Determine what type of observational study is described. Explain. Researchers wanted to determine whether there was an association between high blood pressure and the suppression of emotions. The researchers looked at 1800 adults enrolled in a health initiative observational study. Each person was interviewed and asked about their response to emotions. In particular they were asked whether their current tendency was to express or to hold in anger and other emotions. The degree of suppression of emotions was rated on a scale of 1 to 10. Each person's blood pressure was also measured. The researchers analyzed the results to determine whether there was an association between high blood pressure and the suppression of emotions. A. The observational study is a retrospective study because individuals are asked to look back in time. B. The observational study is a cross-sectional study because information is collected at a specific point in time. C. The observational study is a cohort study because individuals are observed over a long period of time.

Answers

Answer 1

Final answer:

The described observational study is a cross-sectional study, as it involves collecting data once at a particular point in time, without any follow-up observations. So the correct option is B.

Explanation:

The type of observational study described in the scenario is a cross-sectional study. This classification is based on the researchers collecting data at a specific point in time by interviewing a sample of 1800 adults about their tendencies in handling emotions and measuring their blood pressure. Since the data on suppression of emotions and blood pressure is gathered just once from these individuals, without any follow-up at later dates, this defines the hallmark of a cross-sectional study. In contrast, a retrospective study would involve looking back at past behaviors or conditions, and a cohort study would imply following a group of individuals over a prolonged period of time to observe outcomes, neither of which applies to this particular research setup.

Answer 2

Final answer:

The study in the question is a cross-sectional study because it gathers data from subjects at a specific point in time to assess the association between emotional suppression and high blood pressure.

Explanation:

The study described in the question can be classified as a cross-sectional study because it involved collecting data from the individuals at a specific point in time. Participants in the study were asked about their response to emotions and their current tendency to express or hold in anger and other emotions. Additionally, their blood pressure was measured. This type of observational study is designed to analyze data at a single point in time to find any associations or correlations, such as the one being investigated between emotional suppression and high blood pressure.


Related Questions

The following are the number of birth per year per 1,000 population for 20 countries: 34, 24, 10, 15, 22, 15, 17, 22, 10, 17, 25, 32, 15, 20, 31, 18, 37, 12, 15, 18.The mean birth per year per 1,000 population is:A.22.3B.19.5C.22.45D.None of the aboveThe median birth per year per 1,000 population isA.15B.18C.22D.None of the aboveThe mode birth per year per 1,000 population isA.15B.18C.22D.None of the aboveThe range birth per year per 1,000 population isA.15B.18C.28D.None of the above

Answers

Answer:

A. D = None of the above

B. B = 18

C. A = 15

D. D = None of the above

Step-by-step explanation:

Rearranging the population from the highest to the lowest.

10, 10, 12, 15, 15, 15, 15, 17, 17, 18, 18, 20, 22, 22, 24, 25, 31, 32, 34, 37

Mean = (summation of all the 20 samples)/ no of samples

Mean per year per 1000 population = 409/20

= 20.45

Median = the middle value (for odd numbered samples)

= the sum of the middle value ÷ 2 ( for even numbered samples)

Median birth per year per 1000 population = (18 + 18)/2

= 18

Mode = the sample that has the number of frequency

Mode per year per 1000 population = 15 (frequency = 4)

Range = highest value sample - lowest value sample

Range per year per 1000 population = 37 - 10

= 27

You research commute times to work and find that the population standard deviation is 9.3 minutes. Repeat Exercise, using the standard normal distribution with the appropriate calculations for a standard deviation that is known. Compare the results. In a random sample of eight people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.2 minutes.

Answers

Answer:

Case [tex] s =7.2[/tex]

[tex]35.5-2.36\frac{7.2}{\sqrt{8}}=29.49[/tex]    

[tex]35.5+2.36\frac{7.2}{\sqrt{8}}=41.51[/tex]    

So on this case the 95% confidence interval would be given by (29.49;41.51)    

Case [tex] \sigma =9.3[/tex]

[tex]35.5-1.96\frac{9.3}{\sqrt{8}}=29.06[/tex]    

[tex]35.5+1.96\frac{9.3}{\sqrt{8}}=41.94[/tex]    

So on this case the 95% confidence interval would be given by (29.06;41.94)

And we conclude that the intervals are very similar.  

Step-by-step explanation:

If we assume that for this question we need to find a confidence interval for the population mean. We have the following procedure:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X= 35.5[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

s=7.2 represent the sample standard deviation

n=8 represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=8-1=7[/tex]

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.025,7)".And we see that [tex]t_{\alpha/2}=2.36[/tex]

Now we have everything in order to replace into formula (1):

[tex]35.5-2.36\frac{7.2}{\sqrt{8}}=29.49[/tex]    

[tex]35.5+2.36\frac{7.2}{\sqrt{8}}=41.51[/tex]    

So on this case the 95% confidence interval would be given by (29.49;41.51)  

If we assume that the real population standard deviation is [tex] \sigma =9.3[/tex] the confidence interval is given by:

[tex]\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]  

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-NORM.INV(0.025,0,1)".And we see that [tex]z_{\alpha/2}=1.96[/tex]

[tex]35.5-1.96\frac{9.3}{\sqrt{8}}=29.06[/tex]    

[tex]35.5+1.96\frac{9.3}{\sqrt{8}}=41.94[/tex]    

So on this case the 95% confidence interval would be given by (29.06;41.94)

And we conclude that the intervals are very similar.    

Let ​ f(x)=x+2 ​ and ​ g(x)=2x+1 ​ .

Graph the functions on the same coordinate plane.


What are the solutions to the equation f(x)=g(x) ?



Enter your answers in the boxes.

Answers

x= 0 and x= 1

Step-by-step explanation:

Given  g(x) = x+2  and   f(x) = [tex]2^x+1[/tex]

If f(x) = g(x)

⇔[tex]2^x+1[/tex] = x+2

⇔[tex]2^x= x +1[/tex]

Only x= 1 and x=0 will be satisfy  the above equation.

If x= 1, it gives             and x=0 gives

[tex]2^1= 1+1[/tex]                       [tex]2^0=0+1[/tex]

⇔2=2                          ⇔1=1

Answer:

1 & 0

Step-by-step explanation:

On any given day, the probability that a large local river is polluted by carbon tetrachloride is 0.12. Each day, a test is conducted to determine whether the river is polluted by carbon tetrachloride. This test has proved correct 84 percent of the time.1. What proportion of days does the test indicate carbon tetrachloride pollution? 2. Suppose that on a particular day the test indicated carbon tetrachloride pollution What is the probability that such pollution actually exists? 3. What percentage of days where the test is negative will the river actually be polluted?

Answers

Answer:

a) 0.2416

b) 0.4172

c) 0.0253

Step-by-step explanation:

Since the result of the test should be independent of the time , then the that the test number of times that test proves correct is independent of the days the river is correct .

denoting event a A=the test proves correct and B=the river is polluted

a) the test indicates pollution when

- the river is polluted and the test is correct

- the river is not polluted and the test fails

then

P(test indicates pollution)= P(A)*P(B)+ (1-P(A))*(1-P(B)) = 0.12*0.84+0.88*0.16 = 0.2416

b) according to Bayes

P(A∩B)= P(A/B)*P(B) → P(A/B)=P(A∩B)/P(B)

then

P(pollution exists/test indicates pollution)=P(A∩B)/P(B) = 0.84*0.12 / 0.2416 = 0.4172

c) since

P(test indicates no pollution)= P(A)*(1-P(B))+ (1-P(A))*P(B) = 0.84*0.88+  0.16*0.12 = 0.7584

the rate of false positives is

P(river is polluted/test indicates no pollution) = 0.12*0.16 / 0.7584 = 0.0253

The breaking strength of a fiber is required to be at least 150 psi. Past experience has indicated that the standard deviation of breaking strength is σ= 3 psi. A random sample of four specimens is tested. The
results are y1=145, y2=153, y3=150 and y4=147.

(a) State the hypotheses that you think should be tested in this experiment

(b) Test these hypotheses using α

= 0.05. What are your conclusions?
(c) Find the

P-value for the test in part (b).
(d) Construct a 95 percent confidence interval on the mean breaking strength.

Answers

The 95 percent confidence interval on the mean breaking strength is (143.9764, 153.5236).

We are given that;

Strength for breaking the fiber= 150 psi

σ= 3 psi

Now,

(a) The hypotheses that should be tested in this experiment are:

[tex]$H_0: \mu = 150$[/tex] (The mean breaking strength of the fiber is 150 psi)

[tex]$H_a: \mu < 150$[/tex] (The mean breaking strength of the fiber is less than 150 psi)

This is a one-tailed test, since we are interested in testing whether the mean breaking strength is below a certain value.

(b) To test these hypotheses using [tex]$\alpha = 0.05$[/tex], we need to calculate the test statistic and compare it with the critical value or the p-value. The test statistic is given by:

[tex]$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$[/tex]

where [tex]$\bar{x}$[/tex] is the sample mean, [tex]$\mu_0$[/tex] is the hypothesized population mean, s is the sample standard deviation, and n is the sample size.

Plugging in the given values, we get:

[tex]$t = \frac{148.75 - 150}{3/\sqrt{4}} = -1.6667$[/tex]

The critical value for a one-tailed test with[tex]$\alpha = 0.05$[/tex] and n-1 = 3 degrees of freedom is -2.3534, which can be found from a t-table.

Since t > -2.3534 or p > 0.05, we fail to reject the null hypothesis at the 0.05 level of significance. There is not enough evidence to conclude that the mean breaking strength of the fiber is less than 150 psi.

(c) The p-value for the test in part (b) is 0.0834, as mentioned above.

(d) A 95 percent confidence interval on the mean breaking strength is given by:

[tex]$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$[/tex]

where [tex]$t_{\alpha/2,n-1}$[/tex] is the critical value for a two-tailed test with [tex]$\alpha = 0.05$[/tex] and n-1 = 3 degrees of freedom, which is 3.1824.

Plugging in the given values, we get:

[tex]$148.75 \pm 3.1824 \frac{3}{\sqrt{4}}$[/tex]

Simplifying, we get:

[tex]$148.75 \pm 4.7736$[/tex]

Therefore, by statistics answer will be (143.9764, 153.5236).

To learn more on Statistics click:

brainly.com/question/29342780

#SPJ12

Sketch the region of integration for the following integral. ∫π/40∫6/cos(θ)0f(r,θ)rdrdθ

Answers

Answer:

The graph is sketched by considering the integral. The graph is the region bounded by the origin, the line x = 6, the line y = x/6 and the x-axis.    

Step-by-step explanation:

We sketch the integral ∫π/40∫6/cos(θ)0f(r,θ)rdrdθ. We consider the inner integral which ranges from r = 0 to r = 6/cosθ. r = 0 is located at the origin and r = 6/cosθ is located on the line  x = 6 (since x = rcosθ here x= 6)extends radially outward from the origin. The outer integral ranges from θ = 0 to θ = π/4. This is a line from the origin that intersects the line x = 6 ( r = 6/cosθ) at y = 1 when θ = π/2 . The graph is the region bounded by the origin, the line x = 6, the line y = x/6 and the x-axis.    

Final answer:

The region of integration is a rectangular region in the polar coordinate system, bounded by the angles 0 and π/40, and the radii 0 and 6/cos(θ).

Explanation:

The region of integration for the given integral is a rectangular region in the polar coordinate system, bounded by the angles 0 and π/40, and the radii 0 and 6/cos(θ).

To sketch this region, draw a rectangle in the polar coordinate plane, where the horizontal sides represent the radii and the vertical sides represent the angles. The bottom of the rectangle is at radius 0 and the top is at radius 6/cos(θ). The left side of the rectangle is at angle 0 and the right side is at angle π/40.

Therefore, the region of integration can be represented by the rectangle with sides defined by the radii 0 and 6/cos(θ), and the angles 0 and π/40.

In late June 2012, Survey USA published results of a survey stating that 56% of the 600 randomly sampled Kansas residents planned to set off fireworks on July 4th. Determine the margin of error for the 56% point estimate using a 95% confidence level.

Answers

Answer:

The margin of error is of 3.97 percentage points.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence interval [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The confidence interval has the following margin of error

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

95% confidence interval

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]z = 1.96[/tex].

We also have that

[tex]n = 600, \pi = 0.56[/tex]

So, the margin of error is:

[tex]M = 1.96*\sqrt{\frac{0.56*0.44}{600}} = 0.0397[/tex]

So the margin of error is of 3.97 percentage points.

The margin of error for the 56% point estimate using a 95% confidence level is; 3.97%

Formula for margin of error here is;

M = z√(p(1 - p)/n)

Where;

z is critical value at given confidence level

p is sample proportion

n is sample size

We are given;

p = 56% = 0.56

n = 600

Confidence level = 95%

Now,from tables, the critical value at a confidence level of 95% is; z = 1.96

Thus;

M = 1.96√(0.56(1 - 0.56)/600)

M = 0.0397 or 3.97%

Read more at; https://brainly.com/question/22718960

A computer password consists of eight characters. How many different passwords are possible if each character may be any lowercase letter or digit? How many different passwords are possible if each character may be any lowercase letter or digit, and at least one character must be a digit? A computer system requires that passwords contain at least one digit. If eight characters are generated at random, and each is equally likely to be any of the 26 letters or 10 digits, what is the probability that a valid password will be generated?

Answers

Answer:

1. 2,821,109,907,456 passwords

2. 2,612,282,842,880 passwords

3. 0.93

Step-by-step explanation:

Number of lower case letters = 26

Number of digits = 10

Total Characters = 26 + 10 = 36

Length of password = 8

1. Each character can be chosen from 36 objects (26 lowercase letters and 10 digits).

Since there's no restriction on repetition of characters, there are

(26+10)^8 different passwords

= 36^8

= 2,821,109,907,456 passwords

2.

For atleast one character to be a must be a digit means 1 character or 2 character or 3 characters... and so on

So we calculate by looking at no character being a digit

and then subtract the result from the total(36^8).

No character being a digit = All the characters are only letters

I.e. 26^8

Atleast one character being a digit = 36^8 - 26^8

= 2,821,109,907,456 - 208,827,064,576

= 2,612,282,842,880 passwords

3.

Probability = Number of possible outcomes/Number of Total outcomes

Number of possible outcomes = Number of Atleast 1 digit = 36^8 - 26^8 (as in question 2)

Total outcomes = 36^8

Probability = (36^8 - 26^8) / 36^8

= 2,612,282,842,880 / 2,821,109,907,456

= 0.92597698373108952

= 0.93 (approximated)

From the probability, the number of different passwords that are possible if each character may be any lowercase letter or digit is 2,821,109,907,456 passwords

How to calculate the probability

The following information can be deduced:

Number of lower case letters = 26Number of digits = 10Total Characters = 26 + 10 = 36Length of password = 8

The number of different passwords are possible if each character may be any lowercase letter or digit will be:

= (26+10)⁸ different passwords

= 2,821,109,907,456 passwords

The number of different passwords that are possible if each character may be any lowercase letter or digit, and at least one character must be a digit will be:

= 36⁸ - 26⁸

= 2,612,282,842,880 passwords

Lastly, the probability that a valid password will be generated will  be:

= (36⁸ - 26⁸) / 36⁸

= 0.93

Learn more about probability on:

https://brainly.com/question/25870256

How many people have to be in a room in order that the probability that at least two of them celebrate their birthday on the same day is at least 0.06? (Ignore leap years, and assume that all outcomes are equally likely.)

Answers

Answer:

At least 8 people are needed in the room

Step-by-step explanation:

The probability of n people celebrating their birthday in different days is

1*364/365*363/365*....*(365-(n-1))/365

(for the first person any of the 365 days is suitable, for the second person only 364 persons is suitable, for the third only 364 and so on)

At least two people celebratig their birthday on the same day is the complementary event, thus its probability is

1- 364/365*....*(365-n+1)/365

Lets compute the probabilities for each value of n:

for n = 2: 1-364/365 = 0.00273for n = 3: 1-364/365*363/365 = 0.008for n = 4: 1-364/365*363/365*362/365 = 0.016for n = 5: 1-364/365*363/365*362/365*361/365 = 0.027for n = 6:  1-364/365*363/365*362/365*361/365*360/365 = 0.04for  n = 7: 1-364/365*363/365*362/365*361/365*360/365*359/365 = 0.056for n = 8: 1-365/365*363/365*362/365*361/365*360/365*359/365*358/365 = 0.074 > 0.06

We need at least 8 people in the room.

two cards are chosen at random from a deck of 52 playing cards. what is the probability that they are both aces?

Answers

Answer:

The probability that they are both aces is 0.00452.

Step-by-step explanation:

Consider the provided information.

Out of 52 playing card we need to select only 2.

Thus, the sample space is: [tex]^{52}C_2=1326[/tex]

Two cards are Ace.

The number of Ace in a pack of playing card are 4 and we need to select two of them.

This can be written as: [tex]^4C_2=6[/tex]

Thus, the probability that they are both aces is:

[tex]P(\text{Both are Ace})=\dfrac{6}{1326} \approx0.00452[/tex]

Hence, the probability that they are both aces is 0.00452.

Harry church borrowed 17,500.00 at 6.5% exact interest. He had to pay back a maturity value of 17,873.97 to pay off the loan. What was the term of the loan

Answers

Answer:the term of the loan is approximately 4 months

Step-by-step explanation:

The term of the loan means the period for which the loan was given.

We would apply the formula for simple interest which is expressed as

I = PRT/100

Where

P represents the principal

R represents interest rate

T represents time in years

I = interest after t years

From the information given

P = 17500

R = 6.5%

I = total amount paid - principal

I = 17,873.97 - 17,500.00 = 373.97

Therefore

373.97 = (17500 × 6.5 × T)/100

373.97 = 1137.5T

T = 373.97/1137.5

T = 0.32 years

Converting to months, it becomes

0.32 × 12 = 3.84

Approximately 4 months.

Express the Cartesian coordinates ( - 5,5) in polar coordinates in at least two different ways. Write the point in polar coordinates with an angle in the range 0 < = theta < 2pi (Type an ordered pair. Type an exact answer, using pi as needed.) Write the point in polar coordinates with an angle in the range - 2pi < = theta < 0. [ ] (Type an ordered pair. Type an exact answer. using pi as needed.)

Answers

Final answer:

The Cartesian coordinate point (-5,5) can be re-written in polar coordinates in two ways. The polar coordinates equivalent to (-5,5) in the range 0 <= theta < 2pi are (5sqrt(2), 7pi/4) and in the range -2pi <= theta < 0 are (5sqrt(2), -pi/4).

Explanation:

The Cartesian coordinate point (-5,5) can be expressed in polar coordinates using the polar coordinates formula: r = sqrt(x^2 + y^2) and theta = arctan(y/x).

For the first part of the question, we are asked to find the polar coordinates where the angle lies in the range 0 <= theta < 2pi. Using the two formulas above, we find r to be sqrt((-5)^2 + 5^2) = sqrt(50) or 5sqrt(2). The angle theta can be calculated using arctan(5/-5) = -pi/4. We add 2pi to this angle because theta should not be negative, and thus obtain a final result of (7pi/4). So, the polar coordinates equivalent to (-5,5) in the range 0 <= theta < 2pi are (5sqrt(2), 7pi/4).

For the second part of the question, we need the polar coordinates where the angle theta lies in the range -2pi <= theta < 0. In this case, the value for r remains the same as before. However, the angle is -pi/4, because it needs to be negative. Hence, the polar coordinates equivalent to (-5, 5) in the range -2pi <= theta < 0 are (5sqrt(2), -pi/4).

Learn more about Polar Coordinates here:

https://brainly.com/question/36617145

#SPJ11

Determine if the statement is true or false.
Different sequences of row operations can lead to different reduced echelon forms for the same matrix.
True False
Justify your answer.

Answers

Answer:

False

Step-by-step explanation:

There are two concepts:

1. Row Echelon Form: There can be more than two row echelon forms of a single matrix, so different sequences of row operations can lead to different row echelon forms of a single matrix.

2. Reduced Row Echelon Form: It's unique for each matrix, so different sequences of row operations always lead to the same reduced row echelon form for the same matrix.

Which of these are propositions? What are the truth values of those that are propositions?

a) Do not pass go.
b) What time is it?
c) There are no black flies in Maine.
d) 4 + x = 5.
e) The moon is made of green cheese.
f) 2 n ≥ 100

Answers

Answer:

c) There are no black flies in Maine -> False

e) The moon is made of green cheese -> False

Explanation:

A proposition is a statement that poses an idea that can be True or False.

Do not pass go, is not a proposition is an order, and there is not an answer to that statement.What time is it? Is not a proposition is a question and it's response goes beyond True or False. There are no black flies in Maine is indeed a proposition because is a statement that can either be True or False. 4 + x = 5 is not a proposition because is a statement with an infinite number of answers, in contrast, 4 + 1 = 5 is a proposition because is either True or False. The moon is made of green cheese is a proposition because is a statement that can either be True or False. 2 n ≥ 100 is not a proposition because is a statement with an infinity number of answer and is not clear whether is True or False, in contrast, 2 ≥ 100 is a proposition because is either True or False.
Final answer:

Only 'There are no black flies in Maine' and 'The moon is made of green cheese.' are propositions. The truth values depend on the accuracy of the statements. The others are not propositions.

Explanation:

In logic, a proposition is any declarative sentence that is either true or false, but not both. Using this definition:

a) 'Do not pass go.' is not a proposition as it is a command.b) 'What time is it?' is not a proposition as it is a question. c) 'There are no black flies in Maine.' is a proposition. Its truth value can be true or false, depending on whether or not there are black flies in Maine.d) '4 + x = 5.' is not a proposition because its truth value depends on the value of x.e) 'The moon is made of green cheese.' is a proposition. That proposition is false.f) '2 n ≥ 100' is not a proposition because its truth value depends on the value of n.

           

Learn more about Proposition here:

https://brainly.com/question/32839288

#SPJ3

LetAandBbe two events in a sample space for which P(A)=2/3,P(B)=1/6, and P(A∩B)=1/9. What is P(A∪B)?

Answers

Answer:

13/18

Step-by-step explanation:

P(A∪B)=P(A)+P(B)−P(A∩B)

P(A∪B)=2/3 + 1/6 − 1/9 = 13/18

MVA Harper industries has $900 million of common equity on its balance sheet; its stock price is $80 per share; and its market value added (MVA) is $50 million. How many common shares are currently outstanding?

Answers

Answer:

11,875,000 common shares outstanding

Step-by-step explanation:

The number of common shares outstanding of Harper industries is determined by the company's common equity added to its MVA and then divided by the stock price per share.

If common equity is $900 million, MVA is $50 million and the price per share is $50, the number of shares outstanding is:

[tex]n=\frac{900,000,000+50,000,000}{80}\\n=11,875,000[/tex]

Answer:

N = 11,875,000

Therefore, the number of common shares that are currently outstanding is 11,875,000

Step-by-step explanation:

Oustanding shares can be defined as the company's stock currently held by all its shareholders, it also including share blocks held by institutional investors and restricted shares owned by the company’s officers and insiders. The outstanding common shares can be defined mathematically with the equation below.

MVA = (P ×N) - BV .....1

Where;

MVA = market value added

P = price per share

N = Number of outstanding shares

BV = balance sheet value of common equity

From equation 1, we can make N the subject of formula.

N = (MVA + BV)/P .....2

Since;

MVA = $50,000,000

BV = $900,000,000

P = $80

Substituting into equation 2

N = (50,000,000 + 900,000,000)/80

N = 11,875,000

Therefore, the number of common shares that are currently outstanding is 11,875,000

The mean height of a basketball team is 6 feet with a standard deviation of 0.2 feet. The team's center is 6.7 feet tall. Find the center's z score. Is his score unusual?

Answers

Answer:

z-score = 3.5, Yes, z-score is unusual.

Step-by-step explanation:

Given information:

Population mean ; μ = 6 feet

Standard deviation ; σ = 0.2 feet

Sample mean = 6.7 feet

The formula for z-score is

[tex]z=\dfrac{\overline{X}-\mu}{\sigma}[/tex]

where, [tex]\overline{X}[/tex] is sample mean, μ is population mean and σ is standard deviation.

Substitute the given values in the above formula.

[tex]z=\dfrac{6.7-6}{0.2}[/tex]

[tex]z=\dfrac{0.7}{0.2}[/tex]

[tex]z=3.5[/tex]

The z-score is 3.5.

If a z-score is less than -2 or greater than 2, then it is known as unusual score.

3.5 >  2

It means z-score is unusual.

Since the z score is greater than 3, hence his score is unusual.]

Z score

Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:

[tex]z=\frac{x-\mu}{\sigma} \\ \\ where\ x=raw\ score,\mu=mean\ and\ \sigma=standard\ deviation[/tex]

Given that mean = 6, standard deviation = 0.2.

For x = 6.7:

[tex]z=\frac{6.7-6}{0.2}=3.5 [/tex]

Since the z score is greater than 3, hence his score is unusual.

Find out more on z score at: https://brainly.com/question/25638875

A deer population grows at a rate of four percent per year. How many years will it take for the population to double?

Answers

Answer:

It is going to take 17.65 years for the population to double.

Step-by-step explanation:

The population of the deer is after t years is given by the following equation

[tex]P(t) = P_{0}(1 + r)^{t}[/tex]

In which [tex]P_{0}[/tex] is the initial population and r is the decimal growth rate.

A deer population grows at a rate of four percent per year. This means that [tex]r = 0.04[/tex]

How many years will it take for the population to double?

This is t when [tex]P(t) = 2P_{0}[/tex]

[tex]P(t) = P_{0}(1.04)^{t}[/tex]

[tex]2P_{0} = P_{0}(1.04)^{t}[/tex]

[tex](1.04)^{t} = 2[/tex]

Here, we apply the log 10 to both sides of the equation.

It is important to note the following property of logarithms.

[tex]\log{a^{t}} = t\log{a}[/tex]

[tex]\log{(1.04)^{t}} = \log{2}[/tex]

[tex]t\log{1.04} = 0.3[/tex]

[tex]0.017t = 0.3[/tex]

[tex]t = \frac{0.3}{0.017}[/tex]

[tex]t = 17.65[/tex]

It is going to take 17.65 years for the population to double.

Answer:it will take approximately 18 years

Step-by-step explanation:

A deer population grows at a rate of four percent per year. The growth rate is exponential. We would apply the formula for exponential growth which is expressed as

A = P(1 + r/n)^ nt

Where

A represents the population after t years.

n represents the period of growth

t represents the number of years.

P represents the initial population.

r represents rate of growth.

From the information given,

A = 2P

P = P

r = 4% = 4/100 = 0.04

n = 1

Therefore

2P = P(1 + r/n)^ nt

2P/P = (1 + 0.04/1)^1 × t

2 = (1.04)^t

Taking log of both sides to base 10

Log 2 = log1.04^t = tlog1.04

0.3010 = t × 0.017

t = 0.3010/0.017 = 17.7 years

Assume the radius of an atom, which can be represented as a hard sphere, is r  1.95 Å.The atom is placed in a ( a ) simple cubic, ( b ) fcc, ( c ) bcc, and ( d ) diamond lattice. As-suming that nearest atoms are touching each other, what is the lattice constant of eachlattice

Answers

Answer: Simple cubic=0.39nm

Face centred cubic

=0.55nm

Body centered cubic

=0.45nm

Diamond lattice= 0.9nm

Step-by-step explanation: The lattice constant (a)

for SC=2*r

Fcc=4*r/√2

Bcc= 4*r/√3

Diamond lattice=8*r/√3

Here,

r is the atomic radius measured in nm

r = 1.95Å * 1nm/10Å

=0.195nm

Now let's calculate (a)

SC = 2*r = 2*0.195 nm=0.39nm

Fcc = 4*r/√2 =4*0.195nm/√2

= 0.55nm

Bcc = 4*r/√3 =4*0.195nm/√3

= 0.45nm

Diamond lattice = 8*r/√3

=8*0.195nm/√3

= 0.9nm

Given the following data: X 1 4 6 7 Y 9 7 8 1 a) Find the coefficient of correlation. b) Find the equation of the regression line. c) What is the predicted value for Y, if X = 3?

Answers

a. [tex]\[ r \approx -0.736 \][/tex]

b. The equation of the regression line is [tex]\(Y = 11.075 - 1.127X\)[/tex].

c. The predicted value for [tex]\(Y\)[/tex] when [tex]\(X = 3\)[/tex] is approximately 7.794.

To find the coefficient of correlation [tex](\(r\))[/tex] and the equation of the regression line, we can follow these steps:

a) Find the Coefficient of Correlation [tex](\(r\))[/tex]:

The formula for the coefficient of correlation [tex](\(r\))[/tex] is given by:

[tex]\[ r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}} \][/tex]

where \(n\) is the number of data points, [tex]\(\sum xy\)[/tex] is the sum of the product of corresponding values of [tex]\(X\)[/tex] and [tex]\(Y\), \(\sum x\)[/tex] is the sum of [tex]\(X\)[/tex], and [tex]\(\sum y\)[/tex] is the sum of [tex]\(Y\)[/tex].

[tex]\[ n = 4 \][/tex]

[tex]\[ \sum x = 1 + 4 + 6 + 7 = 18 \][/tex]

[tex]\[ \sum y = 9 + 7 + 8 + 1 = 25 \][/tex]

[tex]\[ \sum xy = (1 \times 9) + (4 \times 7) + (6 \times 8) + (7 \times 1) = 9 + 28 + 48 + 7 = 92 \][/tex]

[tex]\[ \sum x^2 = 1^2 + 4^2 + 6^2 + 7^2 = 1 + 16 + 36 + 49 = 102 \][/tex]

[tex]\[ \sum y^2 = 9^2 + 7^2 + 8^2 + 1^2 = 81 + 49 + 64 + 1 = 195 \][/tex]

Now, substitute these values into the formula:

[tex]\[ r = \frac{4 \times 92 - 18 \times 25}{\sqrt{[4 \times 102 - (18)^2][4 \times 195 - (25)^2]}} \][/tex]

[tex]\[ r = \frac{368 - 450}{\sqrt{[408 - 324][780 - 625]}} \][/tex]

[tex]\[ r = \frac{-82}{\sqrt{84 \times 155}} \][/tex]

[tex]\[ r \approx -0.736 \][/tex]

b) Find the Equation of the Regression Line:

The equation of the regression line [tex](\(Y = a + bX\))[/tex] is given by:

[tex]\[ b = r \times \frac{s_y}{s_x} \][/tex]

[tex]\[ a = \bar{y} - b \bar{x} \][/tex]

where [tex]\(s_y\)[/tex] and [tex]\(s_x\)[/tex] are the standard deviations of [tex]\(Y\)[/tex] and [tex]\(X\)[/tex] respectively, and [tex]\(\bar{y}\)[/tex] and [tex]\(\bar{x}\)[/tex] are the means of [tex]\(Y\)[/tex] and [tex]\(X\)[/tex] respectively.

[tex]\[ s_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \][/tex]

[tex]\[ s_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n-1}} \][/tex]

[tex]\[ \bar{x} = \frac{\sum x}{n} \][/tex]

[tex]\[ \bar{y} = \frac{\sum y}{n} \][/tex]

[tex]\[ s_x \approx 2.160 \][/tex]

[tex]\[ s_y \approx 3.299 \][/tex]

Now, calculate [tex]\(b\)[/tex] and [tex]\(a\)[/tex]:

[tex]\[ b = -0.736 \times \frac{3.299}{2.160} \][/tex]

[tex]\[ b \approx -1.127 \][/tex]

[tex]\[ \bar{x} = \frac{18}{4} = 4.5 \][/tex]

[tex]\[ \bar{y} = \frac{25}{4} = 6.25 \][/tex]

[tex]\[ a = 6.25 - (-1.127 \times 4.5) \][/tex]

[tex]\[ a \approx 11.075 \][/tex]

So, the equation of the regression line is [tex]\(Y = 11.075 - 1.127X\)[/tex].

c) Predicted Value for Y when X = 3:

[tex]\[ Y = 11.075 - 1.127 \times 3 \][/tex]

[tex]\[ Y \approx 7.794 \][/tex]

So, the predicted value for [tex]\(Y\)[/tex] when [tex]\(X = 3\)[/tex] is approximately 7.794.

Laura and Phillip each fire one shot at a target, Laura has aprobability 0.5 of hitting the target, and Phillip has aprobability 0.3. The shots are independent.

a. Find the probability that the target is hit.
b.Find the probability that the target is hit by exactly oneshot.
c.Given that the target was hit by exactly one shot, find theprobabilty that Laura hit the target.

Answers

a. The probability that the target is hit is 0.65.

b. The probability that the target is hit by exactly one shot is 0.5.

c. Given exactly one shot hits, the probability Laura hit is 0.7.

a. To find the probability that the target is hit, we can calculate the probability that at least one shot hits the target. Since the shots are independent, we can use the complement rule:

[tex]\[ P(\text{Target hit}) = 1 - P(\text{Both miss}) \][/tex]

Laura misses with probability 0.5 and Phillip misses with probability 0.7 (since the probability of hitting the target is 0.3). Therefore:

[tex]\[ P(\text{Both miss}) = 0.5 \times 0.7 = 0.35 \][/tex]

[tex]\[ P(\text{Target hit}) = 1 - 0.35 = 0.65 \][/tex]

So, the probability that the target is hit is 0.65.

b. To find the probability that the target is hit by exactly one shot, we need to consider the cases where Laura hits and Phillip misses, and where Laura misses and Phillip hits. These events are mutually exclusive, so we can add their probabilities:

[tex]\[ P(\text{Exactly one shot hits}) = P(\text{Laura hits, Phillip misses}) + P(\text{Laura misses, Phillip hits}) \][/tex]

[tex]\[ = (0.5 \times 0.7) + (0.5 \times 0.3) \][/tex]

= 0.35 + 0.15

= 0.5

So, the probability that the target is hit by exactly one shot is 0.5.

c. Given that the target was hit by exactly one shot, we need to find the probability that Laura hit the target. This is the conditional probability:

[tex]\[ P(\text{Laura hit} | \text{Exactly one shot hit}) = \frac{P(\text{Laura hit and exactly one shot hit})}{P(\text{Exactly one shot hit})} \][/tex]

From part b, we found [tex]\( P(\text{Exactly one shot hit}) = 0.5 \)[/tex]. And from part b, we found [tex]\( P(\text{Laura hit and exactly one shot hit}) = 0.35 \)[/tex].

[tex]\[ P(\text{Laura hit} | \text{Exactly one shot hit}) = \frac{0.35}{0.5} = 0.7 \][/tex]

So, the probability that Laura hit the target, given that the target was hit by exactly one shot, is 0.7.

Determine if the function f(x) = 4√x − 3x satisfies the Mean Value Theorem on [4, 49]. If so, find all numbers c on the interval that satisfy the theorem.
a) c = 812b) c = −814c) c = 818d) c = 814

Answers

Answer:

c

Step-by-step explanation:

The mean value theorem states that for a continuous and differentiable function on a interval there exists a number c from that interval, that

[tex]f'(c)=(f(b)-f(a))/(b-a)[/tex]

First we must determine the endpoints:

[tex]f(49)=-119[/tex]

[tex]f(4)=-4[/tex]

We find the derivative of the function, f'(c)

[tex]f'(c)=3+2\sqrt{c}[/tex]

Therefore:

[tex]3+2\sqrt{c}=((-119)-(-4))/((49)-(4))[/tex]

Simplify:

[tex]3+2\sqrt{c}=-23/9[/tex]

[tex]c=81/4[/tex]

use gcf to factor the expression 40x+24y-56

Answers

GCF IS 4.
4(10x+6y-14)

Two students each use a random number generator to pick an integer between 1 and 7.
(a) What is the probability that they pick the same number?
(b) What is the probability that they pick different numbers?

Answers

Answer:

a) 14.29% probability that they pick the same number.

b) 85.71% probability that they pick the different numbers.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

The outcomes in this problem is as follows:

(Student A Number, Student B Number)

(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1)

(1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (7,2)

(1,3), (2,3), (3,3), (4,3), (5,3), (6,3), (7,3)

(1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (7,4)

(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (7,5)

(1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (7,6)

(1,7), (2,7), (3,7), (4,7), (5,7), (6,7), (7,7)

So there are 49 total outcomes.

(a) What is the probability that they pick the same number?

There are 7 possible outcomes in which they pick the same number:

(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)

So there is a 7/49 = 0.1429 = 14.29% probability that they pick the same number

(b) What is the probability that they pick different numbers?

There are 49-7 = 42 possible outcomes in which they pick different numbers.

So there is a 42/49 = 0.8571 = 85.71% probability that they pick the different numbers.

We run a linear regression and the slope estimate is 0.5 with estimated standard error of 0.2. What is the largest value of for which we would NOT reject the null hypothesis that ?

Answers

Answer: (0.1, 0.9) We cannot reject the null hypothesis.

Step-by-step explanation:

First, calculate with the negative. Next, with the positive.

B1 - 2 x SE(B1)

0.5 - 2 x 0.2 = 0.1

B1 + 2 x SE(B1)

0.5 + 2 x 0.2 = 0.9

Final answer:

The student's question about hypothesis testing in linear regression focuses on whether to reject the null hypothesis based on a slope estimate, its standard error, and the p-value. Since the p-value exceeds the significance level, the null hypothesis is not rejected, indicating insufficient evidence of a nonzero slope at the 5 percent level.

Explanation:

The student is asking about hypothesis testing in the context of linear regression. Specifically, the question pertains to whether the null hypothesis, which posits no effect (i.e., a slope of zero), should be rejected based on a given slope estimate, its standard error, and a provided p-value. In hypothesis testing, if the p-value is greater than the chosen level of significance (alpha), you do not reject the null hypothesis.

In the provided scenario, if the p-value is indeed 0.2150 and the level of significance (alpha) is set to 5 percent (0.05), the decision would be not to reject the null hypothesis. This is because the p-value is greater than the alpha level (0.2150 > 0.05). The conclusion is that there is insufficient evidence at the 5 percent significance level to suggest that the true slope is different from zero.

If we get the 100 from number 1 each year for ten years and invest each payment in an account that earns 8% how much will be there at the end? (1448.66)

Answers

Answer:

$1,448.66

Step-by-step explanation:

The future value of an annuity with yearly deposits 'P' at an interest rate of 'r' invested for 'n' years is determined by:

[tex]FV = P[\frac{(1+r)^n-1}{r}][/tex]

For P = $100, r = 0.08 and n = 10 years:

[tex]FV = 100[\frac{(1+0.08)^{10}-1}{0.08}]\\FV=\$1,448.66[/tex]

The amount at the end of the ten years is $1,448.66

What size sample should we draw from a population with standard deviation of 15 to have a sampling distribution standard error of 1.875?1564288

Answers

Answer: n = 64

Step-by-step explanation:

Standard error (SE) of a statistical data is the standard deviation of its sampling distribution.

S.E = r/√n. .....1

Where,

SE = standard error

r = standard deviation

n = number of samples

Given:

r = 15

SE = 1.875

From equation 1, making n the subject of formula:

n = (r/SE)^2

n = (15/1.875)

n = 64

Which of the following are considered cylinders? Hint : Try to do this as if it were on the exam. Use the traces (or cross-sections) method to draw a picture to help you classify. (Click all that apply to get credit.)

A. 5y^{2}+2z^{2}=2

B. y=-\left(2x^{2}+2\right)

C. 5x^{2}+2y^{2}+4z^{2} = 5

D. 4x^{2}-4y^{2}+4z^{2} = 2

E. -\left(\cos\!\left(-4y\right)\right)=1-z

F. 2x^{2}+4y^{2}-4z = -1

G. None of the above.

Answers

Answer:

Step-by-step explanation:

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given curve in some plane.

a)[tex]5y^{2}+2z^{2} = 2 [/tex]

this is cylinder , this is ellipse in y-z plane ,but along x-axis ,we shall get the same curve in every possible plane parallel to the yz-plane.

b)[tex]y = -2x^{2} - 2 [/tex]

We have to be careful not to draw interpret it as an equation in 2-space even though there is no z - that just means it does not depend upon z. If we sketch this graph in the xy-plane (so z = 0, we obtain the parabola [tex]y = -2x^ 2 - 2[/tex]) . Since there is no z-value in the equation, we shall get the same curve in every possible plane parallel to the x-y-plane. In particular, the graph of this surface will be all vertical lines passing through the curvey = -2x^ 2 - 2 . in the xy-plane. By definition, this makes the graph a cylinder.

C)[tex]5x^{2}+2y^{2}+4z^{2} = 5 [/tex]

this is ellipsoid

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1[/tex]

d)4x^(2)-4y^(2)+4z^(2) = 2

hyperboloid

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1[/tex]

{x,y,z can be exchanged to each other}

e)1-z = - cos (-4y)

this is some curve in y-z plane ,so it is cylinder.

f)    

2x^{2}+4y^{2}-4z = -1

elliptical paraboloid

Find an explicit solution of the given initial-value problem.dy/dx = ye^x^2, y(3) = 1.

Answers

Answer:

[tex]y=exp(\int\limits^x_4 {e^{-t^{2} } } \, dt)[/tex]

Step-by-step explanation:

This is a separable equation with an initial value i.e. y(3)=1.

Take y from right hand side and divide to left hand side ;Take dx from left hand side and multiply to right hand side:

[tex]\frac{dy}{y} =e^{-x^{2} }dx[/tex]

Take t as a dummy variable, integrate both sides with respect to "t" and substituting x=t (e.g. dx=dt):

[tex]\int\limits^x_3 {\frac{1}{y} } \, \frac{dy}{dt} dt=\int\limits^x_3 {e^{-t^{2} } } dt[/tex]

Integrate on both sides:

[tex]ln(y(t))\left \{ {{t=x} \atop {t=3}} \right. =\int\limits^x_3 {e^{-t^{2} } } \, dt[/tex]

Use initial condition i.e. y(3) = 1:

[tex]ln(y(x))-(ln1)=\int\limits^x_3 {e^{-t^{2} } } \, dt\\ln(y(x))=\int\limits^x_3 {e^{-t^{2} } } \, dt\\[/tex]

Taking exponents on both sides to remove "ln":

[tex]y=exp (\int\limits^x_3 {e^{-t^{2} } } \, dt)[/tex]

the value V, of a 300000 investment that earns 2% annual interest is given by V=f(t) where t is in years
How much is the investment worth in 3 years

Answers

Answer:

$318,362.40

Step-by-step explanation:

The equation that describes the future value of investments with interests compounded annually is:

[tex]V = P*(1+r)^t[/tex]

Where P is the initial investment (300,000), r is the interest rate (2%) and t is the time of investment, in years (3):

[tex]V = 300,000*(1+0.02)^3\\V=\$318,362.40[/tex]

The investment is worth $318,362.40 in 3 years.

Other Questions
In a given diffusion apparatus, 15.0mL of HBr gas diffused in 1.0 min. In the same apparatus and under the same conditions, 20.3 mL of an unknown gas diffused in 1.0 min. The unknown gas is a hydrocarbon. Find it's molecular formula. 40w + (1.5)(8)(w) =780 Which of the following is the subjective performance measure at parent firm level? a. Profitability b. Market share c. Stlck market reaction d. Assessment of goal attainment e. Stability and longevity of the alliance The treasure map said to start at the old oak tree, walk 70 paces north, then 40 paces East, then dig. What is the straight-line distance (in paces) from the tree to the treasure? Darwin noted that populations produce more offspring than will survive. Why is this fact a central component of the theory of natural selection? Lilly is the price-taking owner of an apple orchard. The price of apples is high enough that Lilly is earning positive economic profits. In the long run, Lilly should expect: This was the name of the group in Eighteenth Century France that was made up of the Nobility, making up nearly 2% of the population and controlling approximately 30% of the country's land. How are the ripples that are movingthrough the water in this pond similar to selsmicwaves that travel through Earth? How are theydifferent A multilane highway (two lanes in each direction) is on level terrain. The free-flow speed has been measured at 45 mi/h. The peak-hour directional traffic flow is 1300 vehicles with 6% large trucks and buses and 2% recreational vehicles (f_p = 0.95).If the peak-hour factor is 0.85, determine the highway's level of service. What is your personal view on the definition of health? Please consider the theme of "residing within the body". How have we seen similar explanations in mental health? How is it more generally linked to causal explanations that are common in our culture? Please comment on the definition of health between Eastern and Western cultures? Which student is most clearly challenging established ideas? The first five books of the Hebrew Bible are called thea.Torah.b.Old Testament.c.New Testament.d.Book of the Covenant. Suppose you need to have $57,411.00 in an account 19.00 years from today and that the account pays 14.00%. How much do you have to deposit into the account 8.00 years from today? If a computer is capable only of manipulating and storing integers, what difficulties present themselves? How are these difficulties overcome? One drawback of dams is that they can flood land upstream from the dam and reduce water flow downstream from the dam. Question 2 options: True False Siderophores are bacterial proteins that compete with the host's:______.a. antibodies. b. iron-transport proteins. c. white blood cells. d. red blood cells. e. receptors. A block with mass m=1.50 kg is initially at rest on a horizontal frictionless surface at x =0 , where x is the horizontal coordinate. A horizontally directed force is then applied to the block. The force is not constant: instead, its magnitude as a function of position is described by the relationship F(x)=(-x 2 )i , where x is given in units of meters, = 2.50 N , = 1.00 N/m2 , and i is the unit vector in the x direction. a) What is the kinetic energy of the block as it passes through x=2.00 m?b) What is the maximum speed of the block in the interval during which it moves from its initial position to x=2.00 m? Which of the following is most likely a true statement about social class?1. Members of a social class vary drastically in their values, interests, and behaviors. 2. In the United States, the lines between social classes are fixed and rigid. 3.Social classes show distinct product preferences in areas such as clothing. 4. Wealth is a more important variable than education in measuring social class. Consumers of the same age belong to the same social class Pls help me I am rewarding 25 pts. It's urgent Consider a general reactiona) The G of the reaction is -4.140 kJ mol. Calculate the equilibrium constant for the reaction. (Assume a temperature of 25C.)b) What is G at body temperature (37.0C) if the concentration of A is 1.6 M and the concentration of B is 0.45 M? Steam Workshop Downloader