Considered safe for agricultural use. A well in Texas is used to water crops. This well is tested on a regular basis for arsenic. A random sample of 36 tests gave a sample mean of = 7.3 ppb arsenic, with s = 1.9 ppb. Does this information indicate that the mean level of arsenic in this well is less than 8 ppb? Use a 0.01 level of signifcance..

Answers

Answer 1

Answer:

This information indicates that the mean level of arsenic in this well is less than 8 ppbat  0.01 level of signifcance..

Step-by-step explanation:

Given that a well in Texas is used to water crops.

This well is tested on a regular basis for arsenic.

A random sample of 36 tests gave a sample mean of = 7.3 ppb arsenic, with s = 1.9 ppb

H0: Sample mean = 8

Ha: Sample mean <8

(left tailed test at 1% level)

Mean difference =-0.70

Std error of mean = [tex]\frac{1.9}{\sqrt{36} } \\=0.3167[/tex]

Test statistic t = -2.204

df = 35

p value = 0.0171

Since p >0.01 we accept H0

This information indicates that the mean level of arsenic in this well is less than 8 ppbat  0.01 level of signifcance..


Related Questions

Find the critical value in the t-distribution for a two-tailed hypothesis test in which α = .05 and df = 15 Round your answer to the thousandth decimal place.

Answers

Answer:[tex]\pm2.131[/tex]

Step-by-step explanation:

The critical value in the t-distribution for a two-tailed hypothesis test is the t-value in the students's t-distribution table corresponding to the [tex]\alpha/2[/tex] and df , where [tex]\alpha=[/tex] significance level and df = Degree of freedom.

We are given , [tex]\alpha=0.05[/tex]

Then,  [tex]\alpha/2=0.025[/tex]

df = 15

Now , from the students's t-distribution table

The  critical value in the t-distribution for a two-tailed hypothesis test is [tex]t=\pm2.131449\approx\pm2.131[/tex]

Hence, the required t-value = [tex]\pm2.131[/tex]

A biologist observed that a certain bacterial colony obeys the population growth law and that the colony triples every 4 hours.

If the colony occupied 2 square centimeters initially, find:

(a) An expression for the size P(t) of the colony at any time t.

(b) The area occupied by the colony after 12 hours.

(c) The doubling time for the colony?

Answers

Answer:

a) [tex]P(t) = 2e^{0.275t}[/tex]

b) 54.225 square centimeters.

c) 2.52 hours

Step-by-step explanation:

The population growth law is:

[tex]P(t) = P_{0}e^{rt}[/tex]

In which P(t) is the population after t hours, [tex]P_{0}[/tex] is the initial population and r is the growth rate, as a decimal.

In this problem, we have that:

The colony occupied 2 square centimeters initially, so [tex]P_{0} = 2[/tex]

The colony triples every 4 hours. So

[tex]P(4) = 3P_{0} = 6[/tex]

(a) An expression for the size P(t) of the colony at any time t.

We have to find the value of r. We can do this by using the P(4) equation.

[tex]P(t) = P_{0}e^{rt}[/tex]

[tex]6 = 2e^{4r}[/tex]

[tex]e^{4r} = 3[/tex]

Applying ln to both sides, we get:

[tex]4r = 1.1[/tex]

[tex]r = 0.275[/tex]

So

[tex]P(t) = 2e^{0.275t}[/tex]

(b) The area occupied by the colony after 12 hours.

[tex]P(t) = 2e^{0.275t}[/tex]

[tex]P(12) = 2e^{0.275*12}[/tex]

[tex]P(12) = 54.225[/tex]

(c) The doubling time for the colony?

t when [tex]P(t) = 2P_{0} = 2*2 = 4[/tex].

[tex]P(t) = 2e^{0.275t}[/tex]

[tex]4 = 2e^{0.275t}[/tex]

[tex]e^{0.275t} = 2[/tex]

Applying ln to both sides

[tex]0.275t = 0.6931[/tex]

[tex]t = 2.52[/tex]

Golf course designer Roberto Langabeer is evaluating two sites, Palmetto Dunes and Ocean Greens, for his next golf course. He wants to prove that Palmetto Dunes residents (population 1) play golf more often than Ocean Greens residents (population 2). Roberto plans to test this hypothesis using a random sample of 81 individuals from each suburb. His alternative hypothesis is __________.

Answers

Answer:

a) Null hypothesis:[tex]\mu_{1} \leq \mu_{2}[/tex]

Alternative hypothesis:[tex]\mu_{1} > \mu_{2}[/tex]

b) [tex]z_{crit}=2.33[/tex]

And since the calculated value is lower than the critical value we have enough evidence at 0.01 of significance to FAIL to reject the null hypothesis.

Step-by-step explanation:

Part a

A hypothesis is defined as "a speculation or theory based on insufficient evidence that lends itself to further testing and experimentation. With further testing, a hypothesis can usually be proven true or false".  

The null hypothesis is defined as "a hypothesis that says there is no statistical significance between the two variables in the hypothesis. It is the hypothesis that the researcher is trying to disprove".

The alternative hypothesis is "just the inverse, or opposite, of the null hypothesis. It is the hypothesis that researcher is trying to prove".

We want to test this:

Null hypothesis:[tex]\mu_{1} \leq \mu_{2}[/tex]

Alternative hypothesis:[tex]\mu_{1} > \mu_{2}[/tex]

Part b

Golf course designer Roberto Langabeer is evaluating two sites, Palmetto Dunes and Ocean Greens, for his next golf course. He wants to prove that Palmetto Dunes residents (population 1) play golf more often than Ocean Greens residents (population 2). Roberto commissions a market survey to test this hypothesis. The market researcher used a random sample of 64 individuals from each suburb, and reported the following:  X 1 = 15  times per month and  X 2 = 14  times per month. Assume that  σ 1 = 2  and  σ 2 = 3 . With  α = .01 , the critical z value is _____.

Data given and notation

[tex]\bar X_{1}=15[/tex] represent the mean for the sample 1

[tex]\bar X_{2}=14[/tex] represent the mean for the sample 2

[tex]\sigma_{1}=2[/tex] represent the population deviation for 1

[tex]\sigma_{2}=3[/tex] represent the population deviation for 2

[tex]n_{1}=64[/tex] sample size selected for 1

[tex]n_{2}=64[/tex] sample size selected for 2

[tex]\alpha=0.01[/tex] represent the significance level for the hypothesis test.

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value for the test (variable of interest)

The statistic is given by:

[tex]z=\frac{\bar X_{1}-\bar X_{2}}{\sqrt{\frac{\sigma^2_{1}}{n_{1}}+\frac{\sigma^2_{2}}{n_{2}}}}[/tex]     (1)

[tex]z=\frac{15-14}{\sqrt{\frac{2^2}{64}+\frac{3^2}{64}}}}=2.22[/tex]  

In order to find the critical value we need a value that accumulates 0.01 of the area on the right tail, since we are conducting a right tailed test. And the critical value is:

[tex]z_{crit}=2.33[/tex]

And since the calculated value is lower than the critical value we have enough evidence at 0.01 of significance to FAIL to reject the null hypothesis.

The probability of having a girl is 51%. A couple has 5 children, what is the expected number of girls? (round your answer to the nearest tenth)

Answers

Final answer:

The expected number of girls in a family with five children, given a 51% probability of having a girl, is 2.6 when rounded to the nearest tenth.

Explanation:

The question involves calculating the expected number of girls in a family with five children, given that the probability of having a girl is 51%. The expected value in probability theory is calculated by multiplying each possible outcome by its probability and then summing these values. In this case, since there are five children and each child has a 51% chance of being a girl, the expected number of girls can be found using the formula for the expectation:

Expected number of girls = Total number of children × Probability of having a girl

Therefore, the expected number of girls = 5 × 0.51 = 2.55. Rounding this to the nearest tenth, we get 2.6 girls.

a one-parameter family of solutions of the de p' = p(1 − p) is given below.

P =
c1et
1 + c1et
Does any solution curve pass through the point (0, 4)? Through the point (0, 1)? (If yes, give the corresponding value of

c1.
If not, enter DNE.)

(0, 4) __________
(0, 1) _______________

Answers

Answer:

A solution curve pass through the point (0,4) when [tex]c_{1} = -\frac{4}{3}[/tex].

There is not a solution curve passing through the point(0,1).

Step-by-step explanation:

We have the following solution:

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

Does any solution curve pass through the point (0, 4)?

We have to see if P = 4 when t = 0.

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

[tex]4 = \frac{c_{1}}{1 + c_{1}}[/tex]

[tex]4 + 4c_{1} = c_{1}[/tex]

[tex]c_{1} = -\frac{4}{3}[/tex]

A solution curve pass through the point (0,4) when [tex]c_{1} = -\frac{4}{3}[/tex].

Through the point (0, 1)?

Same thing as above

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

[tex]1 = \frac{c_{1}}{1 + c_{1}}[/tex]

[tex]1 + c_{1} = c_{1}[/tex]

[tex]0c_{1} = 1[/tex]

No solution.

So there is not a solution curve passing through the point(0,1).

Find the percentages of people who said​ "yes, definitely",​ "yes, probably",​ "no, probably​ not", and​ "no, definitely​ not".

Answers

Answer:

yes,def=(2399/3713)x100=64.61%

yes,probably= (774/3713)x100=20.85%

yes,probably no= (322/3713)x100=8.67%

yes,def.no= (218/3713)x100=5.87%

Step-by-step explanation:

Data given

We assume the following frequency table:

Type                       Frequency

Yes, definitely          2399

Yes, probably            774

No, probably not       322

No, probably not        218

Total                           3713

Solution to the problem

And for this case in order to find the percentages we can use the definition of percentage frequency with the following formula:

[tex] \% = \frac{Number of people with characteristic}{Total} x100[/tex]

And using this formula we can find the percentages like this:

yes,def=(2399/3713)x100=64.61%

yes,probably= (774/3713)x100=20.85%

yes,probably no= (322/3713)x100=8.67%

yes,def.no= (218/3713)x100=5.87%

When you construct a confidence interval for the difference between two proportions, what do you use as an unbiased estimate of the difference between the two proportions?

Answers

Final answer:

To construct a confidence interval for the difference between two proportions, you use an unbiased estimate of the difference between the two proportions.

Explanation:

When constructing a confidence interval for the difference between two proportions, an unbiased estimate of the difference between the two proportions is obtained using the formula:

(p1 - p2) ± ME

Where:

p1 and p2 are the sample proportionsME is the margin of error

The margin of error is calculated as:

ME = z * sqrt((p1*(1-p1)/n1) + (p2*(1-p2)/n2))

Where:

z is the z-score corresponding to the desired confidence leveln1 and n2 are the sample sizes

Using this formula, you can calculate the confidence interval for the difference between two proportions.

A l-meter steel rod is bent into a rectangle so that its length exceeds quadruple its width
by 5 cm. What are the dimensions of the newly formed rectangle?

Answers

Answer:

The dimensions of the newly formed rectangle is length is 41 cm and width is 9 cm.

Step-by-step explanation:

Given,

A 1 meter steel rod is bent into a rectangle.

That means the perimeter of the rectangle is 1 meter.

So, Perimeter = [tex]1\ m=100\ cm[/tex]

Let the width of the rectangle be 'x'.

Now According to question, length exceeds quadruple its width by 5 cm.

Hence framing the above sentence in equation form, we get;

[tex]Length=4x+5[/tex]

Now we use the formula of  perimeter of rectangle,

[tex]Perimeter=2(Length+width)[/tex]

On substituting the values, we get;

[tex]2(4x+5+x)=100\\\\(5x+5)=\frac{100}{2}\\\\5x+5=50\\\\5x=50-5\\\\5x=45\\\\x=\frac{45}{5}=9[/tex]

Now, we substitute the value of x to get the value of length;

[tex]Length=4x+5=4\times9+5=36+5=41\ cm[/tex]

Thus, Width=9 cm    Length=41 cm

Hence the dimensions of the newly formed rectangle is length is 41 cm and width is 9 cm.

Records at the UH library show that 12% of all UH students check out books on history, 28% of all UH students check out books on science, and 6% check out books on both history and science. What is the probability that a randomly selected UH student checks out a history book or a science book or both?

Answers

Answer:

There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.

Step-by-step explanation:

We solve this problem building the Venn's diagram of these probabilities.

I am going to say that:

A is the probability that a UH student checks out books on history.

B is the probability that a UH students checks out books on science.

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a is the probability that a UH student checks a book on history but not on science and [tex]A \cap B[/tex] is the probability that a UH student checks books both on history and science.

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

What is the probability that a randomly selected UH student checks out a history book or a science book or both?

[tex]P = a + b + (A \cap B)[/tex]

We start finding these values from the intersection.

6% check out books on both history and science. So [tex]A \cap B = 0.06[/tex]

28% of all UH students check out books on science. So [tex]B = 0.28[/tex]

[tex]B = b + (A \cap B)[/tex]

[tex]0.28 = b + 0.06[/tex]

[tex]b = 0.22[/tex]

12% of all UH students check out books on history

[tex]A = a + (A \cap B)[/tex]

[tex]0.12 = a + 0.06[/tex]

[tex]a = 0.06[/tex]

So

[tex]P = a + b + (A \cap B) = 0.06 + 0.22 + 0.06 = 0.34[/tex]

There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.

The sales of a grocery store had an average of $8,000 per day. The store introduced several advertising campaigns in order to increase sales. To determine whether or not the advertising campaigns have been effective in increasing sales, a sample of 64 days of sales was selected. It was found that the average was $8,300 per day. From past information, it is known that the standard deviation of the population is $1,200. The value of the test statistic is:
The p-value is, (round to 4 decimal places):

Answers

Answer:

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

[tex]z=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]  

[tex]p_v =P(Z>2)=0.0228[/tex]  

Step-by-step explanation:

1) Data given and notation  

[tex]\bar X=8300[/tex] represent the sample mean  

[tex]\sigma=1200[/tex] represent the population standard deviation  

[tex]n=64[/tex] sample size  

[tex]\mu_o =800[/tex] represent the value that we want to test  

[tex]\alpha[/tex] represent the significance level for the hypothesis test.  

z would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

2) State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean is higher than 8000, the system of hypothesis are :  

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

Since we know the population deviation, is better apply a z test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex] (1)  

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

3) Calculate the statistic  

We can replace in formula (1) the info given like this:  

[tex]z=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]  

4) P-value  

Since is a one-side upper test the p value would given by:  

[tex]p_v =P(Z>2)=0.0228[/tex]  

5) Conclusion  

If we compare the p value and the significance level assumed, for example [tex]\alpha=0.05[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, so we can conclude that the mean is significantly higher than $8000.  

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. In a manual on how to have a number one​ song, it is stated that a song must be no longer than 210 seconds. A simple random sample of 40 current hit songs results in a mean length of 234.1 sec and a standard deviation of 54.52 sec. Use a 0.05 significance level and the accompanying Minitab display to test the claim that the sample is from a population of songs with a mean greater than 210 sec. What do these results suggest about the advice given in the​ manual?

Answers

Answer:

There is enough evidence to conclude that the sample is from a population of songs with a mean greater than 210 sec.

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 210 seconds

Sample mean, [tex]\bar{x}[/tex] = 234.1 sec

Sample size, n = 40

Sample standard deviation, s = 54.52 sec

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu \leq 210\text{ seconds}\\H_A: \mu > 210\text{ seconds}[/tex]

We use one-tailed t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{234.1 - 210}{\frac{54.52}{\sqrt{40}} } = 2.795[/tex]

Now, [tex]t_{critical} \text{ at 0.05 level of significance, 9 degree of freedom } = 1.684[/tex]

We calculate the p-value with the help of standard normal table.

P-value = 0.004005

Since,                    

[tex]t_{stat} > t_{critical}[/tex]

We fail to accept the null hypothesis and accept the alternate hypothesis.

Thus, there is enough evidence to conclude that the sample is from a population of songs with a mean greater than 210 sec.

The given data shows that  the sample mean length of 234.1 sec results in a low p-value, it reject the claim that songs must be no longer than 210 seconds.

Explanation of hypothesis testing for mean song length compared to a specific value with given data.

Null hypothesis (H0): The mean length of songs is 210 seconds or less (μ ≤ 210 sec).

Alternative hypothesis (Ha): The mean length of songs is greater than 210 seconds (μ > 210 sec).

Test statistic: Calculate the z-score using the sample mean, population mean, standard deviation, and sample size.

P-value: Using the z-score, find the p-value from the standard normal distribution table.

Conclusion: If the p-value is less than the significance level (0.05), reject the null hypothesis. In this case, if the sample mean length of 234.1 sec results in a low p-value, we reject the claim that songs must be no longer than 210 seconds.

A job shop consists of three machines and two repairmen. The amount of time a machine works before breaking down is exponentially distributed with mean 10. If the amount of time it takes a single repairman to fix a machine is exponentially distributed with mean 8, then(a) what is the average number of machines not in use?(b) what proportion of time are both repairmen busy?

Answers

Answer:

Step-by-step explanation:

Let X(t) denote the number of machines breakdown at time t.

The givenn problem follows birth-death process with finite space

S={0, 1, 2, 3} with

[tex] \lambda_0=\frac{3}{10}, \mu_1=\frac{1}{8}\\\\ \lambda_1=\frac{2}{10}, \mu_2=\frac{2}{8}\\\\ \lambda_2=\frac{1}{10}, \mu_3=\frac{2}{8}[/tex]

The birth-death process having balance equations [tex]\lambda_sP_i=\mu_{s+1}P_{i+1},i=0,1,2[/tex]

since, state  rate at which leave = rate at which enter

            0      [tex]\lambda_0P_0=\mu_1P_1[/tex]

             1     [tex](\lambda_1+\mu_1)P_1= \mu_2P_2 + \lambda_0P_0[/tex]

             2   [tex](\lambda_2+\mu_2)P_2= \mu_3P_3 + \lambda_1P_1[/tex]

[tex]P_1=\frac{12}{5}P_0=P_0=\frac{5}{12}P_1\\\\P_2=\frac{48}{25}P_0=P_0=\frac{25}{48}P_2\\\\P_3=\frac{192}{250}P_0=P_0=\frac{250}{192}P_3[/tex]

Since [tex]\sum\limits^3_{i=0} {P_i=1}\\\\p_0=[1+\frac{5}{12}+\frac{48}{25}+\frac{192}{250}]^{-1}=\frac{250}{1522}[/tex]

a)

Average number not in use equals the mean of the stationary distribution [tex]P_1+2P_2+3P_3=\frac{2136}{751}[/tex]

b)

Proportion of time both repairmen are busy [tex]P_2+P_3=\frac{672}{1522}=\frac{336}{761}[/tex]

Final answer:

The average number of machines not in use is 0.5, and the repairmen are both busy 64% of the time. This has been found under the assumption of exponential distribution for both longevity of machines and repair time. The scenario represents a M/M/2 queue in operations research.

Explanation:

In this scenario, the life of the machines and the repair time are governed by exponential distributions. Exponential distribution is often used to model the amount of time until an event occurs, such as machine failure in this case.

(a) To find the average number of machines not in use, we need to consider the rate of machine breakdown and repair. A machine works an average of 10 hours before failure, which translates to a failure rate of 1/10. A single repairman can fix a machine in an average of 8 hours, meaning a rate of 1/8 per repairman, or 1/4 for two repairmen combined. As there are three machines, the average number of machines in use is the ratio of the arrival rate to the service rate: (1/10) / (1/4) = 2.5 machines. This implies that on average, 0.5 machines are not in use.

(b) Both repairmen will be busy when there are at least two machines that require fixing. The proportion of time in which this is the case is obtained by calculating the probability that the number of machines failed is two or more. This is a problem of queueing theory, in particular an M/M/2 queue. The formula for this probability is P(X >= k) = (1 - rho) * rho^(k) / (1 - rho^(c+1)), where rho = arrival rate / service rate, k = 2, and c = 2 (service channels). Substituting rho = 2.5, we obtain P(X >= 2) = 0.64, meaning that the repairmen are both busy 64% of the time.

Learn more about Exponential Distribution here:

https://brainly.com/question/33722848

#SPJ11

Use Green's Theorem to calculate the circulation of F =2xyi around the rectangle 0≤x≤8, 0≤y≤3, oriented counterclockwise.

Answers

Green's theorem says the circulation of [tex]\vec F[/tex] along the rectangle's border [tex]C[/tex] is equal to the integral of the curl of [tex]\vec F[/tex] over the rectangle's interior [tex]D[/tex].

Given [tex]\vec F(x,y)=2xy\,\vec\imath[/tex], its curl is the determinant

[tex]\det\begin{bmatrix}\frac\partial{\partial x}&\frac\partial{\partial y}\\2xy&0\end{bmatrix}=\dfrac{\partial(0)}{\partial x}-\dfrac{\partial(2xy)}{\partial y}=-2x[/tex]

So we have

[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_D-2x\,\mathrm dx\,\mathrm dy=-2\int_0^3\int_0^8x\,\mathrm dx\,\mathrm dy=\boxed{-192}[/tex]

Final answer:

The circulation of the vector field 2xyi around the given rectangle, as computed via Green's Theorem, is 0 due to the curl of F being 0.

Explanation:

To use Green's Theorem to calculate the circulation around a rectangle, first we should realize that Green's Theorem states that the line integral around a simple closed curve C of F.dr is equal to the double integral over the region D enclosed by C of the curl of F. Here, F is the vector field defined as 2xyi. The given rectangle is oriented counterclockwise and the values of x and y are given as 0≤x≤8 and 0≤y≤3 respectively. The line integral denotes the circulation of the field.

The circulation is thus the double integral over the rectangle of ∇ x F. But in this case, since F = 2xyi, we get ∇ x F = 0. Hence, the circulation of F around the given rectangle is 0.

Learn more about Green's Theorem here:

https://brainly.com/question/35137715

#SPJ3

HELP! I AM BEING TIMED!!!
According to the Fundamental Theorem of Algebra, which polynomial function has exactly 6 roots?

Answers

Answer:

f(x) = 7x⁶ + 3x³ + 12

Step-by-step explanation:

The number of roots a function has corresponds to the highest exponent value.

In the function f(x) = 7x⁶ + 3x³ + 12 ,

the number 7x⁶ has the highest exponent value of 6, so it'll have 6 roots.

A marketing research company desires to know the mean consumption of milk per week among males over age 25. They believe that the milk consumption has a mean of 2.5 liters, and want to construct a 85% confidence interval with a maximum error of 0.07 liters. Assuming a variance of 1.21 liters, what is the minimum number of males over age 25 they must include in their sample? Round your answer up to the next integer.

Answers

In this exercise we have to use the knowledge of variance to calculate the value of n, so we have that:

the sample is n=306

Organizing the information given in the statement we have that:

Mean of milk consumption = 2.5litresMaximum error E = 0.07Variance S = 1.21 litresConfidence interval of 85%

So given by the equation we have:

[tex]Z' = t(0.075)= 1.44\\n = (Z'*S/E)^2\\n = ( 1.44 * 0.85/0.07)^2\\n = (17.4857)^2\\n = 305.75\\n = 306[/tex]

See more about variance at brainly.com/question/22365883

The minimum number of males over age 25 they must include in their sample is 512.

Given, Desired confidence level: 85%

Maximum error (E): 0.07 liters

Variance ([tex]\sigma^{2}[/tex]): 1.21 liters

Standard deviation ([tex]\(\sigma\)[/tex]): [tex]\(\sigma\)[/tex] = [tex]\sqrt{1.21}[/tex] = 1.1

Z-value for 85% confidence level (lookup Z-value for 0.425 in the standard normal distribution): [tex]\[ Z \approx 1.44 \][/tex]

n= [tex]\left(\frac{Z \sigma}{E}\right)^2[/tex]

[tex]\[ n = \left(\frac{1.44 \times 1.1}{0.07}\right)^2 \][/tex]

n= (1.584/0.07)² = 511.986

n = 512

Listed below are the top 10 annual salaries (in millions of dollars) of TV personalities. Find the mean, median, mode, and midrange for the given sample data in millions of dollars.

Given that these are the top 10 salaries, do we know anything about the salaries of TV personalities in general?

Are such top lists valuable for gaining insight into the larger population?8.3 9.2 9.8 12.1 13.5 14.7 26.5 34.7 36.5 37a. the mean is______b.the median is ______c. Select the correct choice below and fill in any answer boxes in your choice
A. The mode is______ ( use a comma to seperate answers as needed)B. There is no moded. the midrange is_____

Answers

Answer:

a. 20.23

b. 14.1

c. 8.3, 9.2, 9.8, 12.1, 13.5, 14.7, 26.5, 34.7, 36.5, 37

d. 22.65

Step-by-step explanation:

Sum = 202.3

Count = 10

Mean = 202.3 / 10

Mean = 20.23

Since there is an even number of data values the median is the mean of the two data values in the middle, calculated as follows;

8.3, 9.2, 9.8, 12.1, 13.5, 14.7, 26.5, 34.7, 36.5, 37

Median = (13.5 + 14.7) / 2

Median = 14.1

Mode is the value or values in the data set that occur most frequently. Since all are occurred once so all the values will be considered as Mode;

Mode = 8.3, 9.2, 9.8, 12.1, 13.5, 14.7, 26.5, 34.7, 36.5, 37

Midrange = (Highest Value + Lowest Value) / 2

Midrange = (37 + 8.3) / 2

Midrange = 22.65

A one­sided test of a hypothesis, based on a sample of size 9, yields a P­value of .035. Which of the following best describes the possible range of t values that yields this P­value? .706 < t < .889 1.11 < t < 1.40 1.34 < t < 1.44 2.45 < t < 2.90 1.86 < t < 2.31

Answers

Answer:

1.86 < t < 2.31

Step-by-step explanation:

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean height actually is higher\lower than an specified value, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu > \mu_o[/tex]

Or like this:

Null hypothesis:[tex]\mu \geq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu < \mu_o[/tex]

If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We don't know on this case the calculated value and with the p value we can find it.

P-value

The first step is calculate the degrees of freedom, on this case:  

[tex]df=n-1=9-1=8[/tex]  

Since is a one side test the p value would be:  

[tex]p_v =P(t_{(8)}>t_o)=0.035[/tex]

And we can find the critical value with the following excel code:

" =T.INV(1-0.035,8)" and we got [tex]t_p =2.09[/tex]

And cannot be a lower tail test since all the options have positive values for the statistic. So on this case the best option is:

1.86 < t < 2.31

Find the point on the line 5x + y = 7 that is closest to the point (−3, 2).

Answers

Final answer:

To find the closest point on a line to another point, convert the problem into finding a minimum of a distance function, then use calculus (derivatives) to find the minimum.

Explanation:

To solve this problem, you need to identify a goal and an approach using calculus. The goal is to find a point (x, y) on the given line 5x + y = 7 that is closest to the point (−3, 2). This translates into minimizing the distance between (x, y) and (-3, 2) with respect to (x, y).

The distance formula between two points (x1, y1) and (x2, y2) is: √[(x2-x1)²+(y2-y1)²]. For our purposes x1 = -3, y1 = 2 and x2 = x, y2 = y. However, since y is from our given line (5x + y = 7), we can substitute for y = 7 - 5x. Thus, our new distance will become a function in terms of x: d(x) = √[(x - -3)²+(7 - 5x - 2)²].

To minimize it, we should take the derivative of this function, and set it equal to zero, which will give an extreme point (either minimum or maximum). Using the chain-rule results in the minimizing x value, and substituting it back to the line gives us the y value. This resultant point (x, y) would be our answer to the problem.

Learn more about Minimum Distance here:

https://brainly.com/question/24618879

#SPJ11

A factory cans fresh pineapple in sugar syrup. The manager in charge is interested in estimating the average amount of sugar per can to within 2 mg of the true mean. From previous experiments, he knows that the (true) standard deviation of the sugar content is 15 mg. Each test of measuring the amount of sugar in a can costs $5.00. One thousand dollars have been budgeted for this experiment. Does the manager have enough funds to estimate the average amount of sugar per can with 95% confidence

Answers

Answer:

No. He would need $1,080 to perform a test with this error.

Step-by-step explanation:

To answer this question, we have to calculate the sample size. This is the sample size that allow to estimate the average amount of sugar per can with 95% confidence (95% CI).

The difference between the upper and lower limit of the CI have to be equal or less to e=2 mg. The z value for a 95% CI is z=1.96.

[tex]e\leq z\sigma/\sqrt{n}[/tex]

[tex]e=z\sigma/\sqrt{n}\\\\\sqrt{n}=z\sigma/e=\\\\n=(z\sigma/e)^2=(1.96*15/2)^2=14.7^2=216\\\\n=216[/tex]

The minimum sample size needed for this error is 216. At a cost of $5/test, this sample size would cost [tex]n*p=216*5=\$ 1,080[/tex].

This is over the budget for this experiment ($1000).

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding.


A random sample of 5020 permanent dwellings on an entire reservation showed that 1564 were traditional hogans. (a) Let p be the proportion of all permanent dwellings on the entire reservation that are traditional hogans.


Find a point estimate for p. (Round your answer to four decimal places.)

Answers

Answer:

[tex]p = \frac{1564}{5020} = 0.3116[/tex]

Step-by-step explanation:

The point estimate for the population proportion is the number of sucesses divided by the size of the sample.

In this problem, we have that:

A success is being a tradition hogan in the reservation(the population). In a sample of 5020, 1564 are traditional hogans.

So [tex]p = \frac{1564}{5020} = 0.3116[/tex]

A sample of 161children was selected from fourth and fifth graders at elementary schools in Philadelphia. In addition to recording the grade level, the researchers determined whether each child had a previously undetected reading disability. Sixty-six children were diagnosed with a reading disability. Of these children, 32 were fourth graders and 34 were fifth graders. Similarly, of the 95 children with normal reading achievement, 55 were fourth graders and 40 were fifth graders.
a. Identify the two qualitative variables (and corresponding levels) measured in the study.
b. From the information provided, form a contigency table.
c. Assuming that the two variables are independent, calculate the expected cell counts.

Answers

Answer:

Step-by-step explanation:

Given that a sample of 161children was selected from fourth and fifth graders at elementary schools in Philadelphia. In addition to recording the grade level, the researchers determined whether each child had a previously undetected reading disability

a) The two qualitative variables are disability and not having disability and secondly the grades of children

b) Contingency table:

Grade                  4                5                      Total

Normal read.       32              34                        66

Not normal read.  23                6                        29  

Total                      55             40                         95

H0: Reading disability is independent of grade.

Ha: There is association between the two

c)  4 5 Total

Nor read 38.21052632 27.78947368 66

Not norm 16.78947368 12.21052632 29

Expected cells are obtained using the formula

row total*col total/grand total

A prisoner on trial for a felony is presumed innocent until proven guilty. (That is, innocent is the null hypothesis.) Which of the following represents the risk involved in making a Type II error?

a. The prisoner is actually guilty and the jury sends him to jail.

b. The prisoner is actually innocent and the jury sends him to jail.

c. The prisoner is actually innocent and the jury sets him free.

d. The prisoner is actually guilty and the jury sets him free.

e. The prisoner is sent to jail.

Answers

Answer:

Option D) The prisoner is actually guilty and the jury sets him free.

Step-by-step explanation:

We are given the following in the question:

Null Hypothesis:

The null hypothesis states that the prisoner is innocent

Alternate Hypothesis:

The alternate hypothesis states that the prisoner is guilty and not innocent.

Type II error:

It is the type error made when we fail to reject the ll hypothesis when it is actually false.

That is we accept a false null hypothesis.

Thus a type II error in the above scenario will be to accept that the prisoner is innocent (accepting the null hypothesis) when actually he is guilty( the alternate hypothesis)

Thus, type II error would be setting free a guilty prisoner.

Option D) The prisoner is actually guilty and the jury sets him free.

"The prisoner is actually guilty and the jury sets him free" represents the risk involved in making a Type II error. The correct option is d) The prisoner is actually guilty and the jury sets him free.

In statistical hypothesis testing, particularly in the context of a trial, we have two competing hypotheses:

Null Hypothesis (H₀): The prisoner is innocent (presumed innocent until proven guilty).

Alternative Hypothesis (H₁): The prisoner is guilty.

A Type II error, in this scenario, occurs when the jury fails to reject the null hypothesis (fails to convict the prisoner) when the alternative hypothesis is true (the prisoner is actually guilty).

Let's analyze the options in the context of Type II error:

(a) The prisoner is actually guilty and the jury sends him to jail. This is not a Type II error. This describes a correct decision where the jury convicts the guilty prisoner.

(b) The prisoner is actually innocent and the jury sends him to jail. This is a Type I error, where the jury convicts an innocent person (rejects the null hypothesis when it is true).

(c) The prisoner is actually innocent and the jury sets him free. This is the correct outcome when the jury correctly fails to reject the null hypothesis (the prisoner is innocent).

(d) The prisoner is actually guilty and the jury sets him free. This is a Type II error. Here, the jury fails to reject the null hypothesis (prisoner is innocent) when it is false (prisoner is guilty).

(e) The prisoner is sent to jail. This could happen in both correct decisions (prisoner is guilty) and Type I errors (prisoner is innocent but convicted).

Therefore, the answer that represents the risk involved in making a Type II error is d. The prisoner is actually guilty and the jury sets him free.

What kinds of functions can be integrated using partial fraction decomposition? Choose the correct answer below

A. Inverse functions
B. Rational functions
C. Periodic functions
D. Logarithmic functions

Answers

Answer:

B. Rational functions

Step-by-step explanation:

The partial fraction decomposition is used for functions there are described by fractions, and for which the substitution method is not possible. These are rational functions, in which both the numerator and the denominator are polynomials.

So the correct answer is:

B. Rational functions

Final answer:

Partial fraction decomposition is used to simplify complex rational functions to make them easier to integrate. Rational function is the correct answer.

Explanation:

The correct answer is B. Rational functions. Partial fraction decomposition is a mathematical technique used essentially to simplify complex rational functions. A rational function is a function that can be defined as the ratio of two polynomials. By breaking down a complex rational function into simpler fractions (which is what partial fraction decomposition does), integration becomes more manageable. For example, it's easier to integrate simple fractions like 1/x or 2/x^2, which would be the result of a partial fraction decomposition, than complex, intertwined expressions.

Learn more about Partial Fraction Decomposition here:

https://brainly.com/question/34850694

#SPJ3

Nonpregnant women have an average fasting blood glucose level of about 80 mg/100mL of blood. Researchers want to determine if pregnancy causes a change in blood glucose level. They take a random sample of 25 third trimester women and find their average fasting blood glucose level is 75 mg/100mL with sample standard deviation of 9.68.(a) Find 90% and 95% confidence intervals for average fasting blood glucose level of third trimester women. (b) Write a suitable nul and alternate hypothesis and then determine if pregnancy has a statistically significant effect on blood glucose level.

Answers

Answer:

a) The 90% confidence interval would be given by (71.689;78.311)  

The 95% confidence interval would be given by (71.012;78.988)  

b) [tex]p_v =2*P(t_{24}<-2.583)=0.016[/tex]  

If we compare the p value and the significance level assumed [tex]\alpha=0.05[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis.  So we have a significant effect.

Step-by-step explanation:

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

[tex]\bar X=75[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]s=9.68[/tex] represent the sample standard deviation  

n=25 represent the sample size  

Assuming the X follows a normal distribution  

[tex]X \sim N(\mu, \sigma=0.15[/tex]

The sample mean [tex]\bar X[/tex] is distributed on this way:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]  

Part a

The confidence interval on this case is given by:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)

We can find the degrees of freedom like this:

[tex]df=n-1=25-1=24[/tex]

confidence 90%

The next step would be find the value of [tex]\t_{\alpha/2}[/tex], [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2=0.05[/tex]  

Using the t distribution with 24 df, excel or a calculator we see that:  

[tex]t_{\alpha/2}=1.71[/tex]

Since we have all the values we can replace:

[tex]75 - 1.71\frac{9.68}{\sqrt{25}}=71.689[/tex]  

[tex]75 + 1.71\frac{9.68}{\sqrt{25}}=78.311[/tex]  

So on this case the 90% confidence interval would be given by (71.689;78.311)  

Confidence 95%

The next step would be find the value of [tex]\t_{\alpha/2}[/tex], [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex]  

Using the t distribution with 24 df, excel or a calculator we see that:  

[tex]t_{\alpha/2}=2.06[/tex]

Since we have all the values we can replace:

[tex]75 - 2.06\frac{9.68}{\sqrt{25}}=71.012[/tex]  

[tex]75 + 2.06\frac{9.68}{\sqrt{25}}=78.988[/tex]  

So on this case the 95% confidence interval would be given by (71.012;78.988)  

Part b

Null hypothesis:[tex]\mu = 80[/tex]  

Alternative hypothesis:[tex]\mu \neq 80[/tex]  

Since we don't know the population deviation, is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic  

We can replace in formula (1) the info given like this:  

[tex]t=\frac{75-80}{\frac{9.68}{\sqrt{25}}}=-2.583[/tex]  

P-value  

The degrees of freedom are 25-1=24

Since is a two tailed test the p value would given by:  

[tex]p_v =2*P(t_{24}<-2.583)=0.016[/tex]  

Conclusion  

If we compare the p value and the significance level assumed [tex]\alpha=0.05[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis.  So we have a significant effect.

WILL GIVE LARGE REWARD!

Given: Sector BAC with r=8

Radius of inscribed circle O is 2

Find the area of the sector BAC

Answers

Answer:

21.75 square units

Step-by-step explanation:

Draw a radial line from O to the point where AB intersects the circle.  We'll call this point P.

Draw another radial line from O to the point where arc BC intersects the circle.  We'll call this point Q.

OQ is equal to the radius of the circle, 2.  And AQ is equal to the radius of the sector, 8.  Therefore, the length of AO is 6.

Next, OP is equal to the radius of the circle, 2.  Since AB is tangent to the circle, it is perpendicular to OP.

So we have a right triangle with a hypotenuse of 6 and a short leg of 2.  Finding the angle ∠PAO:

sin ∠PAO = 2/6

∠PAO = asin(1/3)

That means the angle ∠BAC is double that:

∠BAC = 2 asin(1/3)

∠BAC ≈ 38.94°

Therefore, the area of the sector is:

A = (θ/360) πr²

A = (38.94/360) π(8)²

A ≈ 21.75

The area of the sector is approximately 21.75 square units.

1. Solve for x:
3(2x – 1) – 10 = 8 + 5x
A. -7
B. -3
C. 19
D. 21

Answers

Answer:

(D) 21

Explanation:

3(2x−1)−10=8+5x

Step 1: Simplify both sides of the equation.

3(2x−1)−10=8+5x

(3)(2x)+(3)(−1)+−10=8+5x(Distribute)

6x+−3+−10=8+5x

(6x)+(−3+−10)=5x+8(Combine Like Terms)

6x+−13=5x+8

6x−13=5x+8

Step 2: Subtract 5x from both sides.

6x−13−5x=5x+8−5x

x−13=8

Step 3: Add 13 to both sides.

x−13+13=8+13

x=21

Answer:

D. 21

Step-by-step explanation:

Given equation: [tex]\[3(2x – 1) – 10 = 8 + 5x\] [/tex]

Simplifying:

[tex]\[6x – 3 – 10 = 8 + 5x\] [/tex]

=> [tex]\[6x – 13 = 8 + 5x\] [/tex]

=> [tex]\[6x – 5x = 8 + 13\] [/tex]

=> [tex]\[(6 – 5)x = 21\] [/tex]

=> [tex]\[x = 21\] [/tex]

Verifying by substituting the value of x in the equation:

Left Hand Side: [tex]\[3(2x – 1) – 10\][/tex]

[tex]\[3(2*21 – 1) – 10\][/tex]

= [tex]\[3(42 – 1) – 10\][/tex]

= [tex]\[3(41) – 10\][/tex]

= [tex]\[123 – 10\][/tex]

= [tex]\[113\][/tex]

Right Hand Side: [tex]\[8 + 5x\][/tex]

= [tex]\[8 + 5*21\][/tex]

= [tex]\[8 + 105\][/tex]

= [tex]\[113\][/tex]

So, Left Hand Side = Right Hand Side when x=21.

Find the quotient of 74.4 divided by 0.8

Answers

Answer:

93

Step-by-step explanation:

Using long division, this is the correct answer. Here are the steps:

remove decimal points: 744 ÷ 8

divide using long division: 93

Answer:

93

Step-by-step explanation:

Given number = 74.4

Divisor = 0.8

[tex]\[\frac{74.4}{0.8} = \frac{74.4*10}{0.8*10}\][/tex]

[tex]\[= \frac{744}{8}\][/tex]

Simplifying,

[tex]\[= \frac{744\div 4}{8\div 4}\][/tex]

[tex]\[= \frac{186}{2}\][/tex]

[tex]\[= 93\][/tex]

Validating by multiplying the quotient and divisor,

[tex]\[93 * 0.8\][/tex]

[tex]\[= 74.4\][/tex]

This is equal to the dividend.

Find parametric equations and a parameter interval for the motion of a particle that starts at (-a, 0 )and traces the circle x^2 + y^2 = a ^2.

a. once clockwise.

b. once counterclockwise.

c. three times clockwise.

d. three times counterclockwise.

Answers

Answer:

a) [tex]x=a\cdot cos(b), y=-a\cdot sin(b), 0 \leq b \leq 2\pi[/tex]

b) [tex]x=a\cdot cos(b), y=a\cdot sin(b), 0 \leq b \leq 2\pi[/tex]

c) [tex]x=a\cdot cos(b), y=-a\cdot sin(b), 0 \leq b \leq 6\pi[/tex]

d) [tex]x=a\cdot cos(b), y=a\cdot sin(b), 0 \leq b \leq 6\pi[/tex]

Step-by-step explanation:

The parametric equation for a circle is:

[tex]x=a\cdot cos(b)[/tex]

[tex]y=a\cdot sin(b)[/tex]

Where a is the radius and b is the angular displacement.

a) If a is negative in y and 0 ≤ b ≤ 2π, we have clockwise moves.

[tex]x=a\cdot cos(b), y=-a\cdot sin(b), 0 \leq b \leq 2\pi[/tex]

b)  If a is positive in y and 0 ≤ b ≤ 2π, we have counterclockwise moves.

[tex]x=a\cdot cos(b), y=a\cdot sin(b), 0 \leq b \leq 2\pi[/tex]

c) If a is negative in y and 0 ≤ b ≤ 6π, we have three times clockwise moves.

[tex]x=a\cdot cos(b), y=-a\cdot sin(b), 0 \leq b \leq 6\pi[/tex]

d) If a is positive in y and 0 ≤ b ≤ 6π, we have three times counterclockwise moves.

[tex]x=a\cdot cos(b), y=a\cdot sin(b), 0 \leq b \leq 6\pi[/tex]

Have a nice day!

Final answer:

The question requires finding parametric equations for a particle's motion along a circle of radius a, both clockwise and counterclockwise for one and three complete cycles. The equations are based on the standard circle parametric equations with adjustments to the angle parameter \(\theta\) and the interval according to the direction and number of cycles.

Explanation:

The student is asking for the parametric equations and parameter intervals for the motion of a particle tracing a circle, both clockwise and counterclockwise, once and three times. A circle with radius a and center at the origin has standard parametric equations x = a cos(\theta) and y = a sin(\theta), where \(\theta\) is the parameter usually representing an angle in radians.

For one complete cycle clockwise (negative direction), we can set \theta = -t where t varies from 0 to 2\pi.For one complete cycle counterclockwise (positive direction), we can set \theta = t where t varies from 0 to 2\pi.For three complete cycles clockwise, multiply the interval by three, so t ranges from 0 to 6\pi.For three complete cycles counterclockwise, again multiply the interval by three, so t ranges from 0 to 6\pi.

Therefore, the appropriate parametric equations for each situation are:

a. x(t) = a cos(-t), y(t) = a sin(-t); interval: t \in [0, 2\pi]b. x(t) = a cos(t), y(t) = a sin(t); interval: t \in [0, 2\pi]c. x(t) = a cos(-3t), y(t) = a sin(-3t); interval: t \in [0, 2\pi]d. x(t) = a cos(3t), y(t) = a sin(3t); interval: t \in [0, 2\pi]

Human body temperatures are normally distributed with a mean of 98.20oF and a standard deviation of 0.62oF If 19 people are randomly selected, find the probability that their mean body temperature will be less than 98.50oF. Your answer should be a decimal rounded to the fourth decimal place

Answers

Answer:

Step-by-step explanation:

Since the human body temperatures are normally distributed, the formula for normal distribution is expressed as

z = (x - u)/s

Where

x = human body temperatures

u = mean body temperature

s = standard deviation

From the information given,

u = 98.20oF

s = 0.62oF

We want to find the probability that their mean body temperature will be less than 98.50oF. It is expressed as

P(x lesser than 98.50)

For x = 98.50,

z = (98.50 - 98.20)/0.62 = 0.48

Looking at the normal distribution table, the corresponding probability to the z score is 0.6844

P(x lesser than 98.50) = 0.6844

Consider the computer output below. Fill in the missing information. Round your answers to two decimal places (e.g. 98.76). Test of mu = 100 vs not = 100 Variable N Mean StDev SE Mean 95% CI (Lower) 95% CI (Upper) T X 19 98.77 4.77 Enter your answer; SE Mean Enter your answer; 95% CI (Lower) Enter your answer; 95% CI (Upper) Enter your answer; T (a) How many degrees of freedom are there on the t-statistic? Enter your answer in accordance to the item a) of the question statement (b) What is your conclusion if ? Choose your answer in accordance to the item b) of the question statement(c) What is your conclusion if the hypothesis is versus ? Choose your answer in accordance to the item c) of the question statement

Answers

Final answer:

The degrees of freedom for the t-statistic are 18. The conclusion cannot be determined without the p-value. If the null hypothesis is true, there is not enough evidence to support the alternative hypothesis.

Explanation:

(a) The degrees of freedom for the t-statistic are found by subtracting 1 from the sample size. In this case, the sample size is 19 so the degrees of freedom would be 19 - 1 = 18.

(b) If the p-value is less than the alpha level (typically 0.05), we reject the null hypothesis. In this case, the p-value is not provided, so we cannot determine the conclusion.

(c) If the null hypothesis is true, we would not reject it and conclude that there is not enough evidence to support the alternative hypothesis.

Other Questions
Most civilizations in China were founded in areas with fresh water and fertile soil. Based on this information, where were most Ancient Chinese civilizations located? A. in plains areas B. in river valleys C. near mountain ranges D. near coastal areas Given what you know about households, which following statements is most applicable with regards to the European family structure in the 18th century? What was a result of Columbus's coming to the New World?OA. New trade agreements with ChinaOB. The Columbian ExchangeOC. Different trade routes to AsiaOD. The Northwest Passage When the cross price elasticity between good X and other related goods is positive and very low firm X can be assumed to have? a. minimal market powerb. moderate market power c. a significant amount of market power d. virtually no market power. Ben bought a local artist's painting for $2,100. Several years later. Ben sold it for $2,700. The year Ben sold the painting. He was in the 15% tax bracket. Ben's gain on the picture will be taxed at:A-15%B-25%C_28%D-33% PLEASE HELP The speed limit on a road in Germany is 100 kilometers per hour. If there are about 6 miles for every 10 kilometers, howmany miles equal 100 kilometers 546090167 In the figure below, the line / || line m. If the measure of 3.ofThe completely factored form2d4 - 6d - 18d2 - 54d is Samuel Morse, Alexander Graham Bell, and Guglielmo Marconi have which of these in common? Any television public service announcement that is produced or funded in whole or in part by any agency or instrumentality of Federal Government shall include closed captioning of the verbal content of such announcement.The above text is from which federal act? A. Americans with Disabilities Act B. Equal Educational Opportunities Act C. Civil Rights Act D. Equal Pay Act Which of the following statements is TRUE? Group of answer choices:O Cultural change is not completely random and the citizens of a given society have some effect on what is accepted or rejected. O Cultural change is completely random and the citizens of a given society have no effect on what is accepted or rejected. O Cultural change is completely random and the citizens of a given society have some effect on what is accepted or rejected. O Cultural change is not completely random and the citizens of a given society have no effect on what is accepted or rejected. There are (53)2 50 hens in a bird enclosure. What is the total number of hens in the enclosure? (1 point)05556530 In what ways were socialism and communism a response to the social and economic conditions that developed in Europe during the industrial revolution? Monica brought some donuts for $0.50 Each and a box of coffee for $5. Write and solve an inequality to find the possible number of donuts,d, she brought if she spent less than $15. Then graph the solution set d/dx(sin x/2+cos x) = (a + b cos x)/(2+cos x)^2 find a and b. Read the passage.Amit's thoughts were a river rushing over boulders, waves crashing into each other as they all came tumbling downstream. He wished that Tamar had never told him her secret.What is the most likely meaning of the metaphor in this sentence?Amit is a quick thinker, fast to come up with an answer.Amit's thoughts are confused and contradictory.Amit is a strong swimmer, and he is thinking of rivers.Amit's thoughts come smoothly like water flowing in a river. Please help me its urgent Simplify the radicals. Someone please help because my book doesnt explain how to do this. Since 1973, the poverty rate for Americans over 65 has fallen, while it has increased for Americans under 18. An important reason for this is that:A) older Americans are reluctant to retire, and they are taking jobs away from the younger generationB) spending on programs that benefit the elderly (such as Social Security and Medicare) has increased, while aid to families with children has not kept up with inflationC) a very small fraction of the population under age 18 lives with people over 65D) most people under age 18 are unmarried and therefore have access to only one income try it! 7-1 Zenefit Corporation sold laser pointers for $11 each in 2017. Its budgeted selling price was $12 per unit. Other information related to its performance is given below: Units made and sold Variable costs Fixed costs Actual 28,000 $90,000 $55,000 Budgeted 27,500 $ 3 per unit $58,000 Calculate Zenefits static-budget variance for (a) revenues, (b) variable costs, (c) fixed costs, and (d) operating income. Steam Workshop Downloader