) This is well written in the explanation.

Step-by-step explanation:

A) In statistics, Range = Largest value - Smallest value. From the question, the highest time is 54 minutes while the smallest time is 24 minutes.

Thus; Range = 54 - 24 = 30 minutes

B) In statistics,

Mean = Σx/n

Where n is the number of times occurring and Σx is the sum of all the times occurring

Thus,

Σx = 28 + 32 + 24 + 46 + 44 + 40 + 54 + 38 + 32 + 42 = 380

n = 10

Thus, Mean(x') = 380/10 = 38

C) Mean deviation is given as;

M.D = [Σ(x-x')]/n

Thus, Σ(x-x') = (28-38) + (32-38) + (24-38) + (46-38) + (44-38) + (40-38) + (54-38) + (38-38) + (32-38) + (42-38) = 72

So, M.D = 72/10 = 7.2

D) The range of the times is 30 minutes.

The average time required to open one door is 38 minutes.

The number of minutes the time deviates on average from the mean of 38 minutes is 7.2 minutes

Final answer:

The average time to install an automatic garage door opener, based on the provided data, is approximately 38 minutes, though individual times can vary.

Explanation:

The subject of this question is Mathematics, specifically statistics. The question provides a series of data points representing the time, in minutes, that it took to install 10 automatic garage door openers. To find the average installation time, you would add up all of the times and then divide by the number of data points, which in this case is 10.

The data points are: 28, 32, 24, 46, 44, 40, 54, 38, 32, and 42. So, average installation time = (28+32+24+46+44+40+54+38+32+42) / 10 = 38 minutes.

This suggests that on average, it takes about 38 minutes to install an automatic garage door opener. But remember, this is an average. Individual installation times can vary greatly, as seen in the range of times provided.

Learn more about Average Installation Time here:

https://brainly.com/question/4187466

#SPJ12

A brewery's filling machine is adjusted to fill bottles with a mean of 32.7 oz. of ale and a variance of 0.003. Periodically, a bottle is checked and the amount of ale noted.

(a) Assuming the amount of fill is normally distributed, what is the probability that the next randomly checked bottle contains more than 32.73 oz? (Give your answer correct to four decimal places.)
(b) Let's say you buy 95 bottles of this ale for a party. How many bottles would you expect to find containing more than 32.73 oz. of ale? (Round your answer up to the nearest whole number.) bottles You may need to use the appropriate table in Appendix B to answer this question.

Answers

Answer:

(a) P(X>32.73) = 0.2912

(b) Out of 95 bottles, 28 would contain more than 32.73 oz of ale.

Step-by-step explanation:

(a) The amount of fill is normally distributed so we will calculate the z-score and then use it to find the probability using the normal distribution probability table.

Let the amount of fill be denoted by X. The z-score can be computed using the formula:

z = (X - μ)/σ

where μ = mean value of fill

          σ = standard deviation of value of fill = √Variance

P(X>32.73) = 1 - P(X<32.73)

                  = 1 - P((X-μ)/σ < (32.73 - 32.7)/√0.003)

                  = 1 - P(z<0.55)

Using the normal distribution table in Appendix B, we can see the probability at z=0.55 is 0.7088. So,

P(X>32.73) = 1 - 0.7088

P(X>32.73) = 0.2912

(b) We are buying 95 bottles and we need to calculate how many of them contain more than 32.73 oz. For that, we will multiply the total number of bottles by the probability of finding more than 32.73 oz which we have calculated in (a).

95 * 0.2912 = 27.664

Rounding off to a whole number we get 28 bottles.

Out of 95 bottles, 28 would contain more than 32.73 oz of ale.

For each of the finite geometric series given below, indicate the number of terms in the sum and find the sum. For the value of the sum, enter an expression that gives the exact value, rather than entering an approximation.

A. 5+5(0.15)+5(0.15)2+⋯+5(0.15)14
number of terms =
value of sum =

B. 5(0.15)4+5(0.15)5+5(0.15)6+⋯+5(0.15)9
number of terms =
value of sum =

Answers

Answer:

a)Number of terms =15

Value of sum =

(b)Number of terms =6

Value of sum  

Step-by-step explanation:

A.

nth term,

a=5, r=

Simce the bases are the same, the powers are equal.

n-1=14

n=14+1=15

Number of terms =

15

Value of sum =

B.

nth term,

a=,

Simce the bases are the same, the powers are equal.

4+n-1=9

n=9+1-4=6

Number of terms =

6

Value of sum  

NOTE: For the sum, we desire an expression that gives the exact value, rather than entering an approximation

Use the properties of limits to help decide whether the limit exists. If the limit​ exists, find its value. ModifyingBelow lim With x right arrow infinity StartFraction 6 x cubed plus 5 x minus 7 Over 6 x Superscript 4 Baseline minus 4 x cubed minus 9 EndFraction

Answers

Answer:

The value of given limit problem is 0.

Step-by-step explanation:

The given limit problem is

[tex]lim_{x\rightarrow \infty}\dfrac{6x^3+5x-7}{6x^4-4x^3-9}[/tex]

We need to find the value of given limit problem.

Divide the numerator and denominator by the leading term of the denominator, i.e., [tex]x^4[/tex]

[tex]lim_{x\rightarrow \infty}\dfrac{\frac{6x^3+5x-7}{x^4}}{\frac{6x^4-4x^3-9}{x^4}}[/tex]

[tex]lim_{x\rightarrow \infty}\dfrac{\frac{6}{x}+\frac{5}{x^3}-\frac{7}{x^4}}{6-\frac{4}{x}-\frac{9}{x^4}}[/tex]

Apply limit.

[tex]\dfrac{\frac{6}{ \infty}+\frac{5}{ \infty}-\frac{7}{ \infty}}{6-\frac{4}{ \infty}-\frac{9}{ \infty}}[/tex]

We know that [tex]\frac{1}{\infty}=0[/tex].

[tex]\dfrac{0+0-0}{6-0-0}[/tex]

[tex]\dfrac{0}{6}[/tex]

[tex]0[/tex]

Hence, the value of given limit is 0.

Final answer:

The limit of the expression (6x^3 + 5x - 7)/(6x^4 - 4x^3 - 9) as x approaches infinity is 0.

Explanation:

In mathematics, when we are asked to find the limit of an expression as x approaches infinity, we can use a technique known as the 'highest powers' method. This involves dividing all terms in the function by the highest power of x in the denominator. In this expression, the highest power of x in the denominator is x4. So, we'll divide all terms by x4.

The given expression is: (6x3+5x-7) / (6x4-4x3-9). Dividing all terms by x4, we get: (6/x+5/x3-7/x4) / (6-4/x-9/x4)

As x approaches infinity, all terms that have x in the denominator go to 0. So, our expression simplifies to (0/6) = 0. Hence, the limit of the given expression as x approaches infinity is 0.

Learn more about Conditional Limits here:

https://brainly.com/question/27461202

#SPJ3

Suppose that a die is rolled twice. What are the possible values that the following random variables can take on: a. the maximum value to appear in the two rolls; b. the minimum value to appear in the two rolls; c. the sum of the two rolls; d. the value of the first roll minus the value of the second roll

Answers

Answer:

a. A = {1, 2, 3, 4, 5, 6}

b. B = {1, 2, 3, 4, 5, 6}

c. C = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

d. D = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Step-by-step explanation:

a. the maximum value to appear in the two rolls

Since only the maximum value is computed, the variable can assume any integer from 1 to 6:

A = {1, 2, 3, 4, 5, 6}

b. the minimum value to appear in the two rolls;

Since only the minimum value is computed, the variable can assume any integer from 1 to 6:

B = {1, 2, 3, 4, 5, 6}

c. the sum of the two rolls;

The minimum value would be from rolling two ones (sum is 2) and the maximum value would be from rolling two sixes (sum is 12). Every integer in-between is possible:

C = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

d. the value of the first roll minus the value of the second roll

The minimum value would be from rolling a one and a six (result is -5) and the maximum value would be from rolling a six and a one (result is 5). Every integer in-between is possible:

D = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Final answer:

Explanation of possible values for maximum, minimum, sum, and difference in rolling two dice.

Explanation:

a. The possible values for the maximum value:

1, if the same number appears twice on both rolls

2 to 6, for individual numbers in different scenarios

b. The possible values for the minimum value:

1 to 5, as the minimum value will exclude the maximum value

c. The possible values for the sum:

2 to 12, representing all possible sums from rolling two dice

d. The possible values for the difference between two rolls:

-5 to 5, as the difference can range from -5 to 5

Suppose that the problem is modified to specify that the chairs produced should accompany the tables so that of one-third of the tables produced each must have 6 accompanying chairs, of another one-third of the tables each must have 4 accompanying chairs, and of the other one-third of the tables each must have 2 accompanying chairs. How would this constraint be written

Answers

Answer:

C = 4T

Step-by-step explanation:

The question is not completed, the complete question and the solution is attached in the file below

What is the future value of $1,720 in 14 years assuming an interest rate of 7.25 percent compounded semiannually? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Future value

Answers

Answer:

The future value of $1,720 in 14 years assuming an interest rate of 7.25 percent compounded semiannually is $4,661.61

Step-by-step explanation:

The compound interest formula is given by:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

Where A is the amount of money, P is the principal(the initial sum of money), r is the interest rate(as a decimal value), n is the number of times that interest is compounded per unit t and t is the time the money is invested or borrowed for.

In this problem, we have that

Semianually is twice a year, so [tex]n = 2[/tex].

Also, [tex]P = 1720, t = 14, r = 0.0725[/tex]

So

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

[tex]A = 1720*(1 + \frac{0.0725}{2})^{2*14}[/tex]

[tex]A = 4661.61[/tex]

The future value of $1,720 in 14 years assuming an interest rate of 7.25 percent compounded semiannually is $4,661.61

Final answer:

The future value of $1,720 in 14 years, given a 7.25% interest rate compounded semiannually, can be calculated using the formula for compound interest: FV = PV * (1 + rate/n)^(nt). Plugging in the values, the future value comes out to be $3,490.91.

Explanation:

We can find the future value using the formula: Future Value = Present Value * (1 + rate/ n)^(n*t), where the Present Value is $1,720, the rate is 7.25% (or 0.0725 in decimal form), n is 2 (since it's compounded semiannually), and t, the time period, is 14 years.

So Future Value  =  $1,720 * (1 + 0.0725 / 2) ^ (2 * 14) .

Therefore, the future value of $1,720 in 14 years, with an interest rate of 7.25 percent compounded semiannually, would be $3,490.91

Learn more about Future Value here:

https://brainly.com/question/32923864

#SPJ3

A simple random sample of 26 precipitation amounts has a standard deviation of 0.18. Find the test statistic, using a 0.01 significance level to test a claim that the standard deviation of all precipitation amounts is equal to 0.25

Answers

Answer:

[tex] t=(26-1) [\frac{0.18}{0.25}]^2 =12.96[/tex]

What is the critical value for the test statistic at an α = 0.01 significance level?

Since is a two tailed test the critical zone have two zones. On this case we need a quantile on the chi square distribution with 25 degrees of freedom that accumulates 0.005 of the area on the left tail and 0.995 on the right tail.  

We can calculate the critical value in excel with the following code: "=CHISQ.INV(0.005,25)". And our critical value would be [tex]\Chi^2 =10.520[/tex]    

And the right critical value would be :  [tex]\Chi^2 =46.927[/tex]

And the rejection zone would be: [tex] \chi^2 < 10.52 \cup \chi^2 >46.927[/tex]

Since our calculated value is NOT in the rejection zone we FAIL to reject the null hypothesis.

Step-by-step explanation:

Previous concepts and notation

The chi-square test is used to check if the standard deviation of a population is equal to a specified value. We can conduct the test "two-sided test or a one-sided test".

n = 26 sample size

s= 0.18

[tex]\sigma_o =0.25[/tex] the value that we want to test

[tex]p_v [/tex] represent the p value for the test

t represent the statistic

[tex]\alpha=0.01[/tex] significance level

State the null and alternative hypothesis

On this case we want to check if the population standard deviation is equal to 0.25, so the system of hypothesis are:

H0: [tex]\sigma =0.25[/tex]

H1: [tex]\sigma \neq 0.25[/tex]

In order to check the hypothesis we need to calculate the statistic given by the following formula:

[tex] t=(n-1) [\frac{s}{\sigma_o}]^2 [/tex]

This statistic have a Chi Square distribution distribution with n-1 degrees of freedom.

What is the value of your test statistic?

Now we have everything to replace into the formula for the statistic and we got:

[tex] t=(26-1) [\frac{0.18}{0.25}]^2 =12.96[/tex]

What is the critical value for the test statistic at an α = 0.01 significance level?

Since is a two tailed test the critical zone have two zones. On this case we need a quantile on the chi square distribution with 25 degrees of freedom that accumulates 0.005 of the area on the left tail and 0.995 on the right tail.  

We can calculate the critical value in excel with the following code: "=CHISQ.INV(0.005,25)". And our critical value would be [tex]\Chi^2 =10.520[/tex]

And the right critical value would be :  [tex]\Chi^2 =46.927[/tex]

And the rejection zone would be: [tex] \chi^2 < 10.52 \cup \chi^2 >46.927[/tex]

Since our calculated value is NOT in the rejection zone we FAIL to reject the null hypothesis.

At the 0.01 significance level, we fail to reject the null hypothesis, meaning there is not enough evidence to refute the claim that the standard deviation is 0.25.

To test the claim that the standard deviation of all precipitation amounts is equal to 0.25 using a 0.01 significance level, we use the chi-square test for standard deviation.

The null hypothesis (H0) states that the population standard deviation (σ) is 0.25. The alternative hypothesis (Ha) states that σ is not equal to 0.25.

The test statistic for a chi-square test is calculated using the formula:

Chi-square (χ²) = (n - 1)s² / σ₀²

Where:

n is the sample size (26)s is the sample standard deviation (0.18)σ₀ is the hypothesised population standard deviation (0.25)

Substituting the values:

χ² = (26 - 1)(0.18)² / (0.25)²

Calculating this:

χ² = 25 * 0.0324 / 0.0625 = 12.96

This χ² value is compared to the critical values from the chi-square distribution table with (n-1) or 25 degrees of freedom at a 0.01 significance level. The two-tailed critical values for 25 degrees of freedom at 0.01 significance level are approximately 10.85 and 46.93.

Since 10.85 < 12.96 < 46.93, we fail to reject the null hypothesis.

Hence, at the 0.01 significance level, there is not enough evidence to reject the claim that the standard deviation of all precipitation amounts is 0.25.

Suppose that MX=V is a linear system, for some matrix M and some vector V. Let the vector P be a particular solution to the system and the vector H a homogeneous solution to the system. Which of the following vectors must be a particular solution to the system? Select all that apply.

A. 2H-P
B. 2P+2H
C. 3H-P
D. H
E. 2P+H
F. P+3H
G. P
H. P+H
I. P-3H
J. 3P+H
K. 2H-P
L. P+2H
M. 3P+3H
N. P-2H
O. H-P
P. P-H

From what I understand, the general solution = particular+homogeneous.
I found that possible solutions could be P+H, a scalar * P, or a scalar * P + scalar*H. I tried these options and didn't get it right. Any help would be appreciated

Answers

Answer:

The Answer is "G. P"

Step-by-step explanation:

They ask for "Which of the following vectors must be a PARTICULAR solution to the system?" so the answer simply G. which is P

Minute Maid states that a bottle of juice contains 473 mL. Consumer groups are interested in determining if the bottles contain less than the amount stated on the label. To test their claim, they sample 30 bottles. The sample mean was 472mL and the standard deviation is 0.2. What does mu represent here? Group of answer choices The average contents of all bottles of juice in the population, which is 472mL. The average contents of all bottles of juice in the sample, which is unknown. The average contents of all bottles of juice in the sample, which is 472mL. The average contents of all bottles of juice in the population, which is unknown.

Answers

Answer:

The average contents of all bottles of juice in the population

[tex]\mu = 473\text{ mL}[/tex]

Step-by-step explanation:

We are given the following in the question:

Population mean, μ =  473 mL

Sample mean, [tex]\bar{x}[/tex] = 472 mL

Sample size, n = 30

Sample standard deviation, s = 0.2

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 473\text{ mL}\\H_A: \mu < 473\text{ mL}[/tex]

Representation of [tex]\mu[/tex]

It is the population parameter for mean.Thus, it represents the average contents of all bottles of juice in the population, which is 473 mL.

The average juice a bottle contain is the mean value of the juice.

[tex]\mathbf{\mu }[/tex] is the average content in all bottles of juice in the population, which is 472mL.

The given parameters are:

[tex]\mathbf{n = 30}[/tex] --- the sample size

[tex]\mathbf{\sigma = 0.2}[/tex] --- the standard deviation

[tex]\mathbf{\bar x = 472}[/tex] --- the sample mean

[tex]\mathbf{\mu = 473}[/tex] --- the population mean

The above highlights means that:

The parameter [tex]\mathbf{\mu }[/tex] represents the population mean

This means that:

[tex]\mathbf{\mu }[/tex] is the average content in all bottles of juice in the population.

From the question, the value is given as: 473

Hence, the true statement is:

[tex]\mathbf{\mu }[/tex] is the average content in all bottles of juice in the population, which is 473mL.

Read more about averages at:

https://brainly.com/question/15243179

Other Questions
what US policy is this cartoon criticizing? which element has a crystalline lattice through which electrons flow freely what is file oraganization What is the equation, in slope-intercept form, of the line that is perpendicular to the given line and passes through the point (0, 9)? provisional money manager who makes riskinvestment from pool of equity capital to obtainhigh rate of return on investment A student pulls a 2.0-kg object to the left with a force of 30 N, while another student is pulling against the object in the opposite direction with a force of 20 N. What is the acceleration of the object?5 m/s2, left5 m/s2, right20 m/s2, left20 m/s2, right At 6 percent interest, how long does it take to double your money? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Length of time years At 6 percent interest, how long does it take to quadruple your money? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Length of time years The semantic network model proposes a process called _____ in which thinking of a concept leads to a rippling effect that triggers other related concepts. La Repblica Dominicana y Hait comparten la isla La Espaola. cierto falso 2. La Fortaleza Ozama fue la tercera fortaleza construida en las Amricas. cierto falso 3. La Repblica Dominicana fue el primer pas hispano en tener una liga de bisbol. cierto falso 3 4/6 - 2 1/4 please help me With the advent of more sophisticated technology, employers who operate locally and globally and want all employees to receive the same training may opt for ____. A request for a "change of venue" _________. is requested by your lawyers if they feel that it is impossible for you as a defendant to get a fair trial due to media coverage means that you can asked to be let out of your rental lease if you are a minority ethnicity is a conflict of rights under the First and Fifth Amendments can happen when the media coverage will help your case if you are charged with murder The annual march of the seasons and the passage of the subsolar point between the Tropics of Cancer and Capricorn affect these stations. Can you detect from your temperature graphs these seasonal effects If an elderly customer of a RR develops dementia so that he can no longer handle his own affairs and the RR becomes aware of the customer's situation, the RR can only take orders for trades in the customer's account from third party who: My grandparents, my parents, and I have been very active members of the same organization; The nature Conservancy Which of the following costs is an important purchasing consideration when quantity discounts are offered? Question 2 options: Shortage costs Setup costs Holding costs Unit costs The length of the human pregnancy is not fixed. It is known that it varies according to a distribution which is roughly normal, with a mean of 266 days, and a standard deviation of 16 days. a. Fill in the curve below with the % and X-axis b. Approximately what percent of pregnancy are between 234 and 298 days c. Approximately what percent of pregnancy are between 250 and 314 days d. Approximately what percent of pregnancy are below 218 Which equation has real zeros corresponding tothe x-intercepts of the graph?y = log3(x) 1y = 3x - 3y=-3(x - 1) + 3y = log3(2x) - 2 Members of a hospital advisory committee will be selected from 5 doctors and 4 nurses. The committee must have 2 doctors and 2 nurses.How many possible combinations of doctors and nurses could be chosen for the committee? A mug is 2/3 full. The mug contains 5/6 of a cup of water. Find the capacity of the mug. Steam Workshop Downloader