Consider the acid dissociation behavior of carbonic acid, H 2 CO 3 . A p H gradient from 0 to 14 is given. Below a p H equal to p K a 1 which is 6.351, the predominant form is H 2 C O 3. Above a p H equal to p K a 2 which is 10.329, the predominant form is C O 3 2 minus. Between the two p K a values, the predominant form is H C O 3 minus. What is the predominant species present at pH 6.73 ?

Answers

Answer 1

Complete Question

The complete question is shown on the first uploaded image

Answer:

The predominate specie is [tex]HCO_3^-[/tex]

Explanation:

From the question we can see that [tex]pk_{a1}(6.351) < pH(6.73) pk_{a2}(10.329)[/tex]

Hence looking at the question we can see that the predominant specie is [tex]HCO_3^-[/tex]  

Consider The Acid Dissociation Behavior Of Carbonic Acid, H 2 CO 3 . A P H Gradient From 0 To 14 Is Given.
Answer 2

Final answer:

At a pH of 6.73, which is between the pKa₁ (6.351) and pKa₂ (10.329) of carbonic acid, the predominant form of carbonic acid is HCO³⁻ (bicarbonate ion).

Explanation:

The question pertains to the acid dissociation of carbonic acid (H₂CO₃) and which form is predominant at a certain pH. Carbonic acid is a diprotic weak acid, which means it can donate two protons (H⁺), and has two dissociation steps each with different pKa values.

The pKa₁ of carbonic acid is 6.351, and below this pH, the predominant form of carbonic acid is H₂CO₃. The pKa₂ is 10.329, and above this pH, the carbonate ion (CO₃²⁻) is predominant. Between these pKa values, the bicarbonate ion (HCO³⁻) is the predominant species. Therefore, at a pH of 6.73, which lies between the two pKa values, the predominant form is HCO³⁻ (bicarbonate ion).


Related Questions

A magnesium hydroxide solution is prepared by adding 10.00 g of magnesium hydroxide to a volumetric flask and bringing the final volume to 1.00 L by adding water buffered at a pH of 7.0. What is the concen- tration of magnesium in this solution? (Assume that the temperature is 25◦C and the ionic strength is negligible).

Answers

Answer:

0.1724 M is the concentration of magnesium ions in this solution.

Explanation:

Mass of magnesium hydroxide gas = 10.00 g

Molar mass of magnesium hydroxide = 58 g/mol

Moles of magnesium hydroxide = [tex]\frac{10.00 g}{58 g/mol}=0.1724 mol[/tex]

Volume of the solution = V = 1.00 L

Molarity or concentration of the magnesium hydroxide:M

[tex]M=\frac{\text{Moles of solute}}{\text{Volume of solution in L}}[/tex]

[tex]M=\frac{0.1724 mol}{1.00 L}=0.1724 M[/tex]

1 mole of magnesium hydroxide contains 1 mole of magnesium ion.Then 0.1724 M of magnesium hydroxide will have :

[tex][Mg^{2+}]=1\times 0.1724 M=0.1724 M[/tex]

0.1724 M is the concentration of magnesium ions in this solution.

Final answer:

The concentration of magnesium hydroxide in the solution is 0.1714 Molar. This is calculated by dividing the number of moles of magnesium hydroxide by the volume of the solution in the volumetric flask.

Explanation:

The subject of this question falls under Chemistry, and it's asking about calculating concentration, specifically for a solution of magnesium hydroxide. In chemistry, concentration is commonly expressed in moles per liter (M). It's necessary to convert the mass of magnesium hydroxide to moles by using its molar mass.

First, to solve this question, we need to know the molar mass of magnesium hydroxide (Mg(OH)2), which is about 58.3197 grams/mole. Dividing the given mass of magnesium hydroxide (10.00g) by the molar mass gives us the number of moles. Thus, 10.00 g / 58.3197 g/mol ≈ 0.1714 mol of Mg(OH)2.

The whole solution was made up in a 1.00 L volumetric flask. Concentration is defined as the amount of solute per unit volume of solvent. Hence, the concentration of Mg(OH)2 is 0.1714 mol / 1.00 L = 0.1714 M (molar).

On note, the temperature given in the question (25◦C) does not affect the calculation of the concentration in this case, nor does the pH of the water used.

Learn more about Concentration of Solution here:

https://brainly.com/question/32147692

#SPJ11

Calculate ΔH o rxn for the following: CH4(g) + Cl2(g) → CCl4(l) + HCl(g)[unbalanced] ΔH o f [CH4(g)] = −74.87 kJ/mol ΔH o f [CCl4(g)] = −96.0 kJ/mol ΔH o f [CCl4(l)] = −139 kJ/mol ΔH o f [HCl(g)] = −92.31 kJ/mol ΔH o f [HCl(aq)] = −167.46 kJ/mol ΔH o f [Cl(g)] = 121.0 kJ/mol

Answers

To calculate the standard enthalpy change for the given chemical reaction, balance the equation, then apply standard enthalpies of formation for the reactants and products, and use Hess's Law. The calculated standard enthalpy change for this reaction is -433.37 kJ/mol.

To calculate the standard enthalpy change ([tex]H_orxn[/tex]) for the reaction [tex]CH_4(g) + Cl_2(g) \rightarrow CCl_4(l) + HCl(g)[/tex], we need to first balance the reaction:

[tex]CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)[/tex]

Then we use the standard enthalpies of formation ( Hf) for each substance to calculate [tex]H_orxn[/tex] using Hess's Law:

[tex]H_o = [ H_f[CCl_4(l)] + 4 H_f[HCl(g)]] - [ H_f[CH_4(g)] + 4 H_f[Cl_2(g)]][/tex]

[tex]H_o = [-139 kJ/mol + 4(-92.31 kJ/mol)] - [-74.87 kJ/mol + 4(0 kJ/mol)][/tex]

[tex]H_o = -139 kJ/mol - 369.24 kJ/mol - (-74.87 kJ/mol)[/tex]

[tex]H_o = -433.37 kJ/mol[/tex]

ΔH°rxn for CH₄(g) + Cl₂(g) → CCl₄(l) + HCl(g), is -433.37 kJ

To calculate the enthalpy change (ΔH°rxn) for the reaction CH₄(g) + Cl₂(g) → CCl₄(l) + HCl(g), we first need to balance the equation and use the standard enthalpies of formation (ΔH°f) provided for each compound.

Balance the chemical equation:

The balanced equation is: CH₄(g) + 4Cl₂(g) → CCl₄(l) + 4HCl(g)

Write the enthalpy of formation values:

[tex]\Delta H^\circ_f[\text{CH}_4(g)] &= -74.87 \, \text{kJ/mol} \\\\\Delta H^\circ_f[\text{CCl}_4(\ell)] &= -139 \, \text{kJ/mol} \\\\\Delta H^\circ_f[\text{HCl(g)}] &= -92.31 \, \text{kJ/mol} \\\\\Delta H^\circ_f[\text{Cl}_2(g)] &= 0 \, \text{kJ/mol} \quad (\text{by convention})[/tex]

Calculate the total ΔH°f for the products:

[tex]\text{For CCl}_4(\ell) \text{ and HCl(g):}\\\\ & {1 \, \text{mol of CCl}_4(\ell) \times (-139 \, \text{kJ/mol})} + {4 \, \text{mol of HCl(g)} \times (-92.31 \, \text{kJ/mol})} \\& = -139 \, \text{kJ} + (-369.24 \, \text{kJ}) \\& = -508.24 \, \text{kJ} \\[/tex]

Calculate the total ΔH°f for the reactants:

[tex]\text{For CH}_4(g) \text{ and Cl}_2(g): \\\\& {1 \, \text{mol of CH}_4(g) \times (-74.87 \, \text{kJ/mol})} + {4 \, \text{mol of Cl}_2(g) \times (0 \, \text{kJ/mol})} \\& = -74.87 \, \text{kJ} \\[/tex]

Determine ΔH°rxn:

[tex]\Delta H^\circ_\text{rxn}: & = \Sigma \Delta H^\circ_f(\text{products}) - \Sigma \Delta H^\circ_f(\text{reactants}) \\\\& = -508.24 \, \text{kJ} - (-74.87 \, \text{kJ}) \\& = -433.37 \, \text{kJ}[/tex]

Therefore, the enthalpy change for the reaction ΔH°rxn is -433.37 kJ.

A certain mass of carbon reacts with 13.6 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.

Answers

Answer: The mass of oxygen that will react with same amount of carbon as in carbon monoxide is 23.31 grams.

Explanation:

Law of multiple proportions states that when two elements combine to form two or more compounds in more than one proportion. The mass of one element that combine with a given mass of the other element are present in the ratios of small whole number. For Example: [tex]Cu_2O\text{ and }CuO[/tex]

We are given:

Mass of oxygen in CO = 13.6 grams

For carbon monoxide (CO):

Applying unitary method:

16 grams of oxygen are reacting with 12 grams of carbon

So, 13.6 grams of oxygen will be reacting with = [tex]\frac{12}{16}\times 13.6=10.2g[/tex] of carbon

For carbon dioxide [tex](CO_2)[/tex] :

Applying unitary method:

12 grams of carbon are reacting with 32 grams of oxygen

So, 10.2 grams of carbon will be reacting with = [tex]\frac{32}{12}\times 10.2=23.31g[/tex] of oxygen

Hence, the mass of oxygen that will react with same amount of carbon as in carbon monoxide is 23.31 grams.

In the given question, 27.2 grams of oxygen will react with 10.2 grams of carbon to give 39.1 grams of carbon dioxide.

Calculations based on the law of multiple proportions:

The mass of oxygen given in the question is 13.6 grams. The molecular mass of oxygen or O2 is 32 g/mol.

The reactions taking place in the given case are:

2C + O₂ ⇔ 2CO --------- (i)C + O₂ ⇔ CO₂ ---------- (ii)

Now the number of moles of O₂ will be,

[tex]Moles of O2= \frac{Weight}{Molecular mass}[/tex]

[tex]Moles = \frac{13.6}{32} \\Moles = 0.425 moles[/tex]

Based on the reaction, it can be seen that with 1 mole of O₂, 2 moles of C react to produce 2 moles of CO.

Now for 0.425 moles of oxygen,

The moles of C, that is, 0.425 × 2 = 0.850 moles will react 0.425 moles of O₂ to produce 0.850 moles of CO

Now the number of moles of C is 0.850 moles, and the molecular mass of C is 12 g/mol.

The mass of C will be,

Mass = Number of moles × Molecular mass

Mass = 0.850 × 12 = 10.2 grams

Now in the second reaction, that is, in the formation of CO₂, 1 mole of C will react with 1 mole of O₂ to produce 1 mole of CO₂.

Therefore, 0.850 moles of C will react with 0.850 moles of O₂ to give 0.850 moles of CO₂.

Now the molar mass of CO₂ is 46 g/mol, the mass of CO₂ will be,

Mass = 0.850 moles × 46 = 39.1 grams

The moles of O₂ is 0.850 moles, the molar mass of O₂ is 32 g/mol. Now the mass of O₂ is,

Mass = Number of moles × Molar mass

Mass = 0.850 × 32 g/mol

Mass = 27.2 grams

Thus, 27.2 grams of oxygen will react with 10.2 grams of carbon to produce 39.1 grams of CO₂.

Find out more information about calculations based on the law of multiple proportions here:

https://brainly.com/question/5190147

Consider the following four titrations: i. 100.0 mL of 0.10 M HCl titrated with 0.10 M NaOH ii. 100.0 mL of 0.10 M NaOH titrated with 0.10 M HCl iii. 100.0 mL of 0.10 M CH3NH2 titrated with 0.10 M HCl iv. 100.0 mL of 0.10 M HF titrated with 0.10 M NaOH Rank the titrations in order of increasing volume of titrant added to reach the equivalence point.

Answers

Explanation:

As we know that HCl is a stronger acid  and NaOH is a stronger base.

And, HF and phenol are weaker acids having [tex]K_{a}[/tex] values of [tex]6.6 \times 10^{-4}[/tex] and [tex]1.3 \times 10^{-10}[/tex] respectively.

In the same way, methyl amine and pyridine are weaker bases with [tex]K_{b}[/tex] values of [tex]4.4 \times 10^{-4}[/tex] and [tex]1.7 \times 10^{-9}[/tex] respectively.

(i)   Volume will be calculated as follows.

           [tex]M_{a}V_{a} = M_{b}V_{b }[/tex]

           [tex]100 \times 0.1 = 0.1 \times V[/tex]

Therefore, volume of NaOH is 100 ml.

(ii)   Similarly, volume of HCl is 100 ml.

(iii)  For Methyl amine,

         [tex][OH]^{-} = \sqrt{4.4 \times 10^{-4} \times 0.1}[/tex]

                     = [tex]6.6 \times 10^{-3}[/tex]

And as, [tex]M_{a}V_{a} = M_{b}V_{b}[/tex]

             [tex]0.1 \times V = 6.6 \times 10^{-3} \times 100[/tex]

Hence, the volume of HCl is 6.6 ml.

(iv) For HF,

           [tex][H]^{+} = \sqrt{6.6 \times 10^{-4} \times 0.1}[/tex]

                      = [tex]8.12 \times 10^{-3}[/tex]

As,    [tex]M_{a}V_{a} = M_{b}V_{b}[/tex]

         [tex]8.12 \times 10^{-3} \times 100 = 0.1 \times V[/tex]

Hence, the volume of NaOH added is 8.12 ml.

Therefore, we can conclude that the increasing order of volums of given titrant is (i) = (ii) > (iv) > (iii).

Final answer:

All titrations (i to iv) involve acid-base reactions with equal molarity and volume of reactants; therefore, the volume of titrant at the equivalence point is the same for each scenario, which is 100.0 mL.

Explanation:

To rank the titrations in order of increasing volume of titrant added to reach the equivalence point, we must consider the nature of the reactants in each titration. Strong acids and bases will react in a 1:1 ratio, meaning an equal volume of titrant is needed to reach the equivalence point if their concentrations are the same. Thus, titrations i and ii, which involve the strong acid HCl and the strong base NaOH, will have the same volume of titrant at the equivalence point.

Titeration iii, which involves the weak base CH₃NH₂ and the strong acid HCl, will have a different volume compared to a strong acid/strong base titration due to the possibility of incomplete dissociation of the weak base. However, since the concentrations are equal, 100.0 mL of titrant is still expected to be needed to reach the equivalence point.

Titeration iv, which includes the weak acid HF and strong base NaOH, also involves a 1:1 stoichiometry at the equivalence point, but weak acids can exhibit buffering effects which may slightly alter the volume needed to reach the equivalence point. Nevertheless, with equal concentrations, the same volume of titrant is expected to be used as in the previous cases.

Therefore, because all titrations have equal molarities and volumes of both the titrants and analytes, we'd expect the volume of titrant needed to reach the equivalence point to be the same for each scenario, which is 100.0 mL.

What volumes of 0.200 M HCOOH and 2.00 M NaOH would make 500. mL of a buffer with the same pH as a buffer made from 475 mL of 0.200 M benzoic acid and 25 mL of 2.00 M NaOH? Look up Ka values on the formula sheet.

Answers

Explanation:

The given data is as follows.

      [HCOOH] = 0.2 M,       [NaOH] = 2.0 M,

         V = 500 ml,   [Benzoic acid] = 0.2 M

First, we will calculate the number of moles of benzoic acid as follows.

   No. of moles of benzoic acid = Molarity × Volume

                         = [tex]2 \times 0.475[/tex]

                         = 0.095 mol

And, moles of NaOH present in the solution will be as follows.

    No. of moles of NaOH = Molarity × Volume

                          = [tex]2 \times 0.025[/tex]

                          = 0.05 mol

Hence, the ICE table for the chemical equation will be as follows.

         [tex]C_{6}H_{5}COOH + NaOH \rightarrow C_{6}H_{5}COONa + H_{2}O[/tex]

Initial:        0.095           0.05            0             0

Equlbm:  (0.095 - 0.05)  0            0.05

        pH = [tex]pK_{a} + log \frac{Base}{Acid}[/tex]  

              = [tex]4.2 + log \frac{0.05}{0.045}[/tex]

              = 4.245

For,  

         [tex]HCOOH + NaOH \rightarrow HCOONa + H_{2}O[/tex]

Initial:       0.2x     2(0.5 - x)               0

Equlbm:   0.2x - 2(0.5 - x)                 0             2(0.5 - x)

As,

           pH = [tex]pK_{a} + log \frac{Base}{Acid}[/tex]  

          4.245 = 3.75 + [tex]log \frac{Base}{Acid}[/tex]

      [tex]log \frac{Base}{Acid}[/tex] = 0.5

    [tex]\frac{Base}{Acid}[/tex] = 3.162

Now,

        [tex]\frac{2(0.5 - x)}{0.2x - 2(0.5 - x)}[/tex] = 3.162

               x = 0.464 L

Volume of NaOH = (0.5 - 0.464) L

                             = 0.036 L

                             = 36 ml               (as 1 L = 1000 mL)

And, volume of formic acid is 464 mL.

                 

36 ml of NaOh and 464 ml of HCOOH would be enough to form 500 ml of a buffer with the same pH as the buffer made with benzoic acid and NaOH.

We can arrive at this answer through the following calculation:

Calculate the amount of moles in NaOH and benzoic acid. This calculation is done by multiplying molarity by volume.

Amount of moles of NaOH: [tex]2 * 0.025 = 0.05 mol[/tex]

Amount of moles of benzoic acid: [tex]2*0.475=0.095mol[/tex]

In this case, we can calculate the pH produced by the buffer of these two reagents, as follows:

[tex]pH=pK{a}+log\frac{base}{acid}[/tex]

[tex]4.2+log\frac{0.05}{0.045}=4.245[/tex]

We must repeat this calculation, with the values shown for HCOOH and NaOH. In this case, we can calculate as follows:

[tex]pH=pK{a} +log\frac{base}{acid} \\4.245=3.75+log\frac{base}{acid} \\log\frac{base}{acid}=0.5\\\frac{base}{acid} = 3.162[/tex]

Now we must solve the equation above. This will be done using the following values:

[tex]\frac{2(0.5-x)}{0.2x-2(0.5-x)} =0.464L[/tex]

With these values, we can calculate the volumes of NaOH and HCOOH needed to make the buffer.

NaOH volume:

[tex](0.5-0.464) L\\0.036L ----- 36mL[/tex]

HCOOH volume:

[tex]500 mL-36mL = 464 mL[/tex]

More information:

https://brainly.com/question/10695579?referrer=searchResults

A student has 540.0 mL of a 0.1035 M aqueous solution of Na2CrO4 to use in an experiment. She accidentally leaves the container uncovered and comes back the next week to find only a solid residue. The mass of the residue is 19.12 g. Determine the chemical formula of this residue.

Answers

Answer:

The chemical formula of this residue: [tex]Na_2CrO_4.10H_2O[/tex]

Explanation:

Mass of residue = 19.12

Let the formula of the residue be [tex]Na_2CrO_4.xH_2O[/tex]

Moles of residue: n

[tex]n=\frac{19.12}{162 g/mol+x\times 18 g/mol}[/tex]

Moles of sodium chromate = n'

Molarity of sodium chromate = 0.1035 M

Volume of sodium chromate solution = 540.0 mL = 0.540 L

1 mL = 0.001 L

[tex]Concentration=\frac{moles}{Volume(L)}[/tex]

[tex]0.1035 M=\frac{n}{0.540 L}[/tex]

[tex]n'=0.1035 M\times 0.540 L=0.05589 mol[/tex]

[tex]Na_2CrO_4+xH_2O\rightarrow Na_2CrO_4.xH_2O[/tex]

According to reaction,1 mole of  [tex]Na_2CrO_4[/tex] gives 1 mole of[tex]Na_2CrO_4.xH_2O[/tex]

So, n = n'

[tex]\frac{19.12}{162 g/mol+x\times 18 g/mol}=0.05589 mol[/tex]

x = 10

The chemical formula of this residue: [tex]Na_2CrO_4.10H_2O[/tex]

What is the total pressure (in atm) inside of a vessel containing N2 exerting a partial pressure of 0.256 atm, He exerting a partial pressure of 203 mmHg, and H2 exerting a partial pressure of 39.0 kPa?

Answers

Answer: Total pressure inside of a vessel is 0.908 atm

Explanation:

According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

[tex]p_{total}=p_1+p_2+p_3[/tex]

[tex]p_{N_2}[/tex] = partial pressure of nitrogen = 0.256 atm

[tex]p_{He}[/tex] = partial pressure of helium = 203 mm Hg = 0.267 atm  (760mmHg=1atm)

[tex]p_{H_2}[/tex] = partial pressure of hydrogen =39.0 kPa = 0.385 atm  (1kPa=0.00987 atm)

Thus [tex]p_{total}=p_{H_2}+p_{He}+p_{H_2}[/tex]

[tex]p_{total}[/tex] =0.256atm+0.267atm+0.385atm =0.908atm

Thus total pressure (in atm) inside of a vessel is 0.908

Answer:

The total pressure inside the vessel is 0.908 atm

Explanation:

Step 1: Data given

Partial pressure N2 = 0.256 atm

Partial pressure He = 203 mmHg = 0.267105 atm

Partial pressure H2 = 39.0 kPa = 0.3849 atm

Step 2: Calculate the total pressure

Total pressure  =  p(N2)  + p(He)  +  p(H2)

Total pressure = 0.256 atm + 0.267105 atm + 0.3849 atm

Total pressure = 0.908 atm

The total pressure inside the vessel is 0.908 atm

What is the enthalpy change (in kJ) of a chemical reaction that raises the temperature of 250.0 ml of solution having a density of 1.25 g/ml by 7.80°C? (The specific heat of the solution is 3.74 joules/gramK.) A. -7.43 kJ

Answers

Answer:

328.4KJ

Explanation:

Before we move on to calculate enthalpy change, we calculate the amount of heat Q

Q= mcΔT

m = density * volume = 250 * 1.25 = 312.5g

c = 3.74J/g.k

ΔT = 7.80 + 273.15K = 280.95K

Q= 312.5 * 3.74 * 280.95 = 328,360.312 J= 328.4KJ(1000J = 1KJ, so divide by 1000)

The enthalpy change in the reaction is same as amount of heat transferred = 328.4KJ

A pair of students determining the molarity of their unknown HCl solution calculates the concentration to be 0.0961 M on their first trial and 0.104 M on their second trial. Do they need to run a third trial

Answers

Answer:

Yes.

Explanation:

It should be noted that the meaning of molarity is the ratio of moles of solute per liter of solution.

It should be understood that when determining or finding the molarity of an unknown compound ,the process should be performed or carried out at least 3 times. This is done to remove any form of doubt.

The first calculated value for the concentration of the compound will be regarded as rough value, while the second and the third will be regarded as the first and second values respectively.

In this case, the third value for the concentration of HCl will be calculated to for confirmation of other value, that is to be finally sure of its concentration.  

Answer:

Yes.

Explanation:

For a typical experiment, you should plan to repeat it at least three times (more is better).

The value gotten in the first trial is not close to the value gotten from the second trial.

The solution to these problems is to do repeated trials. Repeated trials are when you do a measurement multiple times - at least three, commonly five, but the more the better. When you measure something once, the chance that the number you get is accurate is much lower. But if you measure it several times, you can take an average of those numbers and get a result that is much closer to the truth.

Repeating a trial gives a RELIABLE result.

Consider the following mechanism: (1) ClO−(aq) + H2O(l) ⇌ HClO(aq) + OH−(aq) [fast] (2) I−(aq) + HClO(aq) → HIO(aq) + Cl−(aq) [slow] (3) OH−(aq) + HIO(aq) → H2O(l) + IO−(aq) [fast] (a) What is the overall equation? Select the single best answer. ClO−(aq) + I−(aq) → IO−(aq) + H2O(l) + Cl−(aq) ClO−(aq) + I−(aq) ⇌ IO−(aq) + Cl−(aq) ClO−(aq) + I−(aq) ⇌ IO−(aq) + H2O(l) + Cl−(aq) ClO−(aq) + I−(aq) → IO−(aq) + Cl−(aq) (b) Identify the intermediate(s), if any. Select the single best answer. No intermediates Cl−, OH−, I−, ClO−, IO− HClO, OH−, HIO HClO, OH−, HIO, H2O (c) What are the molecularity and the rate law for each step? Select the single best answers. (1): bimolecular unimolecular termolecular rate = k1([HClO][OH−])/([HClO][OH−]) k1[HClO][OH−] k1[ClO−][H2O] (2): bimolecular unimolecular termolecular rate = k2[HIO][Cl−] k2([HIO][Cl−])/([I−][HClO]) k2[I−][HClO] (3): bimolecular unimolecular termolecular rate = k3[OH−][HIO] k3([H2O][IO−])/([OH−][HIO]) k3[H2O][IO−] (d) Is the mechanism consistent with the actual rate law: rate = k[ClO−][I−]? no yes

Answers

Answer:

1. The overall equation is ClO-(aq)+I-(aq) → Cl-(aq)+IO-(aq)

2. The intermediates include: HClO(aq), OH-(aq) and HIO(aq)

3. The rates are k[ClO-][H2O], k[I-][HClO] and k[OH-][HIO]

4. No,

The rate depends on [OH-], so it's not consistent with the actual rate law

Explanation:

1

Given

(1) ClO−(aq) + H2O(l) ⇌ HClO(aq) + OH−(aq) [fast]

(2) I−(aq) + HClO(aq) → HIO(aq) + Cl−(aq) [slow]

(3) OH−(aq) + HIO(aq) → H2O(l) + IO−(aq) [fast]

Add up the three equations

ClO−(aq) + H2O(l) ⇌ HClO(aq) + OH−(aq) [fast]

I−(aq) + HClO(aq) → HIO(aq) + Cl−(aq) [slow]

OH−(aq) + HIO(aq) → H2O(l) + IO−(aq) [fast]

Remove all common terms {H2O(l) + I-(aq) +HClO(aq) +OH-(aq) +HIO(aq) => HClO(aq) + OH-(aq) + HIO(aq)

+H2O(l)}

We're left with

ClO-(aq) + I-(aq) => Cl-(aq) + IO-(aq)

2.

There are intermediates generated but they are not visible in the overall equation.

The intermediates include: HClO(aq), OH-(aq) and HIO(aq)

3.

The three steps are bimolecular.

The rates are k[ClO-][H2O], k[I-][HClO] and k[OH-][HIO]

4. Let K represents equilibrium constant

At step 1,

K1 = [HClO][OH-]/[ClO-]

Simplify;

K1 [ClO-]= [HClO][OH-]

K1[ClO-]/[OH-] = [HClO]

Determine the rate at step 2

= k2[I-][HClO]

= K1k2[I-][ClO-]/[OH-]

= k[ClO-][I-]/[OH-]

The answer is no

Final answer:

The overall equation derived from the given mechanism is ClO−(aq) + I−(aq) → IO−(aq) + H2O(l) + Cl−(aq), with HClO, OH−, and HIO as intermediates. Molecularity for all steps is bimolecular with specific rate laws for each step, and the mechanism is consistent with the experimental rate law rate = k[ClO−][I−].

Explanation:

The student's question pertains to deriving the overall equation, identifying intermediates, determining molecularity and rate laws for each step, and verifying the consistency of a proposed mechanism with the experimental rate law in a chemical reaction series involving species such as ClO−(aq), H2O(l), I−(aq), and others.

Answers to the Student's Question

The overall equation is ClO−(aq) + I−(aq) → IO−(aq) + H2O(l) + Cl−(aq).

The intermediates in the reaction mechanism are HClO, OH−, HIO.

For the first step, the molecularity is bimolecular and the rate law is k1[ClO−][H2O]. For the second step, it's bimolecular with a rate law of k2[I−][HClO]. The third step is also bimolecular with a rate law of k3[OH−][HIO].

The mechanism is consistent with the actual rate law, which is rate = k[ClO−][I−], because the rate-determining step involves these reactants.

A student performs an experiment similar to what you will be doing in lab, except using titanium metal instead of magnesium metal. The student weights out 0.108 g of titanium. How many moles of titanium is this?

Answers

Answer:

n = 0.0022 mol

Explanation:

Moles is denoted by given mass divided by the molar mass ,  

Hence ,  

n = w / m  

n = moles ,  

w = given mass ,  

m = molar mass .  

From the information of the question ,

w = 0.108 g

As we known ,

The molar mass of titanium = 47.867 g / mol

The mole of titanium can be caused by using the above relation , i.e. ,

n = w / m  

n = 0.108 g / 47.867 g / mol

n = 0.0022 mol

Final answer:

To find the number of moles of titanium in 0.108 g, divide the mass by the molar mass of titanium (47.867 g/mol), which yields approximately 0.002256 moles of titanium.

Explanation:

Calculating Moles of Titanium

The student asks: How many moles of titanium is 0.108 g? To answer this, we first need the molar mass of titanium, which is approximately 47.867 g/mol. Using the formula for calculating moles:
 Number of moles = Mass (g) / Molar mass (g/mol)

So for titanium:
 Number of moles of Ti = 0.108 g / 47.867 g/mol

After performing the division:
 Number of moles of Ti = 0.002256 moles

This result signifies that 0.108 g of titanium corresponds to approximately 0.002256 moles of titanium.

Calculate the amount of heat needed to melt 91.5g of solid benzene ( C6H6 ) and bring it to a temperature of 60.6°C . Round your answer to 3 significant digits. Also, be sure your answer contains a unit symbol.

Answers

Answer: The amount of heat required for melting of benzene is 20.38 kJ

Explanation:

The processes involved in the given problem are:

[tex]1.)C_6H_6(s)(5.5^oC)\rightleftharpoons C_6H_6(l)(5.5^oC)\\2.)C_6H_6(l)(5.5^oC)\rightleftharpoons C_6H_6(l)(60.6^oC)[/tex]

For process 1:

To calculate the amount of heat required to melt the benzene at its melting point, we use the equation:

[tex]q_1=m\times \Delta H_{fusion}[/tex]

where,

[tex]q_1[/tex] = amount of heat absorbed = ?

m = mass of benzene = 91.5 g

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 127.40 J/g

Putting all the values in above equation, we get:

[tex]q_1=91.5g\times 127.40J/g=11657.1J[/tex]

For process 2:

To calculate the amount of heat absorbed at different temperature, we use the equation:

[tex]q_2=m\times C_{p}\times (T_{2}-T_{1})[/tex]

where,

[tex]C_{p}[/tex] = specific heat capacity of benzene = 1.73 J/g°C

m = mass of benzene = 91.5 g

[tex]T_2[/tex] = final temperature  = 60.6°C

[tex]T_1[/tex] = initial temperature = 5.5°C

Putting values in above equation, we get:

[tex]q_2=91.5\times 1.73J/g^oC\times (60.6-(5.5))^oC\\\\q_2=8722.05J[/tex]

Total heat absorbed = [tex]q_1+q_2[/tex]

Total heat absorbed = [tex][11657.1+8722.05]J=20379.2=20.38kJ[/tex]

Hence, the amount of heat required for melting of benzene is 20.38 kJ

Final answer:

The amount of heat produced by the combustion of the benzene sample is 6.562 kJ.

Explanation:

To calculate the amount of heat produced by the combustion of the benzene sample, we can use the heat capacity of the bomb calorimeter and the change in temperature. The heat produced can be calculated using the formula: q = C × ΔT, where q is the heat produced, C is the heat capacity of the bomb calorimeter, and ΔT is the change in temperature. In this case, the heat capacity of the bomb calorimeter is 784 J/°C and the change in temperature is 8.39 °C.

First, we calculate the heat produced by the bomb calorimeter using the formula: q = C × ΔT. q = 784 J/°C × 8.39 °C = 6561.76 J. Next, we convert this to kilojoules by dividing by 1000: 6561.76 J ÷ 1000 = 6.562 kJ.

Therefore, the amount of heat produced by the combustion of the benzene sample is 6.562 kJ.

Gasoline (which can be considered to be octane, C8H18) burns in oxygen to produce carbon dioxide and water. What volume (L) of oxygen at STP is necessary to react with 1.0 gal of gasoline? (The density of gasoline is 0.81 g/mL. 1 gal = 3.78 L)

Answers

Final answer:

To find the volume of oxygen at STP necessary to react with 1.0 gal of gasoline we perform a series of conversions: from volume of gasoline to mass using density from mass of gasoline to moles using molar mass of octane from moles of octane to moles of oxygen using the stoichiometric ratio from the balanced chemical equation and from moles of oxygen to volume using the molar volume of gas at STP. This series of conversions yields the answer.

Explanation:

The question you asked pertains to how gasoline, or octane (C8H18), reacts with oxygen to produce carbon dioxide and water, and how much oxygen volume at STP is necessary for this reaction with 1.0 gal of gasoline. To solve this task, we first convert gasoline volume to grams using its given density. Knowing that 1 gal of gasoline equals 3.78 L and the density of gasoline is 0.81 g/mL, we multiply these values to get the total mass of gasoline. Then, we consider the balanced chemical equation of the combustion of octane: 2C8H18 + 25O2 -> 16CO2 + 18H2O. This equation tells us that 25 moles of oxygen react with 2 moles of octane. Using octane's molar mass, we convert the mass of gasoline to moles. Once we have the moles of octane, we use the stoichiometric ratio from the balanced equation to find the moles of oxygen necessary for the reaction. Finally using the molar volume of a gas at STP which is approximately 22.4 L, we convert the moles of oxygen to volume. This lengthy chemical calculation processes yields the volume of oxygen necessary to react with 1 gal of gasoline.

Learn more about Chemical Reaction here:

https://brainly.com/question/34137415

#SPJ3

Draw the two constitutionally isomeric structures formed when iodobenzene and propene are subjected to the conditions of the Heck reaction. If stereoisomers are possible for a particular constitutional isomer, draw the more stable stereoisomer.

Answers

Answer:

Check the explanation

Explanation:

The diagram to the question is in the attached image, and always remember that Constitutional isomers are compounds that have very similar molecular formula and diverse connectivity. To conclude whether two molecules are constitutional isomers, just calculate the figure or amount of every atom in both molecules and see how the atoms are assembled.

A student used water as the solvent and encountered some problems. Comment on the effect, if any, each of the following situations could have had on the experimental results...a)The unknown, a white powder, failed to dissolve.b)The student returned to the laboratory instructor for a different solid unknown. This unknown dissolved, but bubbles were seen escaping from the solution almost immediately after the addition of the solid.c)As the student was setting up the apparatus to measure the freezing point of the unknown solution, the thermometer assembly rolled off the lab bench, and the thermometer broke. The student observed a new thermometer and performed the experiment as instructed.

Answers

Answer:

a) If the white powder didn't dissolve completely, that could have a great effect on the experiment. The concentration of the solution cant get to the point where it needs to get for the rest of the experiment which can skew results.

b) If a solution forms bubbles immediately after an addition of a solid, that could simply mean that gas is formed in that reaction. That has no negative effect on an experiment since that's what is supposed to happen during the reaction.

c) Using a different measuring device can really effect a students calculations later on during the experiment. Different devices are calibrated differently, which can skew the results or calculations later on. Its best to stay consistent with what you are measuring with during an experiment.

Explanation:

Final answer:

If the unknown does not dissolve, it affects the results. Bubbles during dissolution indicate a chemical reaction. Replacing the thermometer does not greatly affect the results.

Explanation:

a) If the unknown white powder failed to dissolve in water, it means that it is insoluble in water. This could affect the experimental results as the solubility of the unknown substance is an important factor in determining its properties.

b) The bubbling observed when the different solid unknown was added to water indicates a chemical reaction. This could affect the experimental results as the reaction may lead to the formation of a new compound, changing the composition of the solution.

c) The breaking of the thermometer and the replacement with a new one should not significantly affect the experimental results. As long as the new thermometer is calibrated and accurate, it can still be used to measure the freezing point of the unknown solution.

Learn more about experimental here:

https://brainly.com/question/36591767

#SPJ3

Ethylene () is the starting point for a wide array of industrial chemical syntheses. For example, worldwide about of polyethylene are made from ethylene each year, for use in everything from household plumbing to artificial joints. Natural sources of ethylene are entirely inadequate to meet world demand, so ethane () from natural gas is "cracked" in refineries at high temperature in a kinetically complex reaction that produces ethylene gas and hydrogen gas. Suppose an engineer studying ethane cracking fills a reaction tank with of ethane gas and raises the temperature to . He believes at this temperature. Calculate the percent by mass of ethylene the engineer expects to find in the equilibrium gas mixture. Round your answer to significant digits. Note for advanced students: the engineer may be mistaken about the correct value of , and the mass percent of ethylene you calculate may not be what he actually observes.

Answers

The question is incomplete, here is the complete question:

Ethylene is the starting point for a wide array of industrial chemical syntheses. For example, worldwide about 8.0 x 10¹⁰ of polyethylene are made from ethylene each year, for use in everything from household plumbing to artificial joints. Natural sources of ethylene are entirely inadequate to meet world demand, so ethane from natural gas is "cracked" in refineries at high temperature in a kinetically complex reaction that produces ethylene gas and hydrogen gas.

Suppose an engineer studying ethane cracking fills a 30.0 L reaction tank with 38.0 atm of ethane gas and raises the temperature to 400°C. He believes Kp = 0.4 at this temperature. Calculate the percent by mass of ethylene the engineer expects to find in the equilibrium gas mixture.

Answer: The mass percent of ethylene gas is 9.20 %

Explanation:

We are given:

Initial partial pressure of ethane gas = 38.0 atm

The chemical equation for the dehydrogenation of ethane follows:

                  [tex]C_2H_6\rightleftharpoons C_2H_4+H_2[/tex]

Initial:             38

At eqllm:      38-x         x       x

The expression of [tex]K_p[/tex] for above equation follows:

[tex]K_p=\frac{p_{C_2H_4}\times p_{H_2}}{p_{C_2H_6}}[/tex]

We are given:

[tex]K_p=0.40[/tex]

Putting values in above equation, we get:

[tex]0.40=\frac{x\times x}{38-x}\\\\x=-4.10,3.70[/tex]

Neglecting the negative value of 'x' because partial pressure cannot be negative

So, equilibrium partial pressure of ethane = 38 - x = 38 - 3.70 = 34.30 atm

Equilibrium partial pressure of ethene = x = 3.70 atm

To calculate the number of moles, we use the equation given by ideal gas which follows:

[tex]PV=nRT[/tex]         ..........(1)

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]     .....(2)

For ethane:

We are given:

[tex]P=34.3atm\\V=30.0L\\R=0.0821\text{ L atm }mol^{-1}K^{-1}\\T=400^oC=[400+273]=673K[/tex]

Putting values in equation 1, we get:

[tex]34.3atm\times 30.0L=n\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 673K\\\\n=\frac{34.3\times 30.0}{0.0821\times 673}=18.62mol[/tex]

Molar mass of ethane gas = 30 g/mol

Moles of ethane gas = 18.62 mol

Putting values in equation 2, we get:

[tex]18.62mol=\frac{\text{Mass of ethane}}{30g/mol}\\\\\text{Mass of ethane gas}=(18.62mol\times 30g/mol)=558.6g[/tex]

For ethylene:

We are given:

[tex]P=3.70atm\\V=30.0L\\R=0.0821\text{ L atm }mol^{-1}K^{-1}\\T=400^oC=[400+273]=673K[/tex]

Putting values in equation 1, we get:

[tex]3.70atm\times 30.0L=n\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 673K\\\\n=\frac{3.70\times 30.0}{0.0821\times 673}=2.01mol[/tex]

Molar mass of ethylene gas = 28 g/mol

Moles of ethylene gas = 2.01 mol

Putting values in equation 2, we get:

[tex]2.01mol=\frac{\text{Mass of ethylene}}{28g/mol}\\\\\text{Mass of ethylene gas}=(2.01mol\times 28g/mol)=56.28g[/tex]

To calculate the mass percentage of substance in mixture, we use the equation:

[tex]\text{Mass percent of substance}=\frac{\text{Mass of substance}}{\text{Mass of mixture}}\times 100[/tex]

Mass of ethylene = 56.28 g

Mass of mixture = [558.6 + 56.28] g = 641.88 g

Putting values in above equation, we get:

[tex]\text{Mass percent of ethylene}=\frac{56.28g}{641.88g}\times 100=9.20\%[/tex]

Hence, the mass percent of ethylene gas is 9.20 %

Be sure to answer all parts. Find the pH during the titration of 20.00 mL of 0.1000 M triethylamine, (CH3CH2)3N (Kb = 5.2 × 10−4), with 0.1000 M HCl solution after the following additions of titrant. (a) 11.00 mL: pH = (b) 20.60 mL: pH = (c) 25.00 mL:

Answers

The pH changes significantly through the different stages of titration of triethylamine with HCl. After adding 11.00 mL of HCl, the pH is approximately 11.30, demonstrating a basic solution. At 20.60 mL and 25.00 mL of HCl added, the pH drops to approximately 2.83 and 1.95, respectively, indicating an acidic solution due to the excess HCl.

To find the pH during the titration of 20.00 mL of 0.1000 M triethylamine, [((CH₃CH₂)₃N)] , with 0.1000 M HCl solution, we need to follow the steps below at different volumes of HCl addition:

(a) After adding 11.00 mL of HCl

Calculate moles of triethylamine:
moles of [((CH₃CH₂)₃N)] = 0.1000 M x 0.0200 L = 0.00200 mol

Calculate moles of HCl added:
moles of HCl = 0.1000 M * 0.0110 L = 0.00110 mol

Moles of triethylamine remaining:
0.00200 mol - 0.00110 mol = 0.00090 mol

Volume of solution after adding HCl:
20.00 mL + 11.00 mL = 31.00 mL or 0.0310 L

Concentration of triethylamine:
[((CH₃CH₂)₃N)] = 0.00090 mol / 0.0310 L ≈ 0.0290 M

Using  Kᵇ, find [OH⁻]:
Kᵇ = 5.2 x 10⁻⁴, set up ICE table for equilibrium calculation, estimate [OH⁻].

Find pOH and then pH:
pOH = -log[OH⁻]; pH = 14 - pOH

pH ≈ 11.30

(b) After adding 20.60 mL of HCl

Moles of HCl added:
0.1000 M x 0.0206 L = 0.00206 mol

Moles of triethylamine remaining:
0.00200 mol - 0.00206 mol = -0.00006 mol. This indicates an excess of HCl.

Moles of excess HCl:
0.00006 mol

Volume of solution:
20.00 mL + 20.60 mL = 40.60 mL or 0.0406 L

Concentration of H⁺:
[H⁺] = 0.00006 mol / 0.0406 L ≈ 0.00148 M

Find pH:
pH = -log[H⁺]

pH ≈ 2.83

(c) After adding 25.00 mL of HCl

  Moles of HCl added:
  0.1000 M x 0.0250 L = 0.00250 molMoles of triethylamine remaining:
0.00200 mol - 0.00250 mol = -0.00050 mol. This indicates an excess of HCl.Moles of excess HCl:
0.00050 molVolume of solution:
20.00 mL + 25.00 mL = 45.00 mL or 0.0450 LConcentration of H⁺:
[H⁺] = 0.00050 mol / 0.0450 L ≈ 0.0111 MFind pH:
pH = -log[H⁺]pH ≈ 1.95

The pH values during the titration are (a) 10.65 after adding 11.00 mL of HCl, (b) 3.97 at equivalence point (20.60 mL), and (c) 1.95 after adding 25.00 mL of HCl.

To find the pH during the titration of 20.00 mL of 0.1000 M triethylamine, (CH₃CH₂)₃N (Kb = 5.2 × 10⁻⁴), with 0.1000 M HCl solution after different volumes of titrant have been added, follow these steps:

Initial pH Calculation (before titration)

1. Calculate the pOH from Kb and the initial concentration of triethylamine:

Kb = 5.2 × 10⁻⁴

[B] = 0.1000 M

Using the formula:

[tex]& K_b = \frac{[\text{OH}^-][\text{BH}^+]}{[B]} \\[/tex]

We assume that [OH⁻] = [BH⁺]. Thus, [tex]K_b = \frac{[\text{OH}^-]^2}{[B]} \\[/tex]

[tex]& [\text{OH}^-] = \sqrt{K_b \cdot [B]} = \sqrt{5.2 \times 10^{-4} \cdot 0.1000} = 0.0072 \, \text{M} \\\\[/tex]

[tex]& \text{pOH} = -\log[\text{OH}^-] = -\log(0.0072) \approx 2.14 \\\\ & \text{pH} = 14 - \text{pOH} = 14 - 2.14 = 11.86 \\[/tex]

After Adding 11.00 mL of HCl

2. Calculate the moles of HCl added:

n(HCl) = M * V = 0.1000 M * 0.01100 L = 0.001100 mol

Initial moles of (CH₃CH₂)₃N = 0.1000 M * 0.02000 L = 0.002000 mol

Remaining (CH₃CH₂)₃N = 0.002000 mol - 0.001100 mol = 0.000900 mol

Moles of (CH₃CH₂)₃NH⁺ formed = 0.001100 mol

Total volume = 20 mL + 11 mL = 31 mL = 0.031 L

Compute the concentrations:

[B] = 0.000900 mol / 0.031 L ≈ 0.029 M

[HB+] = 0.001100 mol / 0.031 L ≈ 0.035 M

Using the Henderson-Hasselbalch equation:

[tex]pH = pKa + \log\left(\frac{[B]}{[\text{HB}^+]}\right)\\\\pKa = 14 - \text{pKb} = 14 - 3.28 = 10.72\\\\pH = 10.72 + \log\left(\frac{0.029}{0.035}\right) = 10.72 + \log(0.829) \approx 10.65[/tex]

At Equivalence Point (20.60 mL)

3. Calculate moles at equivalence point:

Moles of  (CH₃CH₂)₃N = 0.002000 mol

Equivalence moles of HCl = 0.002060 mol

All the base has been neutralized:

(CH₃CH₂)₃NH⁺ in solution = 0.002060 / 0.04060 = 0.0507 M

Calculate pH:

[H+] from the equilibrium of (CH₃CH₂)₃NH⁺ :

[tex]K_a \text{ for } (CH_3CH_2)_3NH^+ = \frac{1}{K_b} = \frac{1}{5.2 \times 10^{-4}} = 1.923 \times 10^3[/tex]

[tex]& [\text{H}^+] = \sqrt{1.923 \times 10^3 \times 0.0507 \, \text{M}} = 0.09825 \, \text{M} \\\\& \text{pH} = -\log(0.09825) \approx 3.97 \\[/tex]

After Adding 25.00 mL of HCl

4. Calculate moles of excess HCl:

HCl added (total) = 0.002500 moles

Excess HCl = 0.002500 - 0.002000 = 0.000500 mol

Total volume = 20 mL + 25 mL = 45 mL = 0.045 L

[tex]& [\text{H}^+] = \frac{0.000500 \, \text{mol}}{0.045 \, \text{L}} \approx 0.0111 \, \text{M} \\[/tex]

[tex]& \text{pH} = -\log(0.0111) \approx 1.95 \\[/tex]

In summary, the pH values during the titration are 10.65 after adding 11.00 mL of HCl, 3.97 at equivalence point (20.60 mL), and 1.95 after adding 25.00 mL of HCl.

A chemist adds 240.0mL of a 1.5 x 10^-4 mol/L magnesium flouride (MgF2) solution to a reaction flask. Calculate the micromoles of magnesium fluoride the chemist has added to the flask. Be sure your answer has the correct number of significant digits.

Answers

Answer:

[tex]\boxed{\text{36 $\mu$mol}}[/tex]

Explanation:

Data:

c = 1.5 x 10⁻⁴ mol/L

V = 240.0 mL

Calculations:

[tex]\text{Moles} = \text{0.2400 L} \times \dfrac{1.5 \times 10^{-4}\text{ mol}}{\text{1 L}} \times \dfrac{10^{6}\text{ $\mu$mol}}{\text{1 mol}} = \textbf{36 $\mu$mol}\\\\\text{The chemist has added $\boxed{\textbf{36 $\mu$mol}}$ of magnesium fluoride to the flask.}[/tex]

The mass composition of a compound that assists in the coagulation of blood is 76.71% carbon, 7.02% hydrogen, and 16.27% nitrogen. Determine the empirical formula of the compound and report the answer by specifying X, Y & Z in the format below:
C_X H_Y N_Z

Answers

Answer : The empirical of the compound is, [tex]C_{11}H_{12}N_2[/tex]

Explanation :

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

Mass of C = 76.71 g

Mass of H = 7.02 g

Mass of N = 16.27 g

Molar mass of C = 12 g/mole

Molar mass of H = 1 g/mole

Molar mass of N = 14 g/mole

Step 1 : convert given masses into moles.

Moles of C = [tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{76.71g}{12g/mole}=6.39moles[/tex]

Moles of H = [tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{7.02g}{1g/mole}=7.02moles[/tex]

Moles of N = [tex]\frac{\text{ given mass of N}}{\text{ molar mass of N}}= \frac{16.27g}{14g/mole}=1.16moles[/tex]

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C = [tex]\frac{6.39}{1.16}=5.5[/tex]

For H = [tex]\frac{7.02}{1.16}=6.0\approx 6[/tex]

For N = [tex]\frac{1.16}{1.16}=1[/tex]

The ratio of C : H : N = 5.5 : 6 : 1

To make in a whole number we are multiplying the ratio by 2, we get:

The ratio of C : H : N = 11 : 12 : 2

The mole ratio of the element is represented by subscripts in empirical formula.

The Empirical formula = [tex]C_{11}H_{12}N_2[/tex]

Therefore, the empirical of the compound is, [tex]C_{11}H_{12}N_2[/tex]

A piece of copper has a mass of 800 g. What is the volume of the sample, in units of liters? In the boxes above, enter the correct setup that would be used to solve this problem.

Answers

Answer:

0.089L

Explanation:

Mass of copper= 800g

Density of copper= 8.96g/ml or 8960g/L

Density = mass/volume

Volume = mass/density = 800/8960= 0.089L

The conversion of density from g/ml to g/L units was necessary because the volume was required in liters according to the statement in the question

What mass of NaC6H5COO should be added to 1.5 L of 0.40 M C6H5COOH solution at 25 °C to produce a solution with a pH of 3.87 given that the Ka of C6H5COOH is 6.5×10-5 and the molar mass of NaC6H5COO is 144.1032 g/mol?

Answers

Answer:

41 g

Explanation:

We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.

pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]

pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]

log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]

log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40

[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M

We can find the mass of NaC₆H₅COO using the following expression.

M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution

mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution

mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L

mass NaC₆H₅COO = 41 g

A sample of impure NaHCO3 with an initial mass of 0.654 g yielded a solid residue (consisting of Na2CO3 and other solids) with a final mass of 0.456 g. Determine the mass percent of NaHCO3 in the sample.

Answers

Answer:

81.7 %

Explanation:

Equation of the decomposition of NaHCO₃

2 NaHCO₃ → Na₂CO₃ + CO₂ + H₂O

2 mole of NaHCO₃ yielded 1 mole of CO₂ and 1 mole of  H₂O

molar mass of CO₂ = 44 g

molar mass of H₂O = 18 g

1 mole of CO₂ : 1 mole H₂O  = ( mass of CO₂ / molar mass of CO₂) : ( mass of H₂O / molar mass of  H₂O

also  mass of CO₂ + mass of H₂O = ( 0.654 - 0.456 ) g = 0.198 g

1 = ( mass of CO₂/ 44g) : (  mass of H₂O / 18g)

44 mass of H₂O = 18 mass of CO₂

1 mass of CO₂ = 44 / 18  mass of H₂O

substitute into equation 1

mass of CO₂ + mass of H₂O = 0.198 g

2.44 mass of H₂O + mass of H₂O = 0.198 g

3.44 mass of H₂O = 0.198 g

mass of H₂O = 0.198 g / 3.44 = 0.0576 g

mass of CO₂ = 0.198 g  - 0.0576 g  = 0.140 g

2 mole of  NaHCO₃ yielded 1 mole of CO₂

168 g of NaHCO₃ yielded 44 g of CO₂

unknown mass of NaHCO₃ yielded 0.140 g CO₂

unknown mass of NaHCO₃ = 168 g × 0.140 g / 44 g = 0.535 g

mass percent of NaHCO₃ = 0.535 g / 0.654 g = 81.7 %

Answer:

Explanation:

Mass of impure NaHCO3 = 0.654g

Mass of residue= 0.456g

Mass loss of NaHCO3= 0.654-0.456= 0.198g

Balanced reaction equation:

2NaHCO3(s)-------> Na2CO3(s) + H2O(g)+CO2(g)

Note CO2 and water vapour produced in the decomposition combines to give H2CO3

84g of NaHCO3 yields 62g of H2CO3

Xg of NaHCO3 yields 0.198g of H2CO3

Therefore X= 84 × 0.198/ 62

=0.268g

Mass%= 0.268/0.654 × 100

=41% NaHCO3

10. What is the function of mitochondria?

Answers

Mitochondria is the site of ATP synthesis in eukaryotic cell during aerobic respiration. It regulates the biochemical processes of the cell and helps in generation of co enzymes as sulphur and iron.

Explanation:

Mitochondria is a cell membrane bound organelles present in cytoplasm of eukaryotic cells.

The major roles of mitochondria in eukaryotic cell is to synthesize ATP by cellular respiration. It also regulates the metabolism or biochemical processes of the cell.

Mitochondria also aids in generating the iron and sulphur which acts as a coenzyme in several biochemical reactions.

The electron transport chain takes place in inner mitochondrial membrane.

There are 2 aerobic phases of cellular respiration those are Kreb's cycle and electron transport chain. The machinery for Kreb's Cycle is in matrix. The ETC is present as embedded in the inner membrane of matrix.

The cellular compartment of mitochondria performs following functions:

The space in intermembrane has electron transport chain and holds ATP synthase (enzyme required for

The cristae is a finger like projection which increases surface area for increase ATP synthesis.

In matrix of the mitochondria the Electron transport takes place.

In Kreb's cycle mitochondria aids in production of NADH and GTP. Also, synthesis of phospholipid takes place in mitochondria.

1. The average annual increase of CO2 between 1958 and 2014 was . 2. The average annual increase of CO2 between 1970 and 1980 was . 3. The average annual increase of CO2 between 2004 and 2014 was . 4. CO2 concentration and rate over time. 5. The most recent CO2 concentration measured is .

Answers

Final answer:

The CO2 concentration has been increasing steadily for several decades, with an average annual increase about 1.4 ppm between 1958 and 2014, somewhat lower between 1970 and 1980 and higher between 2004 and 2014. The most recent CO2 concentration measured I found is 414.0 ppm up to July 2021.

Explanation:

It appears that the student's question is missing specific data, however, I can provide information on the average increase in

CO2 concentration

over certain periods. The concentration of CO2 in the atmosphere has been steadily increasing since the beginning of the industrial revolution, with more prominent increases in recent decades due to increased industrial activity and deforestation. For example, between 1958 and 2014, the CO2 concentration in the atmosphere reportedly increased by about 1.4 parts per million (ppm) per year on average. The rate was somewhat lower between 1970 and 1980 (about 1.3 ppm/year), but higher between 2004 and 2014 (about 2 ppm/year). The most recent CO2 concentration recorded I could find is 414.0 ppm up to July 2021. It's important to note that

increasing CO2 concentration

is a significant contributor to global warming and climate change.

Learn more about CO2 Concentration here:

https://brainly.com/question/32002973

#SPJ3

During Project 3: Week 1 the goal was to synthesize an artificial kidney stone. If you were producing barium phosphate tribasic, what would be the correct stoichiometric coefficients for the reaction depicted below? Ba(NO3)2 (aq) + Na3PO4 (aq) → Ba3(PO4)2 (s) + NaNO3 (aq)

Answers

Answer: the correct stoichiometric coefficients will be

3:2= 1:6

Explanation:

3Ba(NO3)2 (aq) + 2Na3PO4 (aq) → Ba3(PO4)2 (s) + 6NaNO3 (aq)

From the equation of reaction,

3 moles of Ba(NO3)2 (aq) will require 2 moles of Na3PO4 , to give 1 mole of Ba3(PO4)2 (s) and 6moles of NaNO3 (aq)

Part APart complete A sample of sodium reacts completely with 0.568 kg of chlorine, forming 936 g of sodium chloride. What mass of sodium reacted? Express your answer to three significant figures and include the appropriate units.

Answers

Answer: 368 grams of sodium reacted.

Explanation:

The balanced reaction is :

[tex]2Na(s)+Cl_2(g)\rightarrow 2NaCl(s)[/tex]

[tex]\text{Moles of chlorine}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of chlorine}=\frac{0.568\times 1000g}{71g/mol}=8moles[/tex]

[tex]\text{Moles of sodium chloride}=\frac{936g}{58.5g/mol}=16mol[/tex]    

According to stoichiometry :

2 moles of [tex]NaCl[/tex] are formed from = 2 moles of [tex]Na[/tex]

Thus 16 moles of [tex]NaCl[/tex] are formed from=[tex]\frac{2}{2}\times 16=16moles[/tex]  of [tex]Na[/tex]

Mass of [tex]Na=moles\times {\text {Molar mass}}=16moles\times 23g/mol=368g[/tex]

Thus 368 grams of sodium reacted.

Which type of lipid is found in the body and is converted into vitamins, hormones, and bile salts?

A.fats

B.waxes

C.sterols

D.phospholipids

Answers

Answer:

C.sterols

Explanation:

Sterols or steroid alcohols are type of lipids. In plants they are present as phytosterols and in animals as zoosterols. They maintain the fluidity of cell membrane, act as signalling molecules and also form the skin oils in animals.

Cholesterol is an important zoosterol. It is a fatty waxy substance. It is present in cell membrane. It is also a precursor for vitamin D. It is precursor for steroid hormones like cortisol and aldosterone. When it is non esterified, it gets converted to bile.  

Answer:

Option-C

Explanation:

Steroids are the hydrophobic molecules that can be structurally characterised by the fused rings and -OH group. The steroids since are hydrophobic therefore are kept with the phospholipids.

A sterol which is present as a component of the lipid layer is known as the cholesterol. The cholesterol acts as a precursor to a variety of steroid hormone-like estrogens,  glucocorticoids, progestagens and many others.  The cholesterol also acts as precursor to vitamin D and bile acids in the body.

Thus, Option-C is correct.

Where would you expect to find the 1H NMR signal of (CH3)2Mg relative to the TMS signal? (Hint: Magnesium is less electronegative than silicon.)

Answers

The methyl protons of (CH3)2Mg are in a more electron rich environment than the methyl protons of TMS. Thus the protons of (CH3)2Mg show a signal upfield from TMS.

Explanation:

Mg is less electronegative than Si. The methyl protons of (CH3)2Mg are in a more electron-rich environment than the methyl protons of TMS.This electron density shields the protons of (CH3)2Mg from the applied magnetic field. Therefore, they sense a smaller effective magnetic field than TMS. The effective magnetic field is directly proportional to the frequency.Thus the protons of (CH3)2Mg show a signal at a lower frequency than TMS. In other words, protons of (CH3)2Mg show signal upfield from TMS.

Based upon the Aggie Honor System Rules and the Academic Integrity statement on the CHEM 111/112/117 syllabus, assess whether the statements are true or false.

Asking for and receiving a paper that someone who is in another lab section wrote is an honor violation.

An oral discussion with a classmate regarding a paper's topics and format is cheating.

Purchasing papers from tutoring companies is allowed.

Sending a paper that you wrote to a student who is currently in another section is an honor violation.

Misconduct in research or scholarship includes fabrication, falsification, or plagiarism in proposing, performing, reviewing, or reporting research. It does not include honest error or honest differences in interpretations or judgements of data.

Discussing an exam or laboratory practical with anyone prior to the conclusion of the week that final exams and laboratory practicals are given would be considered an honor violation.

Answers

Answer:

Asking for and receiving a paper that someone who is in another lab section wrote is an honor violation. True

An oral discussion with a classmate regarding a paper's topics and format is cheating. False

Purchasing papers from tutoring companies is allowed. False

Sending a paper that you wrote to a student who is currently in another section is an honor violation. True

Misconduct in research or scholarship includes fabrication, falsification, or plagiarism in proposing, performing, reviewing, or reporting research. It does not include honest error or honest differences in interpretations or judgements of data. True

Discussing an exam or laboratory practical with anyone prior to the conclusion of the week that final exams and laboratory practicals are given would be considered an honor violation. True

Explanation:

The Aggie code of honour is a code of academic integrity of the Texas A&M University. It spells out the codes of academic integrity and responsible research. Instructors are to include this code in all syllabi. It targets the application of the highest degree of integrity in academic research and forbids misconducts such as cheating, plagiarism, falsification et cetera.

Final answer:

The statements regarding the Aggie Honor System and Academic Integrity rules for CHEM 111/112/117 are generally correct, with exceptions for discussions about paper topics, which is not innately cheating, and purchasing of papers, which is not allowed.

Explanation:

Based on the Aggie Honor System Rules and the Academic Integrity statement on the CHEM 111/112/117 syllabus, the following assessments can be made about the statements:

True: Asking for and receiving a paper that someone who is in another lab section wrote is an honor violation.False: An oral discussion with a classmate regarding a paper's topics and format is not necessarily cheating, unless specific information about the paper is disclosed.False: Purchasing papers from tutoring companies is not allowed under the honor code's stipulations against plagiarism.True: Sending a paper that you wrote to a student who is currently in another section is an honor violation.True: Misconduct in research or scholarship includes fabrication, falsification, or plagiarism in proposing, performing, reviewing, or reporting research. It does not include honest error or honest differences in interpretations or judgements of data.True: Discussing an exam or laboratory practical with anyone prior to the conclusion of the week that final exams and laboratory practicals are given would be considered an honor violation.

Learn more about Academic Integrity here:

https://brainly.com/question/32196816

#SPJ11

Calculate and report the precise concentration of undiluted stock standard solution #1 for AR in micromoles per liter from ppm by mass. Assume that the density of water is 1.00g/ml. This is your most concentrated undiluted standard solution for which you measured the absorbance.

Answers

The question is incomplete, complete question is ;

Allura Red (AR) has a concentration of 21.22 ppm. What is this is micro moles per liter? Report the precise concentration of the undiluted stock solution #1 of AR in micromoles per liter. This is your most concentrated (undiluted) standard solution for which you measured the absorbance. Use 3 significant figures. Molarity (micro mol/L) =

Answer:

The molarity of the solution of allura red is 42.75 micro moles per Liter.

Explanation:

The ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.

To calculate the ppm of oxygen in sea water, we use the equation:

[tex]\text{ppm}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^6[/tex]

Both the masses are in grams.

We are given:

The ppm concentration of allura red = 21.22 ppm

This means that 21.22 mg of allura red was present 1 kg of solution.

Mass of Allura red = 21.22 mg = [tex]21.22\times 0.001 g[/tex]

1 mg = 0.001 g

Mass of solution = 1 kg = 1000 g

Density of the solution = Density of water = d = 1.00 g/mL

( since solution has very small amount of solute)

Volume of the solution :

[tex]=\frac{1000 g}{1.00 g/mL}=1000 mL[/tex]

1000 mL = 1 L

Volume of the solution, V = 1 L

Moles of Allura red = [tex]\frac{21.22\times 0.001 g}{496.42 g/mol}=4.275\times 10^{-5} mol=4.275\times 10^{-5}\times 10^{6} \mu mole[/tex]

Molarity of the solution ;

[tex]=\frac{\text{Moles of solute}}{\text{Volume of solution(L)}}[/tex]

[tex]M=\frac{4.275\times 10^{-5}\times 10^6 \mu mol}{1 L}=42.75 \mu mol/L[/tex]

The molarity of the solution of allura red is 42.75 micro moles per Liter.

Other Questions
At the time,no one could explain why the weather of 1816 was do unusual. Is it adjective,adverb, or noun clause Which was not a goal of the Civilian Conservation Corps? a) to provide military training to young American men b) to provide relief for those in need c) to provide jobs and encourage business d) to reform the government and businesses to prevent another depression INCOME; you earn a weekly salary of $200 plus a 3% commission on the total value of the sales made in the week. This week, your sales total $2000. What are your total earnings for the week?#1 identify the percent, bass, and part of the base in the question Why do you think Pope Pius II might have been so generous to Giovanni de Medici? Complete the following sentence about margins and alignment with the best choices. Business letters and memos usually have margins of_________ and are usually___________ on the left. Typeface, font, and size influence how your message is read. Multidivisional structure is the simplest organizational structure that is based on direct lines of authority extending from the top executive to the lowest level employees of an organization.1. True2. False Suppose Microsoft announces it is cutting the prices of some of its software titles (mainly games) by 25 percent. Assuming that Microsoft is seeking to increase revenues, it must believe that the elasticity of demand for these products is Onboarding programs help employees to integrate and transition to new jobs by making them familiar with corporate policies, procedures, cultures, and politics by clarifying work-role expectations and responsibilities. Joanne made 16 fruit bars in a square pan. The fruit bars are 2 inches by 2 inches. What are the dimensions of the pan she used to bake the fruit bars? An investor purchased 100 shares of Fifth Third Bank stock and 100 shares of Santee Electric Cooperative stock. The probability the bank stock will appreciate over a year is 0.70. The probability the electric utility will increase over the same period is 0.60. Assume the two events are independent.a. What is the probability both stocks appreciate during the period?b. What is the probability the bank stock appreciates but the utility does not?c. What is the probability at least one of the stocks appreciates? 15. Your friend paid $17 for a shirt. This amount was 85% of the total amountyour friend spent at the clothing store. How much money did your friendspend? I need help answering all of these. My teacher thinks that we should know this even though he hasnt taught us any of this. please help?! thank you! another question plz Choose the sentence in which the underlined pronoun is correct.A)Some of the bread had mold on their bottom.B)One of the coaches left their clipboard on the bus.C)One of the girls brought her pictures from the trip.D)Most of the players placed his pads on top of the cart. What characteristic of water accounts for the fact that coastal regions do not experience such large temperature variations as landlocked areas? Please choose the correct answer from the following choices, and then select the submit answer button. Water is a good solvent. Water has a low density as a solid. Water molecules are cohesive. Water has a large heat capacity. Water has a high surface tension. on monday,the price of one share of webb company stock was 24.85. by friday,the price was 25.004. by how much did the price changre from monday to friday Procter & Gamble markets its popular multipurpose cleaner as Mr. Clean in North America and Asia but uses several different brand names like Maestro Limpio and Mr. Proper in other parts of the world. These differences arise because P&G is a(n) ________ firm. You want to practice running 50 m sprints for an upcoming race. However,you are practicing on a football field with distances marked in yards. Howmany yards are equivalent to 50 m? (1 m = 1.0936 yd)O A. 46 ydO B. 80 ydO c. 55 ydO D. 49 yd Evaluate the expression when y=5 and x=48. (X-6y) After her favorite uncle died, Mayra unconsciously incorporated him into her own identity and began to feel toward herself what she had felt toward her uncle. In other words, she _____her dead uncle. ose the item in column 2 that best matches each item in column 1. axonemal microtubules nucleation treadmilling desmin EB1 Arp2/3 complex myosin subfragment 1 (S1) tropomodulin gelsolin microvilli lamin phosphoinositides MAPs plectin lamin A. anchors spectrin filaments to red blood cell membrane B. hemidesmosome C. crosslinks microtubules to intermediate filaments D. inhibits microtubule assembly E. forms scaffold underlying nuclear envelope F. stabilizes and organizes microtubules G. is in cilia and flagella H. formation of tubulin oligomers I. binds to microtubule plus ends J. prevents loss of subunits from filament minus end K. connects crisscrossing actin filaments into 3D networks L. binds to profilin and CapZ M. curves bacterial cells N. increase cell surface area O. decorates actin microfilaments P. nucleates microtubule branches Q. nucleates actin filament branches R. assembly and disassembly on opposite ends of the same filament S. breaks and caps actin filaments T. keeps muscle myofibrils in register U. desmosome Steam Workshop Downloader