To solve this we must be knowing each and every concept related to solution. Therefore, respiration is the process with which gases that make up the solution we breathe are separated.
What is solution?Solution is a homogeneous mixture which contain two component that are solute and solvent . Solute is the amount of component which is in small amount whereas solvent is a component which is in large amount.
Respiration is the process with which gases that make up the solution we breathe are separated. Respiration is a mechanism that occurs inside cells to produce energy by breaking down glucose molecules. The process may be neatly separated into two groups based on the usage of oxygen: anaerobic and aerobic respiration.
Therefore, respiration is the process with which gases that make up the solution we breathe are separated.
To know more about solution, here:
https://brainly.com/question/29803902
#SPJ5
A vw beetle goes from 0 to 60 mi/h with an acceleration of 2.35 m/s^2.
a.how much time does ti take for the beetle to reach 60 mi/h?
b.a top - fuel dragster can go from 0 to 60 mi/h in 0.600 seconds. find the acceleration (m/s^2) of the dragster.
Plyometric helps strengthen your bones true or false
Which body exerts the force that propels the sprinter, the blocks or the sprinter?
A 20 kg object is dropped from a very tall building. What is the weight of this objects? After 5 seconds, how has the object fallen and what is its speed at this instant?
1. What is the weight of this objects?
Weight is simply the product of mass and gravitational acceleration. Therefore the weight is:
w = 20 kg * 9.81 m/s^2
w = 196.2 kg m/s^2 = 196.2 N
2. After 5 seconds, how has the object fallen and what is its speed at this instant?
We can use the formula:
y = v0 t + 0.5 g t^2
v = v0 + g t
where v0 = 0 since the object starts from rest, y is the distance it fell, t is time
y = 0 + 0.5 * 9.81 * 5^2 = 122.625 m
v = 0 + 9.81 * 5 = 49.05 m/s
If you could live on the moon through one lunar cycle, how you would experience the phases of the moon?
A fugitive tries to hop on a freight train traveling at a constant speed of 4.5 m/s. Just as an empty box car passes him, the fugitive starts from rest and accelerates at a = 3.6 m/s2 to his maximum speed of 8.0 m/s.
I need help with this Physics problem. I've been stuck forever:
Two packages at UPS start sliding down the 18° ramp. Package A has a mass of 5.08 kg and a coefficient of friction of 0.18. Package B has a mass of 10.74 kg and a coefficient of friction of 0.13. How long does it take package A to reach the bottom? (s=2.08 m)
Thanks!
To find the time it takes for Package A to reach the bottom, we need to consider the forces acting on it. The main forces are the gravitational force and the frictional force. By calculating these forces and using Newton's second law and the equation for displacement, we can find the time it takes for Package A to reach the bottom of the ramp.
Explanation:To find the time it takes for Package A to reach the bottom of the ramp, we need to consider the forces acting on it. The two main forces are the gravitational force pulling it down the ramp and the frictional force opposing its motion.
First, let's calculate the gravitational force acting on Package A. The gravitational force is given by the formula Fg = m × g, where m is the mass of the object and g is the acceleration due to gravity. Given that the mass of Package A is 5.08 kg and the acceleration due to gravity is 9.8 m/s², we can calculate Fg = 5.08 kg × 9.8 m/s² = 49.784 N.
The frictional force can be calculated using the formula Ff = μ × Fn, where μ is the coefficient of friction and Fn is the normal force. The normal force can be calculated using the formula Fn = mg × cos(θ), where θ is the angle of the ramp. Given that θ is 18° and g is 9.8 m/s², we can calculate Fn = 5.08 kg × 9.8 m/s² × cos(18°) = 48.583 N. Now we can calculate the frictional force Ff = 0.18 × 48.583 N = 8.745 N.
The net force acting on Package A is the difference between the gravitational force and the frictional force. Fnet = Fg - Ff = 49.784 N - 8.745 N = 41.039 N. We can use Newton's second law, Fnet = ma, to find the acceleration of Package A. Given that the mass of Package A is 5.08 kg, we have 41.039 N = 5.08 kg × a. Solving for a, we find a = 8.08 m/s².
Finally, we can use the equation s = ut + (1/2)at² to find the time it takes for Package A to reach the bottom, where u is the initial velocity (which is 0 in this case) and s is the distance traveled. Given that s = 2.08 m and a = 8.08 m/s², we have 2.08 m = 0 + (1/2) × 8.08 m/s² × t². Solving for t, we find t ≈ 0.32 s.
Learn more about time here:https://brainly.com/question/35874422
#SPJ12
During football practice, a football is kicked with a speed of 22 m/s at an angle of 60.0° relative to the positive x direction. at that instant, an observer rides past the football in a car that moves with a constant speed of 11 m/s in the positive x direction. determine the initial velocity of the ball relative to the observer in the car.
Final answer:
The initial velocity of the football relative to an observer moving at 11 m/s in the positive x direction is solely its vertical component since the horizontal velocities cancel each other out.
Explanation:
To determine the initial velocity of the football relative to the observer in the car, we must consider the velocity of the football and the velocity of the car. The football's velocity (22 m/s) can be broken down into horizontal and vertical components.
The horizontal component (Vx) is calculated using the formula Vx = V * cos(θ), and the vertical component (Vy) is V * sin(θ), where V is the speed of the football and θ is the angle of kick relative to the positive x direction. Given V = 22 m/s and θ = 60°, we get Vx = 22 * cos(60°) and Vy = 22 * sin(60°).
The observer's velocity must be subtracted from the football's horizontal component to determine the relative horizontal velocity (Vx_relative). Therefore, Vx_relative = Vx - velocity of the car.
Now to calculate the total initial velocity of the football relative to the observer, we must combine the relative horizontal velocity with the unchanged vertical component Vectorially.
Equations and calculations:
Vx = V * cos(θ) = 22 * cos(60°) = 11 m/s.Vy = V * sin(θ) = 22 * sin(60°)Vx_relative = Vx - velocity of the car = 11 m/s - 11 m/s = 0 m/s.Thus, the initial velocity relative to the observer combines Vx_relative = 0 m/s and Vy (unchanged).The initial velocity of the football relative to the observer in the car is therefore the same as its vertical component because the horizontal components cancel out.
if you used 16 gallons when driving 367 miles, what was your gas mileage over that distance
What is the resultant velocity vector when you add your swimming velocity and the current velocity? give the x and y components in meters per second separated by a comma?
The resultant vector, is the vector that adds the components x and y separately.
Since the two x components are 0.00 m/s and 1.00 m/s, the resultant x component will be:
0.0 m/s + 1.00 m/s = 1.00 m/s in + x directionThe simultaneous vector of velocity in the form of components x and y is
1, -1 m / s
Further explanation
Vectors are quantities that have magnitude and direction
Vector can be symbolized in the form of directed line segments
One of the presentations of vector shapes is in geometric conditions where the vector components are expressed in the form of x and y coordinates which can be described in matrix form
The position vector of a vector starts from the starting point to the endpoint
Addition of two vectors is the addition of component x and component y
A (x1, y1) and B (x2, y2)
A + B = (x1 + x2, y1 + y2)
There is additional information on the problem:
a swimmer moves to the right with a speed of 1 m / s while the current from the river with the same speed down by 1 m / s (picture attached)
so the vector component position based on components x and y becomes:
swimmer (p): (1,0)
river current (s): (0, -1)
So if the two vectors are added it will become:
v = p + s
v = (1 + 0, 0-1)
v = (1, -1) m / s
Learn more
identify the components of a vector
https://brainly.com/question/8043832
negative vectors
https://brainly.com/question/11236351
add two velocity vectors
https://brainly.com/question/11194474
Keywords: vectors, a swimmer, river, Addition of two vectors
Sunspots _____. A) are found in the chromosphere B) are dark spots in the corona C) are areas where the photosphere is cooler D) happen when certain areas are hotter than others
You wash the dishes. when you let the water down the drain, where is the water flowing the fastest?
Give an order-of-magnitude estimate for the time in seconds of a year
A runner runs 4875 ft in 6.85 minutes. what is the runnerâs average speed in miles per hour?
If a microwave oven produces electromagnetic waves with a frequency of 2.70 ghz, what is their wavelength?
When a 75 kg man sits on the stool, by what percent does the length of the legs decrease? assume, for simplicity, that the stool's legs are vertical and that each bears the same load?
Each leg of the stool decreases in length by approximately 1.40 × 10⁻⁴% when the 70 kg man sits on it.
Calculate the force exerted on each leg:
Given: mass (m) = 70 kg, acceleration due to gravity (g) = 9.8 m/s²
Force (F) = mass × acceleration = 70 kg × 9.8 m/s² = 686 N
Determine the original length of the legs:
Let's assume the height of the stool is 1 meter (100 cm).
Calculate the cross-sectional area of each leg:
Given the diameter of each leg is 2.5 cm, the radius (r) is 1.25 cm or 0.0125 m.
Area (A) = π × r²
Area ≈ 3.14 × (0.0125 m)² ≈ 4.91 × 10⁻⁴ m²
Determine the modulus of elasticity of Douglas fir:
Let's assume E = 10 × 10⁹ N/m².
Calculate the change in length for each leg:
Using the formula for axial deformation:
Change in length (ΔL) = (Force × Length) / (Area × Modulus of Elasticity)
ΔL = (686 N × 1 m) / (4.91 × 10⁻⁴ m² × 10 × 10⁹ N/m²)
ΔL ≈ 1.40 × 10⁻⁶ m
Calculate the percentage decrease in length:
Percentage decrease = (Change in length / Original length) × 100%
Percentage decrease = (1.40 × 10⁻⁶ m / 1 m) × 100%
Percentage decrease ≈ 1.40 × 10⁻⁴ %
So, each leg of the stool decreases in length by approximately 1.40 × 10⁻⁴% when the 70 kg man sits on it.
The question probable may be:
A three-legged wooden bar stool made out of solid Douglas firhas legs that are 2.5 cm in diameter.
When a 70 kg man sits on thestool, by what percent does the length of the legs decrease?Assume, for simplicity, that the stool's legs are vertical and thateach bears the same load.
The tropical year, the time from vernal equinox to the next vernal equinox, is the basis for our calendar. it contains 365.242199 days. find the number of seconds in two and a half tropical years.
The length of a tropical year is approximately 365.242199 days, or approximately 31556926 seconds. Therefore, the number of seconds in two and a half tropical years is approximately 78892315 seconds.
Explanation:The tropical year is based on the time it takes the Earth to revolve around the sun, and is the basis of our calendar. This time period lasts approximately 365.242199 days. To find the number of seconds in a tropical year, we need to first convert this period into hours, minutes, and then seconds. There are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute. Here's the calculation:
1 tropical year = 365.242199 days = 365.242199 x 24 = 8765.812776 hours8765.812776 hours = 8765.812776 x 60 = 525948.76656 minutes525948.76656 minutes = 525948.76656 x 60 = 31556925.9936 secondsSo, one tropical year is approximately 31556926 seconds.
To find out the number of seconds in two and a half tropical years, we simply multiply this number by 2.5:
2.5 tropical years = 2.5 x 31556926 = 78892315 secondsLearn more about Time Conversion here:https://brainly.com/question/30761848
#SPJ12
An object is lifted to a certain height and then dropped. During the drop, which of the following is increased?
a) gravitational potential energy
b) kinetic energy
c) total mechanical energy
d) B and C
A brick is released with no initial speed from the roof of a building and strikes the ground in 2.50 s, encountering no appreciable air drag. (a) how tall, in meters, is the building? (b) how fast is the brick moving just before it reaches the ground? (c) sketch graphs of this falling brickâs acceleration, velocity, and vertical position as functions of time.
Answer:
Part a)
y = 30.625 m
Part b)
v = 24.5 m/s
Explanation:
Part a)
As we know that brick will hit the floor after t = 2.50 s
so here we will have
[tex]y = v_i t + \frac{1}{2}at^2[/tex]
[tex]y = 0 + \frac{1}{2}(9.8)(2.50^2)[/tex]
[tex]y = 30.625 m[/tex]
Part b)
velocity of the brick just before it will strike the ground is given as
[tex]v_f = v_i + at[/tex]
[tex]v_f = 0 + (9.8)(2.5)[/tex]
[tex]v_f = 24.5 m/s[/tex]
Part c)
A package of chips weighs 45 grams. How much is that in kilograms?
If a flea can jump straight up to a height of 21.1 cm , what is its initial speed as it leaves the ground, neglecting air resistance?
Answer:
Initial speed, u = 2.03 m/s
Explanation:
Flea jumps to a height of, h = 21.1 cm = 0.211 m
As it leaves the ground, its final speed, v = 0
Acceleration, a = -g
Let u is the initial speed of the flea. It can be calculated as :
[tex]v^2-u^2=2as[/tex]
[tex]-u^2=2\times (-9.8)\times 0.211[/tex]
u = 2.03 m/s
So, the initial speed of the flea as it leaves the ground is 2.03 m/s. Hence, this is the required solution.
What is the uncertainty of the position of the bacterium? express your answer with the appropriate units?
Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first. alice reaches the surface of the lake first. alice and tom will reach the surface of the lake at the same time.
Alice and Tom reach the lake simultaneously due to gravity's independence from their initial horizontal velocities. The correct answer is (E).
Let us consider the concept of horizontal motion and vertical motion of a projectile (in this case, Alice and Tom) are independent of each other when there is no air resistance.
This means that the horizontal velocity does not affect the vertical motion.
Both Alice and Tom are subject to the same gravitational acceleration, and since they are both falling vertically, they will reach the surface of the lake at the same time.
So, the correct answer is (E). Alice and Tom will reach the surface of the lake at the same time.
To learn more on Speed click:
https://brainly.com/question/28224010
#SPJ12
Alice and tom dive from an overhang into the lake below. tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s. neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below.
(A) alice and tom dive from an overhang into the lake below.
(B) tom simply drops straight down from the edge, but alice takes a running start and jumps with an initial horizontal velocity of 25 m/s.
(c) neither person experiences any significant air resistance. compare the time it takes each of them to reach the lake below. tom reaches the surface of the lake first.
(D) alice reaches the surface of the lake first.
(E) alice and tom will reach the surface of the lake at the same time.
Both Alice and Tom will reach the surface of the lake at the same time because their times to hit the water depend only on the vertical distance and gravitational acceleration.
Alice and Tom both dive from the same overhang into a lake below.
Although Alice takes a running start and has an initial horizontal velocity of 25 m/s, the time it takes both of them to reach the lake is the same. This is because the vertical motion for both divers is under uniform acceleration due to gravity, which is not affected by their horizontal velocities.The time it takes to reach the surface is dictated by the height of the overhang and gravity alone.Both Alice and Tom experience the same vertical acceleration and fall the same vertical distance, hence, they will both reach the surface of the lake at the same time.
Determine the vertical motion of each diver, which is independent of horizontal motion.Use the kinematic equation for vertical motion: h = 1/2 * g * t².Since both Alice and Tom start from the same height and are only influenced by gravity (9.8 m/s²), their times to hit the water are the same.Vector c has a magnitude 24.6 m and is in the direction of the negative y-axis. vectors a and b are at angles α = 41.4° and β = 27.7° up from the x-axis respectively. if the vector sum a b c = 0, what are the magnitudes of a and b?
To find the magnitudes of vectors a and b, we need to resolve them into their x and y-components and equate them to zero to form two equations. Solving these equations will give us the magnitudes of a and b.
Explanation:To find the magnitudes of vectors a and b, we need to analyze the given vector sum equation a + b + c = 0. Since vector c is in the negative y-axis direction, it can be written as c = 0î - 24.6ĵ m. According to the vector sum equation, the x-components and y-components of the vectors should cancel out each other. Using trigonometric identities, we can resolve vectors a and b into their x and y-components:
a = (ax)î + (ay)ĵ
b = (bx)î + (by)ĵ
After resolving the vectors, we equate their x-components and y-components to zero to form two separate equations. Solving these equations will give us the magnitudes of vectors a and b.
Learn more about Vector Components here:https://brainly.com/question/37919829
#SPJ1
When you lift a box off the ground, gravity opposes your lifting force.
A.True
B.False
Work is the transfer of _______ that occurs when a force makes an object move.
Select the correct statement to describe when a sample of liquid water vaporizes into water vapor. Question 12 options: Temperature increases and molecular motion increases while shape becomes less defined. Temperature increases and molecular motion decreases while shape becomes more defined. Temperature decreases and molecular motion decreases while shape becomes more defined. Temperature decreases and molecular motion increases while shape becomes less defined.
In a video game, a ball moving at 0.6 meter/second collides with a wall. After the collision, the velocity of the ball changed to -0.4 meter/second. The collision takes 0.2 seconds to occur. What’s the acceleration of the ball during the collision?
I drop a penny from the top of the tower in Midland Borough and it takes 1.85 seconds to hit the ground. Calculate the velocity at impact in m/s.
Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height of 2.00 â 105 m. suppose another volcano on a different moon ejected lava at a height of 1.89 â 105 m where the acceleration of gravity is 1.72 m/s2.
Final answer:
The question deals with the heights of volcanic lava ejections on moons within our solar system under varying gravitational conditions, highlighting Io, a moon of Jupiter. It emphasizes physics concepts like kinematics and gravitational force, and underlines the contribution of space exploration to our understanding of celestial phenomena.
Explanation:
The question explores the phenomenon of volcanic eruptions on moons in our solar system, focusing on Io, one of Jupiter's moons, and another hypothetical moon. Specifically, it mentions volcanoes ejecting lava to great heights under different gravitational conditions. The question implicitly asks for an analysis or comparison based on the given data, such as the maximum height of lava ejection and the acceleration due to gravity on another moon.
The subject matter delves into the principles of kinematics and gravitational force, which are fundamental concepts in physics. It exemplifies how extraterrestrial volcanism can offer insights into the geological and physical dynamics of celestial bodies other than Earth. Furthermore, the mention of Galileo and Voyager spacecrafts underlines the importance of space exploration in understanding these phenomena.