Compare and contrast the causes and effects of ocean-continent

and ocean-ocean convergent plate boundaries.

EXTRA HELP

How are the causes of ocean-continent and ocean-ocean convergent

plate boundaries similar?

How are the causes of ocean-continent and ocean-ocean convergent

plate boundaries different?

How are the effects of ocean-continent and ocean-ocean convergent

plate boundaries similar?

How are the effects of ocean-continent and ocean-ocean convergent

plate boundaries different?

Answers

Answer 1

Answer:seen below

Explanation:

The effects of an ocean-ocean subduction zone are the same as those of an ocean-continent subduction zone in that, the subduction zone where an oceanic plate subducts beneath another oceanic plate are the same as a continent-ocean subduction zone.

They oceanic plate and the continental plate are both convergent zones, but when an oceanic plate converges with a continental plate, the oceanic plate is forced underneath the continental plate this is because oceanic crust is thinner and denser than the continental crust. The difference is that the volcanic arc formed will be a set of islands known as an island arc.

If two plates meet at a convergent plate boundary both are of oceanic crust, the older, denser plate will subduct beneath the less dense plate into a trench, resulting in earthquakes.

Finally, When two continents meet head-on, neither is subducted under, this is because the continental rocks are relatively light and are like two colliding icebergs they resist downward motion. Instead, the crust tends to buckle and be pushed upward or sideways.

Answer 2

The driving forces behind ocean-continent and ocean-ocean convergent plate boundaries are similar, involving the movement of lithospheric plates due to mantle convection, the specific outcomes of these collisions differ based on the types of plates involved.

The causes of ocean-continent and ocean-ocean convergent plate boundaries are similar in that both are driven by the movement of lithospheric plates due to the convection currents in the asthenosphere. The differences in their causes lie in the density and composition of the colliding plates. Ocean-continent convergence occurs when a dense oceanic plate collides with a less dense continental plate, while ocean-ocean convergence involves the collision of two oceanic plates.

The effects of both types of convergent boundaries include the formation of mountains or island arcs, earthquakes, and volcanic activity. However, the specific effects differ due to the nature of the colliding plates. Ocean-continent convergence typically results in the subduction of the oceanic plate under the continental plate, leading to the formation of mountain ranges like the Andes and volcanic activity such as the Cascade Range. In contrast, ocean-ocean convergence leads to the creation of island arcs like the Aleutian Islands and deep ocean trenches such as the Mariana Trench. Additionally, the volcanic activity at ocean-ocean convergent boundaries tends to produce less explosive eruptions compared to the more explosive eruptions that can occur at ocean-continent boundaries.

 Convergent plate boundaries are areas where two or more tectonic plates collide. The movement of these plates is driven by convection currents in the Earth's mantle, specifically the asthenosphere, which is a more ductile layer beneath the lithosphere. These currents cause the overlying lithospheric plates to move, and when this movement is convergent, it leads to collision.

In the case of ocean-continent convergence, the denser oceanic plate is forced beneath the less dense continental plate in a process known as subduction. This subduction can cause melting of the subducting plate, leading to the formation of magma that rises through the continental crust, resulting in volcanic activity. The collision also causes the continental crust to crumple and fold, creating mountain ranges.

Ocean-ocean convergence, on the other hand, involves two oceanic plates. When these plates collide, one plate is typically subducted under the other due to the higher density of the oceanic crust compared to the mantle below. This subduction also leads to volcanic activity, but because the volcanoes form in the ocean, they often create island arcs. The subduction of one oceanic plate beneath another also results in the formation of deep ocean trenches.

The similarities in effects between the two types of convergent boundaries include the creation of topographic highs (mountains or island arcs), seismic activity due to the release of energy as the plates move and collide, and volcanic activity from the melting of the subducting plate.

The differences in effects are primarily due to the different densities and compositions of the colliding plates. Ocean-continent convergence can lead to more dramatic mountain building and more explosive volcanic eruptions because of the interaction between the dense oceanic crust and the less dense continental crust. In contrast, ocean-ocean convergence tends to produce less explosive volcanic eruptions and the creation of island arcs and ocean trenches rather than large mountain ranges on continents.


Related Questions

1. Copper (__) is an element on the periodic table.
CU (both letters capitalized)
Cu (first letter capitalized)
cU (second letter capitalized)
cu (both letters lowercase)

Answers

Answer:  Cu

Explanation: It is Cu because the origin of the word Copper comes from the latin word "Cuprum".

What is the result when 12 grams of H2 and 28 grams of N2 react to completion at STP.

3H2(g) + N2 --> 2 NH3

Answers

Answer:

The correct answer is 89.6 L

Explanation:

We have the following chemical equation and the molar masses for the reaction:

3H₂(g)   +   N₂ -->   2 NH₃

 6 g            28 g      34 g

That means that 3 moles of H₂ (6 g) reacts with 1 mol of N₂ (28 g) and gives 2 moles of NH₃ (34 g). In order to calculate how many liters of NH₃ result from the reaction of 12 grams of H₂ and 28 grams of N₂, we have to first figure out which reactant is the limiting reactant. According to the equation, if 6 grams of H₂ reacts with 28 g of N₂, and we have 12 grams:

6 g H₂------- 28 g N₂

12 g H₂-------- X = 12 g H₂ x 28 g N₂/6 g H₂ = 56 g N₂

We need 56 g of N₂ but we have 28 g of N₂, so N₂ is the limiting reactant. With the limiting reactant we can calculate the moles of product (NH₃) we will obtain:

We have 28 g N₂ -----> 28 g/14 g/mol = 2 moles N₂

1 mol N₂ ----------- 2 moles NH₃

2 mol N₂ --------- X = 2 mol N₂ x 2 moles NH₃/1 mol N₂ = 4 mol NH₃

Finally, we convert the moles of NH₃ to liters:

1 mol gas at STP = 22.4 L

Liters NH₃ obtained = 4 moles NH₃ x 22.4 L/1 mol = 89.6 L

Final answer:

When 12 grams of H2 and 28 grams of N2 react completely according to the equation 3H2(g) + N2(g) → 2NH3(g), 34.08 grams of NH3 are produced, with some H2 remaining unreacted due to it being in excess.

Explanation:

The question asks about the result when 12 grams of H2 and 28 grams of N2 react to completion according to the balanced chemical equation 3H2(g) + N2(g) -> 2NH3(g). This equation signifies that one mole of nitrogen gas (N2) reacts with three moles of hydrogen gas (H2) to produce two moles of ammonia (NH3). Given the molar masses (N2 = 28.02 g/mol, H2 = 2.02 g/mol), we can determine that the initial amounts provided are excess H2. Precisely, 28 grams of N2 is one mole, and 12 grams of H2 is six moles, which is enough to fully react according to the stoichiometry of the equation. The reaction of 28.02 g of N2 and 6.06 g of H2 produces 34.08 g of NH3, according to mass conservation principles. Since more H2 is provided than required, only 6.06 g will be consumed, leaving excess H2 unreacted. Therefore, the reaction yields 34.08 grams of NH3.

To find pH of hydrochloric acid.
Lab data: on the attached file
Acid used to titrate 25.0mL of 0.150M potassium hydroxide.

Answers

Answer:

1.22

Explanation:

Step 1:

We'll begin by writing the balanced equation for the reaction. This is given below:

HCl + KOH —> KCl + H2O

From the balanced equation above,

The mole ratio of acid (nA) = 1

The mole ratio of base (nB) = 1

Step 2:

Data obtained from the question. This includes the following:

Volume of acid (Va) =

(62.35 + 62.40)/2 = 62.38 mL

Molarity of acid (Ma) =.?

Volume of base (Vb) = 25 mL

Molarity of base (Mb) = 0.150M

Step 3:

Determination of the molarity of the acid.

This is illustrated below:

MaVa/MbVb = nA/nB

Ma x 62.38/ 0.15 x 25 = 1

Cross multiply to express in linear form

Ma x 62.38 = 0.15 x 25

Divide both side by 62.38

Ma = (0.15 x 25) /62.38

Ma = 0.06M

The molarity of the acid is 0.06M

Step 4:

Determination of the concentration of Hydrogen ion, [H+] in the acid. This is illustrated below:

Hydrochloric acid (HCl) will dissociate to produce hydrogen ion as follow:

HCl —> H+ + Cl-

From the above equation,

1 mole of HCl produced 1mole of H+.

Therefore, 0.06M HCl will also produce 0.06M H+.

The concentration of Hydrogen ion, [H+] is 0.06M

Step 5:

Determination of the pH of HCl. This is illustrated below:

pH = – Log [H+]

[H+] = 0.06M

pH = – Log 0.06

pH = 1.22

Therefore, the pH of HCl is 1.22

In an Honors organic chemistry lab, a student devised an experiment in which she would treat benzoic acid with t-butanol in an acid-catalyzed esterification reaction using concentrated sulfuric acid. Regretfully, the synthetic yield of the expected ester was exceedingly low. Please explain this outcome in terms of the chemistry that actually occurred in the reaction flask. [This attempted esterification reaction would have been better suited to dicyclohexylcarbodiimide (DCC/pyridine) esterification conditions.]

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

True statements:1) deltaH for endothermic reaction is positive3) when the energy is transferred as heat from system to surroundings, deltaH is negative.6) A combustion reaction is exothermic .False statements:2) deltaH for exothermic reaction is positive. actually it is negative4) when the energy is transferred as heat from surroundings to system, deltaH is negative. actually it is positive5) the evaporation of water is an exothermic process. actually it is an endothermic process.

Answers

 Answer:

Delta H for endothermic reaction is positive-True. This is because an endothermic reaction absorbs heat energy, therefore more energy is retained inside the product of the reaction system than the reactants, as the value of deltaH is greater than Zero.

Delta H for an exothermic reaction is positive. This is false. Because in an exothermic reaction  heat is liberated to the  surrounding environment. therefore the value of thus the outer environment contains more energy than the internal environments, thus the enthalpy of the reactants is greater than that of the products.

when the energy is transferred as heat from system to surroundings, deltaH is negative. True . This is true because the surrounding environment gain heat energy, (positive)while  the system loses it,(negative) therefore delta H is negative.

when the energy is transferred as heat from surroundings to system, deltaH is negative.  False. This is  positive, because now the environments loses heat, (negative) while the systems gains heat,( positive) therefore delta H of the system is positive. endothermic

the evaporation of water is an exothermic process-False, This is an endothermic reaction in which water molecules need to gain heat energy from the surrounding environments to increase the average kinetic energy  of collusion to escape the intermolecular forces to escape as steam.

Combustion reaction is exothermic. True., because heat energy is transferred to the surrounding from the internal system. The energy needed for the formation  of  new bonds in the products is higher than the energy for breaking of original bonds in the reactants. Thus more heat is liberated.

Explanation:

Convert the Haworth projection of the carbohydrate below into its corresponding Fischer projection (in the standard format with the most oxidized carbon at the top) and chair conformation (correctly drawing equatorial and axial bonds) of the opposite anomer. Then answer the questions in the problem. Upload a photo of your answer as a jpeg file. If we can't read it, we can't grade it!

Answers

Answer:

See explaination

Explanation:

H O / I MOH the OH da Anomer My nequatorial bovel SOH niematerial and CH2OH Yr axial boud - H o H o . H (Auro) 2 flip . note: 1)Fischer projection : L- Sugar ( OH group is in the left side ) at C-5 carbon (bottom most chiral center )

In the Haworth projection given above in the qsn it is Beta anomer( -CH2OH & C-OH are in same side i.e. Cis to each other ). It is a L -sugar .

I omitted C2 -H bond (axial ) in the chair conformation of alpha anomer.

See attachment for further solution

Final answer:

Transitioning from a Haworth to a Fischer projection, every carbon atom becomes a line end or intersection point. Correct position and orientation of the hydroxyl group determines the chair configuration. Carbohydrates, which contain carbon, hydrogen, and oxygen atoms in a 1:2:1 ratio, have monosaccharide, disaccharide, and polysaccharide subtypes.

Explanation:

The question is asking you to convert a Haworth projection of a carbohydrate into a Fischer projection and a chair conformation of its opposite anomer. This involves understanding several concepts in organic chemistry. The Haworth projection is a common way of representing cyclic sugars, which are typically found in ring forms in aqueous solutions. The Fischer projection is used to represent the stereochemistry of the molecule. In converting the Haworth projection to a Fischer projection, each carbon atom in the ring becomes the end of a line or a point where lines intersect in the Fischer projection. The most oxidized carbon (typically the one attached to an oxygen atom) is placed at the top.

Next, to draw the chair conformation, you must understand axial and equatorial bonds, which describe the orientation of chemical groups around the carbon atoms in the ring. Axial bonds are vertical and shunted to the side, while equatorial bonds are more horizontal and radiate outwards. For the opposite anomer, if the original has the hydroxyl group below the plane in an alpha position, the opposite anomer would have it above the plane in a beta position.

Carbohydrates bear the stoichiometric formula (CH₂O)n, indicating a carbon to hydrogen to oxygen ratio of 1:2:1. Classified into monosaccharides, disaccharides, and polysaccharides, carbohydrates are a crucial chemical group in biology.

Learn more about Carbohydrate Conversion here:

https://brainly.com/question/33716517

#SPJ12

How many moles of carbon atoms are in 18 g?

Answers

Answer:

= 1.5 moles of carbon

Explanation:

Molar mass of Carbon = 12g

12g of carbon are weighed by 1 mole of carbon

18g of carbon will be weighed by [(18÷12)×1]

= 1.5 moles

Final answer:

The number of moles of carbon atoms in 18 grams is approximately 1.498 moles.

Explanation:

To calculate the number of moles of carbon atoms in 18 grams, we need to use the molar mass of carbon. The molar mass of carbon is 12.01 g/mol. We can use the formula:



Number of moles = Mass / Molar mass



So, for 18 grams of carbon:



Number of moles = 18 g / 12.01 g/mol = 1.498 moles



Therefore, there are approximately 1.498 moles of carbon atoms in 18 grams.

Learn more about moles of carbon atoms here:

https://brainly.com/question/32827838

#SPJ11

2 H2(g) + O2(g) → 2 H2O(g)

How many liters of water can be made from 55 grams of oxygen gas and an excess of hydrogen at STP?


a

56 L


b

77 L


c

35 L


d

67 L

Answers

Answer:

77 L of water can be made.

Explanation:

Molar mass of [tex]O_{2}[/tex] = 32 g/mol

So, 55 g of [tex]O_{2}[/tex] = [tex]\frac{55}{32}[/tex] mol of  [tex]O_{2}[/tex] = 1.72 mol of  [tex]O_{2}[/tex]

As hydrogen is present in excess amount therefore  [tex]O_{2}[/tex] is the limiting reagent.

According to balanced equation, 1 mol of  [tex]O_{2}[/tex] produces 2 mol of [tex]H_{2}O[/tex].

So, 1.72 mol of [tex]O_{2}[/tex] produce [tex](2\times 1.72)[/tex] mol of [tex]H_{2}O[/tex] or 3.44 mol of [tex]H_{2}O[/tex].

Let's assume [tex]H_{2}O[/tex] gas behaves ideally at STP.

Then, [tex]P_{H_{2}O}.V_{H_{2}O}=n_{H_{2}O}.R.T[/tex]   , where P, V, n, R and T represents pressure, volume, no. of moles, gas constant and temperature in kelvin scale respectively.

At STP, pressure is 1 atm and T is 273 K.

Here, [tex]n_{H_{2}O}[/tex] = 3.44 mol and R = 0.0821 L.atm/(mol.K)

So, [tex](1atm)\times V_{H_{2}O}=(3.44mol)\times (0.0821L.atm.mol^{-1}.K^{-1})\times (273K)[/tex]

  [tex]\Rightarrow[/tex]  [tex]V_{H_{2}O}=77L[/tex]

Option (b) is correct.

Final answer:

Using stoichiometry, 55 grams of oxygen gas can produce 77 liters of water at STP, considering the molar volume of a gas at STP is 22.4 liters per mole.

Explanation:

To determine how many liters of water can be made from 55 grams of oxygen gas and an excess of hydrogen at STP, we must first convert the mass of oxygen to moles and then use stoichiometry to find the volume of water produced. The balanced chemical equation for the reaction is:

2 H2(g) + O2(g) → 2 H2O(g)

At STP (Standard Temperature and Pressure), 1 mole of gas occupies 22.4 liters. Therefore, the moles of oxygen (O2) can be calculated using its molar mass (32 g/mol):

Moles of O2 = 55 g / 32 g/mol = 1.71875 moles

The balanced equation shows us that 1 mole of O2 produces 2 moles of H2O.

Total moles of H2O produced = 1.71875 moles of O2 × 2 = 3.4375 moles

Volume of H2O (at STP) = 3.4375 moles × 22.4 L/mol = 76.92 L

Therefore, when rounded to the nearest whole number, 77 liters of water can be made from 55 grams of oxygen gas and an excess of hydrogen at STP, which corresponds to option b.

Which organ(s) would be responsible for this trait? Select two options.

Answers

Answer:

The ovaries and the testes

Explanation:

The organs responsible for the development of secondary sex characteristics would be the ovaries and the testes.

Both ovary and testes are associated with the sex organs in the body and are responsible for the synthesis of hormones such as androgen and estrogen. While the latter (estrogen) is produced by the ovary, the former (androgen) is produced by the testes.

More specifically, both androgen and estrogen are hormones responsible for the growth of hairs in areas such as the armpit and the pubic regions of the body.

The correct options are the ovaries and the testes.

In which solution will thymol blue indicator appear blue?

Answers

Answer:

0.1 M KOH

Explanation:

The thymol blue indicator will appear blue in a basic solution, particularly in a solution with a pH greater than 8.0. A diluted sodium hydroxide solution is an example of such a basic environment where thymol blue would turn blue.

The thymol blue indicator will appear blue in a basic solution. Specifically, thymol blue changes color from yellow to blue over a pH range of approximately 8.0 to 9.6. This means that for thymol blue to exhibit a blue color, it needs to be in a solution with a pH greater than 8.0, indicating a basic environment.

An example of a solution in which thymol blue would appear blue is a diluted sodium hydroxide (NaOH) solution, as NaOH is a strong base that would increase the pH of the solution.

Sodium hydrogen carbonate reacts with sulfuric acid to produce sodium sulfate, water, and carbon dioxide.

Write the equation out, balance, and tell what kind of reaction it is:

Answers

Answer:

2NaHCO3(aq)+H2SO4(aq)→Na2SO4(aq)+2CO2(g)+2H2O(l)

Explanation:

As we know that

acid + carbonate  →  salt + carbon dioxide + water

So, the general (un-balanced) equation would be-

NaHCO3(aq)+H2SO4(aq)→Na2SO4(aq)+CO2(g)+H2O(l)

Now we will write the net ionic reactions

[tex]HCO_3^-+ H3O^+[/tex] ----> CO2(g)↑+2H2O(l)

[tex]Na ---> Na^+ + e^-[/tex]

[tex]2H^+ + 2e^- ---> H2[/tex]

[tex]SO_4^{2-} ---- SO_4 + 2e^-[/tex]

Adding all the above equation, we get

2NaHCO3(aq)+H2SO4(aq)→Na2SO4(aq)+2CO2(g)+2H2O(l)

To prepare a 2 M solution of potassium nitrate (KNO3), which quantities must be measured? The mass of the and the volume of the must be measured.

Answers

Answer:

The mass of the solute and the volume of the solution.

Explanation:

Hello,

In this case, given the formula of molarity:

[tex]M=\frac{n_{solute}}{V_{solution}}[/tex]

In such a way, since the moles could not be directly measured, we must measure the mass of the solute and by using its molar mass, one could compute its moles. Moreover, since the solution is composed by the solvent (typically water) and the solute, we consequently must measure the volume of the solution needed for the preparation of such concentration-known solution. In such a way, we can actually prepare the required solution.

Best regards.

For the formation of 2 M solution of potassium nitrate, mass and volume of the solution has been measured.

Molarity can be defined as the mass of solute present in a liter of solution. The molarity has been used for the determination of the concentration of the compounds.

It can be expressed as mol/L. The molarity (M) has expression:

[tex]M=\rm \dfrac{solute\;mass}{solute\;molar\;mass}\;\times\;Solution\;Volume[/tex]

For the formation of 2 M potassium nitrate solution, the mass of the solute and the volume of the solution has to be measured.

For more information about molarity, refer to the link:

https://brainly.com/question/12127540

does a mirror breaks up light into all the colors of the rainbow

Answers

Yes it dose when it is angled the right way

Mirrors reflect light without separating it into colors, unlike prisms or water droplets which cause dispersion, leading to the formation of rainbows. Dispersion occurs when light passes through a medium that slows down colors differentially. Historical scientists like al-Farisi and Theodoric of Freiberg demonstrated this with water droplets.

The answer is no; a typical mirror reflects light without separating it into its constituent colors. This property allows a mirror to create an image with the same color composition as the original scene.

Now, the separation of white light into its constituent colors—an effect known as dispersion—occurs when light passes through a medium that causes different colors to travel at different speeds. This is how prisms or water droplets in the atmosphere create beautiful rainbows. It relies on the refraction of light, which bends the light as it moves from one medium to another, like air into water, and does so at varying degrees depending on the wavelength (color) of the light. However, while mirrors can exhibit total reflection due to refraction, they do not inherently disperse white light.

Historically, figures like Kamal al-Din al-Farisi and Theodoric of Freiberg conducted experiments which confirmed that water droplets are responsible for decomposing white light into the colors of the rainbow. Their work built on foundational optics principles from Ibn al-Haytham.

Select the appropriate statements and arrange them in a logical order to explain the bonding in BeF2. i. Each of the singly occupied hybrid orbitals on Be overlaps with a singly occupied 2p orbital on an F atom. ii. The unhybridized 2p orbitals on Be interact with the 2p orbitals on the F atoms to form pi bonds. iii. The 2s and one of the 2p orbitals on Be combine to form two sp hybrid orbitals. iv. A 2s electron is promoted to a 2p orbital on Be. v. The 2s electrons in Be are promoted to 2p orbitals. vi. Each of the singly occupied 2p orbitals on Be overlaps with a singly occupied 2s orbital on a F atom.a.v, vi, ii b.v,vi c.iii, i, ii d.iv, iii, i e.iv, iii, i, ii

Answers

Final answer:

The bonding in BeF2 involves the promotion of a 2s electron to a 2p orbital on Be, followed by sp hybridization of the Be orbitals, and overlap with the F atom 2p orbitals to form two sigma bonds. So the correct statements are iv, iii, and i.

Explanation:

To explain the bonding in BeF2, we must select the appropriate statements and arrange them in a logical order. The correct sequence of statements is:

iv. A 2s electron is promoted to a 2p orbital on Be.iii. The 2s and one of the 2p orbitals on Be combine to form two sp hybrid orbitals.i. Each of the singly occupied hybrid orbitals on Be overlaps with a singly occupied 2p orbital on an F atom.

Firstly, a 2s electron in Be is promoted to a 2p orbital (Statement iv), creating two singly occupied orbitals. These orbitals then undergo hybridization to form two equivalent sp hybrid orbitals (Statement iii), which are oriented at a 180° angle to each other. Each sp hybrid orbital overlaps with a singly occupied 2p orbital on a fluorine atom to form a sigma bond (Statement i), involving the pairing up of the Be valence electrons with the unpaired electron on each F atom. This results in the formation of two identical Be-F sigma bonds, giving BeF2 a linear molecular geometry.

Learn more about Bonding in BeF2 here:

https://brainly.com/question/29846051

#SPJ3

When of benzamide are dissolved in of a certain mystery liquid , the freezing point of the solution is less than the freezing point of pure . Calculate the mass of ammonium chloride that must be dissolved in the same mass of to produce the same depression in freezing point. The van't Hoff factor for ammonium chloride in . Be sure your answer has a unit symbol, if necessary, and round your answer to significant digits.

Answers

Given question is incomplete. The complete question is as follows.

When 72.8 g of benzamide ([tex]C_{7}H_{7}NO[/tex]) are dissolved in 600 g of a certain mystery liquid X, the freezing point of the solution is [tex]6.90^{o}C[/tex] less than the freezing point of pure X. Calculate the mass of ammonium chloride [tex](NH_{4}Cl)[/tex] that must be dissolved in the same mass of X to produce the same depression in freezing point. The van't Hoff factor i = 70 for ammonium chloride in X. Be sure your answer has a unit symbol, if necessary, and round your answer to significant digits.

Explanation:

The given data is as follows.

        Mass of solute (benzamide), [tex]w_{B}[/tex] = 72.8 g

        Mass of solvent (X), [tex]w_{A}[/tex] = 600 g

          [tex]\Delta T_{f} 6.90^{o}C[/tex]

  Molar mass of benzamide, [tex]M_{w_{B}}[/tex] = 121.14 g/mol

We know that,

              [tex]\Delta T_{f} = k_{f} \times X \times m[/tex]   (for non-dissociating)

   [tex]6.90 = k_{f} \times \frac{72.8 \times 1000}{121.14 \times 600}[/tex] ...... (1)

For other experiment, when [tex]NH_{4}Cl[/tex] is taken :

       Mass of [tex]NH_{4}Cl[/tex], ([tex]w_{NH_{4}Cl}[/tex]) = ?

  Molar mass of [tex]NH_{4}Cl[/tex] = 53.491 g/mol

  Mass of solvent (X) = 600 g

        [tex]\Delta T_{f} = 6.90^{o}C[/tex]

           i = Van't Hoff factor = 1.70

As,     [tex]\Delta T_{f} = i \times k_{f} \times m[/tex]

      [tex]6.90 = 1.70 \times k_{f} \times \frac{w_{NH_{4}Cl} \times 1000}{53.491 \times 600}[/tex] ........... (2)

Now, we will divide equation (1) by equation (2) as follows.

         [tex]w_{NH_{4}Cl} \times 1 = \frac{72.8 \times 53.491}{1.70 \times 121.14}[/tex]  

                = 18.90 g

Therefore, we can conclude that the mass of ammonium chloride [tex](NH_{4}Cl)[/tex] that must be dissolved in the same mass of X to produce the same depression in freezing point is 18.90 g.

Final answer:

The mass of ammonium chloride required to produce the same freezing point depression as benzamide can't be calculated without additional data. The van't Hoff factor is crucial for understanding the effects of ionic compounds in freezing point depression calculations.

Explanation:

To calculate the mass of ammonium chloride that must be dissolved to produce the same depression in freezing point as benzamide, we will need to use the freezing point depression concept, which states that the change in freezing point (ΔTf) is equal to the molal freezing point depression constant of the solvent (Kf) multiplied by the molality (m) of the solution. The given data is as follows.

       Mass of solute (benzamide), w_(B) = 72.8 g

       Mass of solvent (X), w_(A) = 600 g

         \Delta T_(f) 6.90^(o)C

 Molar mass of benzamide, M_{w_(B)} = 121.14 g/mol

We know that,

             \Delta T_(f) = k_(f) * X * m   (for non-dissociating)

  6.90 = k_(f) * (72.8 * 1000)/(121.14 * 600) ...... (1)

For other experiment, when NH_(4)Cl is taken :

      Mass of NH_(4)Cl, (w_{NH_(4)Cl}) = ?

 Molar mass of NH_(4)Cl = 53.491 g/mol

 Mass of solvent (X) = 600 g

       \Delta T_(f) = 6.90^(o)C

          i = Van't Hoff factor = 1.70

As,     \Delta T_(f) = i * k_(f) * m

     6.90 = 1.70 * k_(f) * \frac{w_{NH_(4)Cl} * 1000}{53.491 * 600} ........... (2)

Now, we will divide equation (1) by equation (2) as follows.

        w_{NH_(4)Cl} * 1 = (72.8 * 53.491)/(1.70 * 121.14)  

               = 18.90 g

Therefore, we can conclude that the mass of ammonium chloride (NH_(4)Cl) that must be dissolved in the same mass of X to produce the same depression in freezing point is 18.90 g.

6) How many valence electrons does an atom of Cu possess?
ОА) 2
Ов) 9
Ос) 11
OD) 3
OE) 1​

Answers

The answer is c)11 because copper has 11 valence electrons

Which terms represent two types of organic reaction
Sublimation and deposition
Sublimation in fermentation
Saponification and deposition
Saponification of fermentation

Answers

Answer:

Saponification and fermentation .

Explanation:

Hello,

In this case, we define:

- Sublimation as such physical change (the substance does not change its composition) from solid to gases by adding heat.

- Deposition as such physical change (the substance does not change its composition) from gas to solid by heat withdrawal.

- Saponification as such chemical change (the substance does changes its composition) which consists on the conversion of a fat, oil or lipid  by adding  heat in the presence of aqueous strong base such as NaOH or KOH into soap and alcohol.

- Fermentation as a biochemical change that produces chemical changes in organic substrates by the action of biocatalysts called enzymes. It typically turn glucose into piruvate, ethanol or short organic acids.

For that reason, both fermentation and saponification are chemical reactions, more specifically organic reactions since the reactants are mainly carbon-based.

Best regards.

Saponification and fermentation represent two types of organic reaction

What are organic reactions ?

Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions.

In the question it is mentioned to identify two types of organic bamong the options

In the options we see that

1. Sublimation : The process in which a solid directly turns into gases without becoming a liquid. It is only physical change

2.Deposition : Deposition is the laying down of sediment carried by wind, water, or ice.

3.Saponification : The process of conversion of fatty acids and oils into soap, it is a chemical process as chemical reaction is taking place.

4.Fermentation : The process of microbial action to break down complex molecules into simpler molecules , chemical change occur during this process

Therefore The option D is the correct answer .

To know more about Organic Reaction

https://brainly.com/question/9585105?referrer=searchResults

#SPJ5

1. Take the reaction: NH3 + O2 + NO + H2O. In an experiment, 3.25g of NH3 are allowed

to react with 8.12g of O.

c. How many grams of NO are formed?

Answers

Answer:

5.74g of NO

Explanation:

Step 1:

The balanced equation for the reaction. This is given below:

4NH3 + 5O2 —> 4NO + 6H2O

Step 2:

Determination of the masses of NH3 and O2 that reacted and the mass of NO produced from the balanced equation. This is illustrated below:

Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol

Mass of NH3 from the balanced equation = 4 x 17 = 68g

Molar Mass of O2 = 16x2 = 32g/mol

Mass of O2 from the balanced equation = 5 x 32 = 160g

Molar Mass of NO = 14 + 16 = 30g/mol

Mass of NO from the balanced equation = 4 x 30 = 120g

From the balanced equation above,

68g of NH3 reacted with 160g of O2 to produce 120g of NO.

Step 3:

Determination of the limiting reactant.

We need to determine the limiting because it will be used to calculate the maximum yield of the reaction. This is illustrated below:

From the balanced equation above,

68g of NH3 reacted with 160g of O2.

Therefore, 3.25g of NH3 will react with = (3.25 x 160)/68 = 7.65g of O2.

From the simple illustration above, we can see that lesser mass of O2 is needed to react with 3.25g of NH3. Therefore, NH3 is the limiting reactant while O2 is the excess reactant.

Step 4:

Determination of the mass of NO produced from the reaction.

In this case the limiting reactant will be used because all of it were used in the reaction.

The limiting reactant is NH3.

From the balanced equation above,

68g of NH3 reacted to produce 120g of NO.

Therefore, 3.25g of NH3 will react to produce = (3.25 x 120)/68 = 5.74g of NO.

From the calculations made above, 5.74g of NO is produced.

A sample of argon has a volume of 1.2 L at STP. If the temperature is increased to 21 c and the pressure is lowered to 0.80 atm, what will the new

Answers

Answer:

The new volume is 1.62 L

Explanation:

Boyle's law says:

"The volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure." It is expressed mathematically as:

Pressure * Volume = constant

o P * V = k

Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

[tex]\frac{V}{T}=k[/tex]

Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the gas pressure increases. And when the temperature is decreased, the gas pressure decreases. So this law indicates that the quotient between pressure and temperature is constant.

Gay-Lussac's law can be expressed mathematically as follows:

[tex]\frac{P}{T}=k[/tex]

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law.

[tex]\frac{P*V}{T}=k[/tex]

Having an initial state 1 and a final state 2 it is possible to say that:

[tex]\frac{P1*V1}{T1} =\frac{P2*V2}{T2}[/tex]

Standard temperature and pressure (STP) indicate pressure conditions P = 1 atm and temperature T = 0 ° C = 273 ° K. Then:

P1= 1 atmV1= 1.2 LT1= 273 °KP2= 0.80 atmV2= ?T2= 21°C= 294 °K

Replacing:

[tex]\frac{1 atm* 1.2 L}{273K} =\frac{0.8 atm*V2}{294K}[/tex]

Solving:

[tex]V2=\frac{1 atm*1.2 L}{273 K} *\frac{294 K}{0.8 atm}[/tex]

V2= 1.62 L

The new volume is 1.62 L

Predict where the largest jump between successive ionization energies occurs for K . between the third and fourth ionization energies between the fourth and fifth ionization energies between the first and second ionization energies between the second and third ionization energies Predict where the largest jump between successive ionization energies occurs for Ca . between the first and second ionization energies between the third and fourth ionization energies between the fourth and fifth ionization energies between the second and third ionization energies

Answers

Answer:

K-between the first and second ionization energies

Ca-between the second and third ionization energies

Explanation:

Ionization energy is the energy required to remove an electron from a gaseous atom or ion. The first ionization energy of an atom is the energy required to remove one mole of electrons from one mole of isolated gaseous atoms.

The second ionization energy is usually greater in magnitude than the first ionization energy. However, when the electrons on the valence shell of the atom are exhausted, further ionization will involve the core electrons of the atom. This requires the removal of electrons from a completely filled Shell, this process requires a very large amount of energy. The energy required is far larger than the energy required to remove valence electrons from the outermost shell of the atom. This sudden tremendous increase in the magnitude of ionization energy as electrons are removed from a completely filled shell is known as a jump.

For calcium, a jump occurs after the second electron has been removed, the third electron must be removed from a completely filled inner shell. For potassium, a jump occurs after the first electron has been removed. The second electron must be removed from a completely filled inner shell.

Final answer:

For potassium (K), the largest jump between successive ionization energies is between the first and second. For calcium (Ca), the largest jump between successive ionization energies occurs between the second and third.

Explanation:

For potassium (K), the largest jump between successive ionization energies occurs between the first and second ionization energies. The first ionization energy involves removing an electron from the higher energy level (4s), while the second involves removing an electron from a lower energy level (3p), so a much stronger attraction exists between the nucleus and the electron to be removed in the second ionization.

For calcium (Ca), the largest jump between successive ionization energies occurs between the second and third ionization energies. The third ionization requires removal of an electron from a lower energy level, which is closer to the nucleus and thus retains a stronger attraction. This removal requires significantly more energy than the first two ionizations, which involve removing the outermost 4s electrons.

Learn more about Ionization Energies here:

https://brainly.com/question/33907239

#SPJ3

g The rate of a reaction typically increases as the temperature increases because: The rate of a reaction typically increases as the temperature increases because: the A term in the Arrhenius equation increases. the activation energy decreases. the activation energy increases. the fraction of molecules with kinetic energy greater than Ea increases. the molecules make more collisions with the wall of the reaction vessel.

Answers

Answer:

The fraction of molecules with kinetic energy greater than Ea increases.

Explanation:

In the scenario above, it is primarily by the fraction of molecules with kinetic energy higher or bigger that Ea increases.

Naturally chemical reactions are everywhere around you and inside you. In addition to the biochemical reactions that allow you to transform the molecules you eat and breathe into usable energy, there are industrial laboratories in cities around the world producing chemicals as well as products that rely on chemicals for their manufacture.

In addition to the product or products produced and having a proper supply of reactants, is how quickly a reaction can be expected to proceed. This can have an impact on safety, product quality and other outcomes.

Final answer:

The reaction rate increases with temperature because more molecules possess the necessary kinetic energy to overcome the activation energy, leading to a higher number of effective collisions and thus an increased rate of reaction.

Explanation:

The rate of a reaction typically increases as the temperature increases because the fraction of molecules with kinetic energy greater than the activation energy (Ea) increases. As the temperature rises, molecules move more rapidly, leading to a higher frequency of collisions. More importantly, these collisions are more energetic which means more of them have enough energy to surmount the activation energy barrier. The Arrhenius equation helps in understanding this phenomenon, predicting that the rate constant (k) increases with temperature since a larger fraction of reactant molecules has enough kinetic energy to overcome Ea, resulting in an increased reaction rate.

Standard reduction potentials are 1.455 V for the PbO2(s)/Pb(s) couple, 1.82 V for Co3 (aq)/Co2 (aq), 3.06 V for F2(g)/HF(aq), 1.07 V for Br2(l)/Br-(aq), and 1.77 V for H2O2(aq)/H2O(l). Under standard-state conditions, arrange the oxidizing agents in order of decreasing strength.

Answers

Answer:

F2(g)/HF(aq)>Co3 (aq)/Co2 (aq)> H2O2(aq)/H2O(l)> PbO2(s)/Pb(s)>Br2(l)/Br-(aq)

Explanation:

The tendency of any specie to function as oxidizing agent is a highly dependent on the reduction potential of the couple. The more positive the value of the reduction potential of the couple, the better it does as an oxidizing agent.

This implies that we could know a good oxidizing agent by looking at their respective reduction potentials. The couple having the greatest (most positive) reduction potential is selected as the best oxidizing agent. If there are a number of couples at having different reduction potentials, the order of oxidizing ability can be obtained by arranging the species in order of decreasing positive reduction potentials just as we have done in the answer above.

Decreasing strength will be:

F₂(g)/HF(aq)>Co₃ (aq)/Co₂ (aq)> H₂O₂(aq)/H₂O(l)>PbO₂(s)/Pb(s)>Br₂(l)/Br-(aq)

Trend for Oxidizing agents:

The tendency of any specie to function as an oxidizing agent is highly dependent on the reduction potential of the couple. The more positive the value of the reduction potential of the couple, the better it does as an oxidizing agent.

The couple having the greatest (most positive) reduction potential is selected as the best oxidizing agent.

Thus, the decreasing strength for oxidizing agents will be:

F₂(g)/HF(aq)>Co₃ (aq)/Co₂ (aq)> H₂O₂(aq)/H₂O(l)>PbO₂(s)/Pb(s)>Br₂(l)/Br-(aq)

Find more information about Reduction potential here:

brainly.com/question/14077118

Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. Choose the aqueous solution that has the highest boiling point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.100 m C6H12O6 0.100 m NaCl 0.100 m AlCl3 0.100 m MgCl2

Answers

Answer:

0.100 m AlCl3  will have the highest boiling point

Explanation:

Step 1: Data given

The molal boiling point elevation constant for water is 0.51°C/m

Since those are all  aqueous solutions, the have the same molal boiling point elevation constant

Step 2:

0.100 m C6H12O6

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr = 1

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT = 1 * 0.51 * 0.100

ΔT  = 0.051 °C

0.100 m NaCl

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr =  Na+ + Cl- = 2

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =2 * 0.51 * 0.100

ΔT = 0.102 °C

0.100 m AlCl3

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr =  Al^3+ + 3Cl- = 4

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =4 * 0.51 * 0.100

ΔT = 0.204 °C

0.100 m MgCl2

ΔT = i*Kb*m

⇒with ΔT is the boiling point elevation = TO BE DETERMINED

⇒with i = the van't Hoff factr =  Mg^2+ +2Cl- = 3

⇒with Kb = The molal boiling point elevation constant for water is 0.51°C/m

⇒with m = the molality = 0.100m

ΔT =3 * 0.51 * 0.100

ΔT = 0.153 °C

0.100 m AlCl3  will have the highest boiling point

a 0.258 g piece of potassium solid is placed inot water inside a coffee cup calorimeter resulting in a vigorous reaction. assume a total volume of 100 ml for the resulting solution. the temperature of the solution changes from 22 to 25.1 due to the reaction. how much heat in kj is generated per gram of potassium for this reaction? assume the density of the solution after the reaction is the same as the density of water

Answers

Answer:

5 kJ/g  

Explanation:

There are two energy flows in this reaction.

q₁ = heat from reaction

q₂ = heat to warm the solution

 q₁   +    q₂     = 0

m₁ΔH + m₂CΔT = 0

Data:

m₁ = 0.258 g

V₂ = 100 mL

  C = 4.184  J°C⁻¹g⁻¹

T_i = 22 °C

T_f = 25.1 °C

Calculations

(a) Mass of solution

[tex]\text{Mass} = \text{100 mL} \times \dfrac{\text{1.00 g}}{\text{1 mL}} = \text{100 g}[/tex]

(b) ΔT

ΔT = T_f - T_i = 25.1 °C - 22 °C = 3.1°C

(c) ΔH

[tex]\begin{array}{ccccl}m_{1}\Delta H & +& m_{2}C \Delta T& = &0\\\text{0.258 g}\times \Delta H& + & \text{100 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times 3.1 \, ^{\circ}\text{C} & = & 0\\0.258 \Delta H \text{ g} & + & \text{1300 J} & = & 0\\&&0.258 \Delta H \text{ g} & = & \text{-1300 J} & & \\& &\Delta H & = & \dfrac{\text{-1300 J}}{\text{0.258 g}}\\\\& & & = & \text{-5000 J/g}\\& & & = & \textbf{-5 kJ/g}\\\end{array}[/tex]

[tex]\text{The reaction produces $\large \boxed{\textbf{5 kJ}}$ per gram of potassium.}[/tex]

Note: The answer can have only one significant figure because you measured the initial temperature of the water only to the nearest degree.

From the calculation, the heat generated from the solution is -194.4 kJ/mol

What is a calorimeter?

A calorimeter is an instrument that is used to measure heat.

Now we know that number of moles of the potassium = 0.258 g /39 g/mol = 0.0066 moles

Total mass present = 0.258 g + 100 g = 100.258 g

Temperature change = 25.1°C  - 22°C = 3.1°C

Now;

H = -(100.258  * 4.128 *  3.1)/ 0.0066

= -194.4 kJ/mol

Learn more about calorimeter:https://brainly.com/question/4802333?

#SPJ9

Which represents an empirical formula?

A. C2H4

B. B2H6

C. Al2O3

D. C6H6

Answers

Answer:

C. Al2O3

Explanation:

The empirical formula is an expression that represents the simplest proportion in which the atoms that form a chemical compound are present. It is therefore the simplest representation of a compound.

For options A, B and D the empirical formulas are as follows:

A. CH2

B. BH3

D. CH

Draw the curved arrow mechanism for the formation of an acetal from acidic methanol and 4-methylpentan-2-one in the fewest steps. When given the choice, draw the arrows that lead to the resonance structures with full octets around each atom other than hydrogen. Do not show any inorganic byproducts or counterions. Reagents needed for each step are provided in the boxes.

Answers

Answer:

See explanation below

Explanation:

This reaction is known as Ketone hydrolisis in acid medium. This involves the formation of an hemi cetal, and then, the acetal. This is often used to convert ketones or aldehydes in ethers.

The first step involves the reaction with the acid. The carbonile reacts with the acid and forms an alcohol there. The next step is the reaction of the alcohol, in this case, the methanol to form the hemi cetal. Then in the third step, we repeat the first step, using acid to turn the OH group into a great leaving group such water. Then the water leaves the molecule, leaving the space wide open in the next step for methanol, and the acetal is formed.

See picture for the curved arrow mechanism

Final answer:

Protonation of 4-methylpentan-2-one creates a positive carbon center. First, methanol attacks this center, then a proton transfer occurs. After water is lost forming an oxonium ion, a second methanol attacks the intermediate and deprotonation results in an acetal.

Explanation:

In order to draw the curved arrow mechanism for the formation of an acetal from acidic methanol and 4-methylpentan-2-one, we proceed as follows:

The first step in this reaction is protonation of the carbonyl oxygen in the 4-methylpentan-2-one by the acid, creating a more positive carbon center susceptible to nucleophilic attack. The oxygen of the methanol then attacks the carbonyl carbon, followed by proton transfer to the methanol.The resulting complex then loses water, forming an oxonium ion.Finally, another methanol molecule attacks the positively charged intermediate, leading to deprotonation and the formation of the acetal.

Learn more about Curved Arrow Mechanism here:

https://brainly.com/question/31973720

#SPJ6

3. A volume of 90 mL of 0.2 M HBr neutralizes
a 60 mL sample of NaOH solution. What is
the concentration of the NaOH solution?

Answers

Answer:

0.3M

Explanation:

Step 1:

Data obtained from the question. This include the followingb:

Volume of acid (Va) = 90mL

Concentration of acid (Ca) = 0.2M

Volume of base (Vb) = 60mL

Concentration of base (Cb) =....?

Step 2:

The balanced equation for the reaction. This is given below:

HBr + NaOH —> NaBr + H2O

From the balanced equation above,

The mole ratio of the acid (nA) = 1

The mole ratio of the base (nB) = 1

Step 3:

Determination of the concentration of the base, NaOH.

The concentration of the base can be obtained as follow:

CaVa /CbVb = nA/nB

0.2 x 90 / Cb x 60 = 1

Cross multiply

Cb x 60 = 0.2 x 90

Divide both side by 60

Cb = 0.2 x 90 /60

Cb = 0.3M

Therefore, the concentration of the base, NaOH is 0.3M

Answer:

[tex]M_{NaOH}=0.3M[/tex]

Explanation:

Hello,

In this case, since we are talking about a neutralization reaction, the moles of acid must equal the moles of base as shown below:

[tex]n_{HBr}=n_{NaOH}[/tex]

Thus, in terms of molarities we've got:

[tex]M_{HBr}V_{HBr}=M_{NaOH}V_{NaOH}[/tex]

This is possible since HBr reacts with NaOH in a 1:1 molar ratio:

[tex]HBr+NaOH\rightarrow NaBr+H_2O[/tex]

Hence, for the given concentration and volume of hydrobromic acid and the volume of sodium hydroxide, we compute its concentration as shown below:

[tex]M_{NaOH}=\frac{M_{HBr}V_{HBr}}{V_{NaOH}} =\frac{90mL*0.2M}{60mL} \\\\M_{NaOH}=0.3M[/tex]

Best regards.

4. To how much water should 50 mL of 12 M hydrochloric acid be added to

produce o 40 M solution?

Answers

Answer : The volume of water added are, 15 mL

Explanation :

Formula used :

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the initial molarity and volume of HCl.

[tex]M_2\text{ and }V_2[/tex] are the final molarity and volume of water.

We are given:

[tex]M_1=12M\\V_1=50mL\\M_2=40M\\V_2=?[/tex]

Putting values in above equation, we get:

[tex]12M\times 50mL=40M\times V_2\\\\V_2=15mL[/tex]

Hence, the volume of water added are, 15 mL

Sometimes in lab we collect the gas formed by a chemical reaction over water (see sketch at right). This makes it easy to isolate and measure the amount of gas produced. Wala Suppose the H, gas evolved by a certain chemical reaction taking place at 40.0 °C is collected over water, using an apparatus something like that in the sketch, and the final volume of gas in the collection tube is measured to be 80.0 mL. Sketch of a gas-collection apparatus.
Calculate the mass of H, that is in the collection tube. Round your answer to 2 significant digits. You can make any normal and reasonable assumption about the reaction conditions and the nature of the gases. XS ?

Answers

Answer:

The correct answer is 0.00582 grams.

Explanation:

In order to solve the question, let us consider the vapor pressure of H2O, as hydrogen gas is collected over water, therefore, we have to consider the vapor pressure of water in the given case. Let us assume that the pressure is 760 torr or 1 atm.

It is known that the vapor pressure of water at 40 degree C is 53.365 torr (Based on the data).

Therefore, the pressure of H2 will be,

P = 760-55.365 = 704.635 torr or 704.635/760 = 0.9272 atm

The volume of the hydrogen gas collected in the tube is 80 ml or 0.08 L

Temperature in Kelvin will be 40+273 = 313 K

To calculate the moles of hydrogen (H2) gas, there is a need to use the ideal gas equation, that is, PV= nRT, in this R is the gas constant, whose value is 0.0821 L atm/molK, and n is the moles of the gas.

By inserting the values in the equation we get:

PV = nRT

n = PV/RT = 0.9272 *0.08 / 0.0821 * 313

n = 0.00289 moles

The mass of H2 will be moles * molar mass = 0.00289 * 2.016

= 0.00582 grams.

How many grams of HF are needed to react with 3.0 moles of Sn? *

Answers

Answer:

120g

Explanation:

We'll begin by writing the balanced equation for the reaction. This is given below:

Sn + 2HF —> SnF2 + H2

Next, we shall determine the number of mole of HF needed to react with 3 moles of Sn.

From the balanced equation above, 1 mole of Sn reacted with 2 moles of HF.

Therefore, 3 moles of Sn will react with = 3 x 2 = 6 moles of HF.

Finally, we shall convert 6moles of HF to grams

This is illustrated below:

Number of mole of HF = 6moles

Molar Mass of HF = 1 + 19 = 20g/mol

Mass of HF =..?

Mass = number of mole x molar Mass

Mass of HF = 6 x 20

Mass of HF = 120g

Therefore, 120g of HF is needed to react with 3 moles of Sn

Other Questions
Which angles are alternate exterior angles. To find the area of a triangle, you can use the expression b times h divided by 2, where b is the base of the triangle and h is its height. What is the area of a triangle with a base of 8 and a height of 4? Multiply and simplify: (6x + 3y)(6x 3y) Describe the effects of colonialism on independence movements. 26 Can anyone help!!! The water cycle is driven by energy from the sun and? In a particular voting system, voters initially rank candidates. One by one, the weakest candidates are eliminated, and those candidates' votes are transferred to the next-best candidate on each voter's ballot until one candidate emerges as a majority winner. This method of voting is referred to as the A) Instant runoff method B) Borda-count method C) Condorcet method D) Plurality rule method A worker at an automobile assembly plant checks new cars for defects. Of the first 280 carshe checks, 4 have defects. If 10,500 cars will be checked this month, predict the total number of cars that will havedefects. Claudia buys 12 postcards, 12 stamps, and 1 pen . The postcards cost twice as much as the stamps. The pen costs $1.50. The total cost is $ 14.10. How much does each postcard cost? Show your work. Oil based clays in water based please have many things in common. Name some how many to be possible to combine modeling clean ceramic plate into one form A theme park has a ride that is located in a sphere. The ride goes around the widest circle of the sphere which has a circumference of 489.84 yd. What is the surface area of the sphere? Use 3.14 for pi.BRAINLIEST FOR FIRST CORRECT ANSWER!NEED HELP ASAP!!!! what can you learn from nelson mandela about exercising even in small spaces A Pew Research Center poll asked independent random samples of working women and men how much they value job security. Of the 798 women, 702 said job security was very or extremely important, compared with 802 of the 940 men surveyed. Construct and interpret a 95% confidence interval for the difference in the proportion of all working women and men who consider job security very or extremely important What was a significant event for this battle? The battle of Yorktown -The battle signaled the end of the Revolutionary War.-Colonists cut down trees to slow Burgoyne's progress to Saratoga where he lost his entire army.-Washington was defeated twice by a large British army. -Even though it was the capital city, it did not mean the end of the war. It provided the British with comfortable quarters. -Washington surprised the Hessians on Christmas Eve while they were celebrating. what is the y- intercept of the line? calculate mass of sulfur that must be burned to give 8g of sulfur dioxide The right rectangular prism below is made up of 8 cubes. Each cube has an edge length of 12inch.What is the volume of this prism? A snapdragon plant that bred true for white petals was crossed with a plant that bred true for purple petals, and all the F1 had white petals. The F1 were selfed. Among the F2, three phenotypes were seen: solid purple: 61 white: 240 spotted-purple 19. If two spotted-purple plants from the F2 generation were crossed, what would be the phenotypic ratio of the offspring How did the French aid relations between the United States and China?OA. They passed messages on to China.OB. They encouraged China to buy wheat from the United States.C. They encouraged Chinese leaders to send students to the UnitedStates.D. They sent naval forces to patrol the waters between China andTaiwan Many of the islands in Southeast Asia lie along the Ring of Fire. Why is this location significant? *13 pointsMajor plates of Earth's crust are far from the islandsEarthquakes and volcanic eruptions occur within this zonemuch of the land in the islands is rugged and mountainousPressures fracture the Earth's crust into smaller plates Steam Workshop Downloader