Suspension mixture was their dinner if they were having spaghetti and meatballs. The right option is D.
Explanation:
Properties of suspension mixture are:
Bigger particles are seen in suspension, and they are visible by naked eye.
Suspension is a heterogenous mixture of either two or more substances.
Solute particles are not dissolved in solvent instead they are suspended as it is or in bulk.
Exhibits Tyndall effect.
Solid particles get sedimented easily.
A mixture of spaghetti and meatballs are suspension because two paricles are not dissoved, and they have separate phases on sphagetti and meat ball where liquid in meat ball drizzles to bottom and meatball remians on top.
Una sustancia que ocupa el volumen de 70mL y una masa de 165g
Answer:
The density of the substance is 2.357 g/mL
Explanation:
Given that the substance has a mass of 165 g and occupies a volume of 70 mL, I'm assuming that the question missing is: What is its density?
Density (ρ) is computed as follows:
ρ = mass/volume
ρ = 165 g/ 70 mL
ρ = 2.357 g/mL
Which is not a Lewis acid-base reaction?
I believe it would be the last one. It just amplified the acid, which is (2. Al)(2.Cl3)-> Al2Cl6
Hope it helps!
A neutralization reaction, such as between hydrochloric acid and sodium hydroxide, is not considered a Lewis acid-base reaction as it does not involve the transfer of electron pairs.
Explanation:A Lewis acid-base reaction refers to a reaction involving the transfer of an electron pair. The Lewis acid accepts the electron pair, while the Lewis base donates it. An example that does not fit the definition of a Lewis acid-base reaction would be the neutralization reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH), which produces water (H2O) and salt (NaCl). This reaction does not involve the transfer of electron pairs, and hence, is not a Lewis acid-base reaction.
Learn more about Lewis acid-base reaction here:https://brainly.com/question/34236440
#SPJ3
1. Compare How do
residual soil and transported
soil differ?
Residual soil and transported soil differ by as follows:
Residual soil stays over its parent rock and transported soil forms from particles from another place.
Explanation:
Soil forms from weathering of rock. When a rocks get weathered it creates small paiticles. That forms different kind of soil. Soil varies in texture, structure, colour, composition and in pH level. Each and every soil type produced from parent rock. Depending upon the character of parent rock soil type is determined like basalt the igneous rock forms black soil.
Residual soil stays over parent rock it does not get off by the activities of natural agents like air, water, wind and glacier. Transported soil comes from hilly area to flat topped ground by transportation through some transporting agents of nature. It is immature soil.
What do chemists express the rates of chemical reaction?
Answer:
They represented rate of chemical reactions are the rate of change in concentration of products or reactants in a reaction
Answer:
Rate of a chemical reaction = change in concentration of a reactant or product per unit time.
It can be expressed in two terms:
1) The rate of decrease in concentration of any of the reactants.
2) The rate of increase in the concentration of any of the products.
Explanation:
Rate of reaction is the speed at which reactants are converted into products or the rate at which products are produced from reactants.
H2 + NO → H2O + N2
If 180.5 grams of N2 are produced, how many grams of H2 were reacted?
Answer:
12.89 moles
Explanation:
Before we solve the question, we have to balance the equation of the reaction first. The balanced reaction will be:
2 NO + 2 H2→ N2 + 2 H2O
There are 180.5g of N2 produced, the number of produced in moles will be: 180.5g / (28g/mol)= 6.446 moles
The coefficient of H2 is two and the coefficient of N2 is one. Mean that we need two moles of H2 for every one mole of N2 produced. The number of H2 reacted will be: 2/1 * 6.446 moles = 12.89 moles
The students in the picture below are using a globe and a lamp to model the Sun and the Earth. If the model Earth acts the same as the real Earth, what will happen as the students spin the model?
A. Different parts of the model Earth will have different seasons.
B. All of the model Earth will have daytime at the same time.
C. A new year will start each time the model Earth makes a complete turn.
D. Some parts of the model Earth will have daytime and some will have night.
Answer:
The only one that makes sense IF the model behaves as the Earth is D.
Explanation:
Answer
D. Some parts of the model Earth will have daytime and some will have night.
Explanation:
i got it right~
How do you find the formula for the ionic compound of sodium chromate?
Pls show all working out ty;)
Answer:
Explanation:
Sodium chromate has the chemical formula Na2CrO4, and a molar mass of 161.97 g/mol. It is a salt made of two sodium cations (Na+) and the chromate anion (CrO4-) in which the chromium atom is attached to four oxygen atoms.
Empirical formula of C6H12O6
Answer:
The empirical formula of glucose is CH2O
Explanation:
The formula for glucose is C6H12O6
To calculate the empirical formula of glucose, we need to know the number of mole of each element present in the compound.
Since the moles have been given in the formula of glucose C6H12O6
There are 6 moles of carbon, 12 moles of hydrogen and 6 moles of oxygen
Since we've known the number of moles already,so we pick the mole with the smallest number and divide through with it
C - 6/6 = 1
H - 12/6 = 2
O - 6/6 = 1
Therefore, the empirical formula of glucose C6H12O6 is CH2O
What is the specific heat of a substance if 6527 J are required to raise the temperature of a 312 g sample by 15 degrees Celsius?
Answer:
1.395J/g°C
Explanation:
The following were obtained from the question:
Q = 6527J
M = 312g
ΔT = 15°C
C =?
Q = MCΔT
C = Q/MΔT
C = 6527/(312 x 15)
C = 1.395J/g°C
The specific heat capacity of the substance is 1.395J/g°C
The specific heat of the substance is 1.385 J/g·°C. To identify the substance, compare its specific heat with substances listed in Table 5.1.
Explanation:The specific heat can be calculated using the formula:
specific heat = energy / (mass x temperature change)
In this case, the energy is given as 6527 J, the mass is 312 g, and the temperature change is 15 degrees Celsius. Plugging in these values, we get:
specific heat = 6527 J / (312 g x 15 °C) = 1.385 J/g·°C
The specific heat of the substance is 1.385 J/g·°C.
To identify the substance, we would need to compare its specific heat with substances listed in Table 5.1.
2C4H10(g) + 13O2(g) → 8CO2(g) + 10 H2O(g) How many moles of O2 are required to react completely with 5.00 moles C4H10?
Answer:
32.5 moles of oxygen are required.
Explanation:
Given data:
Number of moles of C₄H₁₀ = 5.00 mol
Number of moles of oxygen required = ?
Chemical equation:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Now we will compare the moles of oxygen with C₄H₁₀ through balanced chemical equation.
C₄H₁₀ : O₂
2 : 13
5.00 : 13/2×5 = 32.5
So when 5 moles of C₄H₁₀ are present 32.5 moles of oxygen are required to react completely.
Answer:
32.5
Explanation:
How may moles are in 145.54 g of SIO2
Answer:
The number of mole is 2.422 moles
Explanation:
To calculate the number of mole, we have to use the formula n = m /Mm
n - moles
m - mass
Mm - molar mass
Let's calculate the molar mass of the compound SiO2
Si - 28.0855
O - 15.999
Note: there are two atoms of oxygen in the compound
Mm of SiO2= 28.0855+ 2* 15.999
= 60.0835g/mol
Now, we calculate the number of moles
n = 145.54g/ 60.0835g/mol
= 2.422mol
Is potassium a metal, non metal or metalliod
Answer: Metal
Explanation: Potassium is a soft, silvery-white metal, member of the alkali group of the periodic chart. Potassium is silvery when first cut but it oxidizes rapidly in air and tarnishes within minutes, so it is generally stored under oil or grease.
Potassium is a metal, specifically an alkali metal, identified as part of Group 1 on the periodic table. Metals are characterized as shiny, malleable, ductile, and excellent conductors of heat and electricity.
Explanation:Potassium, denoted by the symbol 'K' on the periodic table, falls into the category of metals. As part of Group 1, it is an alkali metal. Metals are characterized by their shininess, silvery color (in most cases), excellent conductivity of heat and electricity, malleability, and ductility. To classify an element as a metal, nonmetal or metalloid, it's important to examine its location on the periodic table. Generally, metals occupy the left three-fourths of the periodic table while nonmetals are clustered in the upper right-hand corner. Metalloids, or semimetals, have intermediate properties and lie adjacent to the line dividing metals and nonmetals on the right-hand portion of the periodic table.
Learn more about Potassium here:https://brainly.com/question/13321031
#SPJ12
Plzz Someone
SrBr2 + (NH4)2CO3 → SrCO3 + 2 NH4Br
If 2.1993 moles of (NH4)2CO3 are reacted, how many grams of SrCO3 will be produced?
Answer:
324.6g
Explanation:
From this given problem, it is desirable to solve from the known specie to the unknown.
The balanced chemical combination is given as:
SrBr₂ + (NH₄)₂CO₃ → SrCO₃ + 2NH₄Br
Given;
2.1993 mole of (NH₄)₂CO₃ ;
Unknown:
Mass of SrCO₃ produced;
From the balanced equation, we see that;
1 mole of (NH₄)₂CO₃ reacted to produce 1 mole of SrCO₃
2.1993 mole of (NH₄)₂CO₃ will produce 2.1993 mole of SrCO₃
Mass of SrCO₃ produced = number of moles x molar mass of SrCO₃
Molar mass of SrCO₃ = 87.6 + 12 + 3(16) = 147.6g/mol
Mass of SrCO₃ = 2.1993 x 147.6 = 324.6g
2.1993 moles of (NH4)₂CO₃ reacted will produce approximately 324.74 grams of SrCO₃.
The question asks how many grams of SrCO3 will be produced if 2.1993 moles of (NH4)₂CO₃ are reacted according to the chemical equation:
SrBr₂ + (NH4)₂CO₃ → SrCO₃ + 2 NH₄Br
Firstly, it's essential to note that the balanced chemical equation indicates a 1:1 mole ratio between (NH4)₂CO₃ and SrCO₃. Given this ratio, the moles of (NH4)₂CO₃ reacted will equal the moles of SrCO₃ produced. Hence, 2.1993 moles of (NH4)₂CO₃ will produce 2.1993 moles of SrCO3.
The molar mass of SrCO₃ (strontium carbonate) is approximately 147.63 g/mol. To convert moles of SrCO₃ to grams, multiply the moles by the molar mass:
2.1993 moles of SrCO₃ × 147.63 g/mol = 324.74 grams of SrCO₃
Therefore, 2.1993 moles of (NH4)₂CO₃ reacted will produce approximately 324.74 grams of SrCO₃.
What is the mass , in grams, of 0.802 mol of salicylic acid?
Answer:
110.76 are the grams I think?
Explanation:
How many grams of Ag will be produced from 5.00g of Cu and 1.00g of AgNO3
Answer:
0.635 grams
Explanation:
Equation for the reaction
[tex]Cu + 2 AgNO_3 -----> Ag^{2+} + CuNO_3[/tex]
mass of Cu = 5.00 g
molar mass = 63.5 g/mol
number of moles = [tex]\frac{mass}{molar mss}[/tex]
number of moles of Cu = [tex]\frac{5.00g}{63.5g/mol}[/tex]
number of moles of Cu = 0.0787 moles
To determine the moles of Ag formed; we have:
0.00588 moles of AgNO₃ × [tex]\frac{2 moles of Ag}{2 moles of AgNO_3}[/tex]
= 0.00588 moles of Ag are produced
Molar mass of Ag = 108 g/mol
Then mass of Ag that will be produced = number of moles of Ag × molar mass of Ag
= 0.00588 moles × 108 g/mol
= 0.635 grams of Ag are produced.
Answer:
0.635 g of Ag
Explanation:
Below are attachments containing the solution
A swimmer can swim at a speed of 2.8 m/s for 6
minutes. What distance will she cover in that
time?
Answer: 1008 metres
Explanation:
speed of swimmer = 2.8 m/s
Time taken = 6minutes
(since speed is in metres per second, convert time in minutes to seconds
If 1 minute = 60 seconds
6 minute = 6 x 60 = 360 seconds
distance = ?
Since, speed is the distance covered divided by time taken in seconds, thus
Speed = distance / time
Distance = speed x time taken
distance = 2.8m/s x 360
= 1008 metres
Thus, the swimmer cover a distance of 1008 metres
What is the molarity of 0.8 moles of KCL in 2L of solution
Answer:
The molarity is 0,4M
Explanation:
The molartity is moles of compound (in this case KCl) in 1 liter of solution :
2 L----------0,8 moles KCl
1 L-----------x= (1L x0,8 moles KCl)/2L= 0,4 moles KCl--> 0,4M
A 0.50 L container at 305 K holds a 0.22 g sample
of carbon dioxide gas (CO2). Assuming ideal
gas behavior, what is the pressure, in kilopascals,
exerted by the gas?
A 23 kPa
B 25 kPa
C 41 kPa
D 67 kPa
Answer:
Option B. 25 kPa
Explanation:
First, let us calculate the number of mole of CO2 in the container. This is illustrated below:
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Mass of CO2 = 0.22g
Number of mole of CO2 = 0.22/44 = 0.005mol
From the question, we obtained the following data:
V = 0.5L
T = 305K
R = 0.082atm.L/K /mol
n = 0.005mol
P =?
PV = nRT
P = nRT/V
P = (0.005x0.082x305)/0.5
P = 0.2501atm
Recall:
1atm = 101325Pa
0.2501atm = 0.2501 x 101325 = 25341.4Pa = 25341.4/ 1000 = 25KPa
I’ve been up all night doin chemistry, can someone please give me the answers
A(n) _________________ solution can dissolve more solute at the given temperature. If you add more solute until the solution will dissolve no more at that temperature, it is ________________. *
Answer:
An unsaturated solution can dissolve more solute at the given temperature. If you add more solute until the solution will dissolve no more at that temperature, it is saturated solution.
Explanation:
In unsaturated solution, there is capacity of solution to dissolve more solute inside the solution. In saturated solution, there is no capacity of a solution to dissolve any further solute at a given temperature. This capacity is increased by heating the solution so more solute will be dissolved. This is called supersaturated solution.
Which type of nuclear radiation is being emitted here?
Answer:
b.Beta
Explanation:
mass number remains constant while atomic number has been increased by 1 unit . beta is electron like element where its mass number is 0 and atomic number is -1.
The nuclear radiation being is emitted in the given radioactive decay is beta radiation.
Beta radio decay :
It is the type of radioactive decay in which negative beta particles and are emitted resulting in isobaric nucleus with 1 extra proton.
Characteristics
It occurs in the nucleus that has too many neutrons than protons.A neutron change into proton and emits beta particles and electrons.The atomic number of the resulting nucleus increased by one but the atomic mass remains the same.In the picture atomic number is increased by one but atomic mass remains the same.
Therefore, the nuclear radiation being is emitted in the given radioactive decay is beta radiation.
To know more about beta radiation,
https://brainly.com/question/16935100
What is the wavelength of a wave with a
velocity of 50 m/s and a frequency of 5 Hz?
Answer:
Wavelength is 10m
Explanation:
To solve this problem, we use the formula for wavelength
Wavelength = wave velocity / frequency
Wavelength = 50m/s / 5Hz
= 10m
Answer:
10 m
Explanation:
Given the following equation: 2 Ca + O2 --> 2 CaO How many moles CaO produced from 4 moles O2?
8 moles of CaO produced from 4 moles O2.
Explanation:
Balanced chemical equation for the reaction:
2 Ca + O2 --> 2 CaO
Data given:
moles of O2 = 4
Moles of CaO =?
From the reaction it is seen that 1 mole of O2 is used in the reaction to produce 2 moles of CaO
hence, 4 moles of O2 will give x moles of CaO
[tex]\frac{2}{1}[/tex] = [tex]\frac{x}{4}[/tex]
x =8
So, 8 moles of CaO will be produced when 4 moles of O2 will be used in the reaction. Since oxygen is the limiting reagent in the reaction.
A 3.0-L gas mixture contains 30.% oxygen and 70.% nitrogen. Use the ideal gas law to determine the number of moles of oxygen at 2.0 atm and 400-K.
Answer:
The number of moles of oxygen gas comes out to be 0.0548 mole
Explanation:
Given volume of gas = V = 3.0 L
The mixture contains 30 % oxygen gas by mole.
Pressure of mixture of gas = P = 2.0 atm
Temperature = T = 400 K
Assuming n be the total number of moles of the mixture of gas.
The ideal gas equation is shown below
[tex]\textrm{PV} = \textrm{nRT} \\2.0 \textrm{ atm}\times 3.0\textrm{ L} = n \times 0.0821 \textrm{ L.atm.mol}^{-1}.K^{-1} \times 400 \textrm{ K} \\n = 0.18270 \textrm{ mole}[/tex]
The mixture contains 30% oxygen gas by mole
[tex]\textrm{ Number of moles of oxygen gas} = \displaystyle \frac{30\times 0.18270 \textrm{ mole}}{100} = 0.0548 \textrm{ mole}[/tex]
Number of moles of oxygen gas is 0.0548 mole
Final answer:
At 2.0 atm and 400 K, there are 0.9 moles of oxygen in the 3.0-L gas mixture that contains 30.% oxygen and 70.% nitrogen, as determined using the ideal gas law.
Explanation:
To calculate the number of moles of oxygen, we first need to find the total number of moles in the mixture using the ideal gas law:
n = PV / RT
where n is the number of moles, P is the pressure in atmospheres, V is the volume in liters, R is the ideal gas constant (8.31 J/mol·K), and T is the temperature in kelvins.
Substituting our values into this equation, we get:
n = (2.0 atm)(3.0 L) / (8.31 J/mol·K)(400 K) = 0.069 moles total
we need to find the fraction of moles that is oxygen:
x = (mass of oxygen) / (total mass) = (30.%)(0.069 moles total) = 0.021 moles oxygen
we can use this fraction to find the number of moles of oxygen:
n(O₂) = x(n total) = (0.021 moles oxygen) / (total moles) = (0.9 moles oxygen) / (total moles) = 0.9 moles oxygen
HELP PLEASE
In two or more complete sentences describe all of the van der Waals forces that exist between molecules of sulfur
dioxide, SO-2
Answer:
Dipole-Dipole attraction
Explanation:
Dipole-dipole attraction is a type of vander waals forces found in the molecules of sulfur dioxide.
Vander waals forces are weak attractions joining non-polar and polar molecules together. They are of two types:
London dispersion forces which are weak attractions found between non-polar molecules.
Dipole-Dipole attraction are the forces of attraction which exists between polar molecules. Such molecules have permanent dipoles. This implies that the positive pole of one molecule attracts the negative pole of another. This is what happens between the oxygen and sulfur molecules.
The solubility constant of MnS is 2.3 ×10−13 at 25°C. What is the concentration of sulfide
ions in a saturated solution of MnS at equilibrium?
[A] + [B] ⇌ [C] + [D]
MnS ⇌ Mg + S
Ksp = [C][D]
Ksp = (Mn)(S)
2.3*10^-13 = (x)(x)
2.3*10^-13 = x^2
x = 4.8*10^-7
Concentration of sulfide is x.
Today, my son asked "Can I have a book, Mark?" and I burst into tears. 11 years old and he still doesn't know my name is Brian.
please help me out...
a. how many atoms are in 1.008 grams of hydrogen?
b. how many atoms are in 12.011 grams of carbon?
c. how many atoms are in 22. 989 grams of sodium?
d. how many atoms are in 63.55 grams of copper?
e. what is the mass of 1 mole of Br atoms?
f. what is the mass of 1 mole of Ag atoms?
g. what is the mass of 1 mole of Ca atoms?
This response uses the concept of a mole and the principles of molar mass to calculate the number of atoms in various substances as well as the corresponding molar masses for different elements.
Explanation:To solve these problems, we need to understand the concept of a mole. A mole is a quantity in chemistry that helps us count entities at the atomic and molecular scale. One mole equals Avogadro's number (6.02214076 x 10^23 entities).
Also, one mole of any element in grams is equal to its molar mass (usually found under the symbol in the periodic table).
The molar mass of Hydrogen (H) is 1.008 g/mol. So 1.008 g of Hydrogen contains 1 mole or 6.022 x 10^23 atoms.The molar mass of Carbon (C) is 12.011 g/mol, which implies that a 12.011 g sample of Carbon contains the same number of atoms, 6.022 x 10^23 atoms.In 22.989 g of Sodium (Na), there are also 6.022 x 10^23 atoms since Sodium's molar mass is 22.989 g/mol.Similarly, in 63.55 g of Copper (Cu), being Copper's molar mass, there are also 6.022 x 10^23 atoms.The molar mass of Bromine (Br) is roughly 79.904 g/mol.The molar mass of Silver (Ag) is roughly 107.87 g/mol.The molar mass of Calcium (Ca) is roughly 40.078 g/mol.Learn more about Mole Calculations here:https://brainly.com/question/33652783
#SPJ3
can someone please help me with this asap
what is the value of d
The value of "d" is 80°
Explanation:
Cyclic quadrilaterals are the special group of quadrilaterals with all its base lying on the circumference of the circle. In other words, a quadrilateral inscribed in a circle is called a cyclic quadrilateral.
Cyclic quadrilateral are characterised by some special features such as
Sum of opposite angles of a cyclic quadrilateral is always a supplementary angle. If one of the sides of a cyclic quadrilateral is produced, then the exterior angle so formed is always double of the corresponding interior angle.Using the property 1
We find that since the quadrilateral is cyclic, opposite pairs must be supplementary
100° +∠D must be equal to 180°
D=180° -100° =80°
If the attractive forces in a substance is much less than the
molecular motion, then the substance will be in
state.
a
Solid
b Liquid
c Gaseous
d Both Solid and Liquid
Answer:
If the attractive forces in a substance is much less than the
molecular motion, then the substance will be in a "Gaseous" state.
Explanation:
When decreasing the attractive forces in a substance and making it "much" less than the molecular motion in the substance, the substance should be in a gaseous state.
When the average kinetic energy of a substance or object is small enough that the attractive forces is stable enough to hold all of the particles close together, the molecules in liquids and solids do not move apart.
If the average kinetic energy of a substance or object is great enough (greater than the attractive forces) to overpower the attractive forces between them, the molecules are able to move apart. This would mean that the substance is in a gaseous state.
Overall, if the attractive forces are less than the molecular motion then the molecular motion will over power the attractive forces, breaking the molecules apart and letting them move freely as molecules in a gaseous substance would.
If the forces of attraction are less than the molecular motion , then substance will be in gaseous state.
What are forces of attraction?Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.
Learn more about forces of attraction,here:
https://brainly.com/question/10957144
#SPJ2
What information can you infer from the Lewis structure diagram shown below? (2 points)
Group of answer choices
Boron has three valence electrons.
Oxygen has three valence electrons.
Boron has one valence electron.
Oxygen has one valence electron.
Answer:
FLVS
Boron has three valence electrons.
Explanation:
I put the one and it was incorrect.
Answer:
Boron has 3 valence electrons
Explanation: