Did your response contain the following points? You may have discussed additional points that are not listed here.
Both carbohydrate and fat molecules release energy when cells break them down.
Many carbohydrates contain fiber, which the body cannot break down but which can help the digestive system function.
Sterols are important lipids that cells can convert into compounds the body needs, such as vitamins, some hormones, and bile salts.
Phospholipids are important structural components of cells.
At 25 °c only 0.0420 mol of the generic salt ab2 is soluble in 1.00 l of water. what is the ksp of the salt at 25 °c?
The Ksp, or solubility product constant, of a generic salt AB₂ at 25 °C with a solubility of 0.0420 mol/L is 2.96 × 10⁻⁴.
The student has asked to find out the Ksp of a generic salt AB₂ at 25 °C, when its solubility is given.
The solubility product constant (Ksp) is the equilibrium constant for the dissolution of a solid substance into an aqueous solution. Considering the stoichiometry of the generic salt AB₂, when it dissolves in water, it dissociates into one A²⁺ ion and two B⁻ ions.
The solubility equilibrium reaction is:
AB₂(s) → A²⁺(aq) + 2B⁻(aq)
Since the solubility is 0.0420 mol/L for AB₂, the concentration of A²⁺ will be 0.0420 M and the concentration of B⁻ will be 2 × (0.0420) M = 0.0840 M in the solution.
Using the expression for Ksp:
Ksp = [A²⁺][B⁻]² = (0.0420)×(0.0840)²
We calculate Ksp:
Ksp = (0.0420)×(0.007056) = 2.96 × 10⁻⁴
Thus the Ksp for AB₂ at 25 °C is 2.96 × 10⁻⁴.
When copper sulfate reacts with sodium hydroxide solution, a precipitate of copper hydroxide and a solution sulfate are formed
Which of these molecules has a lewis structure with a central atom having no nonbonding electron pairs?
What type of bond is easily disrupted in aqueous solutions?
Will the vapors of acetic acid go to the floor or ceiling of a room
Assume you had a silver sphere with a mass of 1.50kg. calculate the diameter of the sphere (in cm). the density of silver is 10.5 g/cm^3. the formula for the volume of a sphere is... v = 4/3 3.14 r^3
if you drop a 50 gram piece of metal with a temperature of 125° Celsius into 1000 grams of water at 20° Celsius, what best describes what would occur?
During an effusion experiment, oxygen gas passed through a tiny hole 2.5 times faster than the same number of moles of another gas under the same conditions. What is the molar mass of the unknown gas? (Note: the molar mass of oxygen gas is 32.0 g/mol.)
Answer:
2.0 x 10^2g
Explanation:
Shari was in the kitchen when she heard a crash. She went into her bedroom and found her window broken and a baseball lying on the ground. Shari said "this baseball broke my window.” This statement is an
inference because she is blaming someone else for the broken window.
inference because she drew a conclusion based on evidence.
observation because she heard the crash before she came into the room.
observation because she can see the evidence
If you reacted 88.9 g of ammonia with excess oxygen, what mass of nitric oxide would you expect to make? You will need to balance the equation first. NH3(g) + O2(g) -> NO(g) + H2O(g)
Final answer:
The mass of nitric oxide expected to be produced from reacting 88.9 g of ammonia with excess oxygen is 156.7 g after balancing the chemical equation and performing stoichiometry calculations.
Explanation:
Calculating Mass of Nitric Oxide Produced from Ammonia:
To find the mass of nitric oxide that can be produced from reacting 88.9 g of ammonia with excess oxygen, first we need to balance the chemical equation. The balanced equation is:
4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)
Next, we use the molar mass of ammonia (NH3) which is 17.03 g/mol to convert 88.9 g of NH3 to moles:
88.9 g NH3 ÷ 17.03 g/mol = 5.22 moles of NH3
Since the balanced equation shows that 4 moles of NH3 produce 4 moles of NO, we can calculate the moles of NO produced from 5.22 moles of NH3:
(5.22 moles NH3) × (4 moles NO / 4 moles NH3) = 5.22 moles NO
Finally, using the molar mass of NO (30.01 g/mol), we find the mass of NO produced:
(5.22 moles NO) × (30.01 g/mol) = 156.7 g NO
Therefore, we expect to make 156.7 g of nitric oxide from the reaction of 88.9 g of ammonia with excess oxygen.
Calculate the amount of heat required to vaporize 84.8 g of water at its boiling point.
Answer: Amount of heat required to vaporize 84.8 g of water is 191.7kJ.
Explanation: We are given 84.8 grams of water, to convert it into moles, we use the formula:
[tex]Moles=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of water = 18 g/mol
[tex]Moles=\frac{84.8g}{18g/mol}=4.71moles[/tex]
As we know that [tex]\Delta H_{vap}[/tex] for 1 mole of water at 100° C is 40.7 kJ/mol
So, to calculate the amount of heat required, we use the formula:
[tex]q=m\Delta H_{vap}[/tex]
Putting the values in above equation, we get
[tex]q=4.71mol\times 40.7kJ/mol[/tex]
q = 191.7kJ
What is the mass number of an atom having 16 protons and 13 neutrons?
Consider three 10-g samples of water: one as ice, one as liquid, and one as vapor. how do the volumes of these three samples compare with one another?
Ice has the largest volume, followed by liquid water, and then water vapor.
Explanation:Water is one of the few substances on Earth that exists naturally in all three states: solid (ice), liquid (water), and gas (water vapor). The density of each state of water varies, with the vapor state being the least dense and the liquid state being the most dense. The solid state, which is ice, is less dense than the liquid state. So, in terms of volume, the ice sample will have the largest volume, followed by the liquid water sample, and then the water vapor sample, which will have the smallest volume.
What is ionization energy?
The ionization energy is the amount of energy needed to remove a valence electron. Valence electrons are the outermost electrons.
What is the molecular mass of cholesterol if .00105mol wieghs .406g?
which of the following is the most reasonable explanation for a drop in temperature of gas?
A) a decrease in the volume of the container
B) a decrease in the average kinetic energy of the gas particles
C)an increase in the average potential energy of the gas particles
D) an increase in gas pressure
Answer: The correct answer is option B.
Explanation:
Average kinetic energy of the gas molecule is given by relation:
[tex]E_K=\frac{3}{2}\frac{R}{N_A}\times T[/tex]
[tex]N_A[/tex] = Avogadro Number
T = Temperature of the gas in Kelvins.
R = Universal gas constant
[tex]E_K\propto T[/tex]
With increase in temperature the kinetic energy of the gas molecule increases and vice-versa.
So, according to the question the explanation for a drop in temperature of the gas is decrease in average kinetic energy of the gas molecules.
Hence, the correct answer is option B.
An aqueous solution contains 0.050 m of methylamine, with kb = 4.4 x 10-4. what is the percent ionization and the ph of the solution?
Final answer:
To calculate the hydroxide ion concentration and the percent ionization of a 0.0325-M solution of ammonia, use the Kb expression and an ice table. The hydroxide ion concentration is 7.6 x 10-4 M and the percent ionization is 2.34%.
Explanation:
To calculate the hydroxide ion concentration and the percent ionization of a 0.0325-M solution of ammonia, we can use the formula for Kb. Kb is the equilibrium constant for the reaction of NH3 with water to form NH4+ and OH-. The equation is: NH3 + H2O ⇌ NH4+ + OH-. The Kb value for ammonia is given as 1.76 x 10-5.
First, we need to calculate the hydroxide ion concentration. We can use the Kb expression to set up an ice table and solve for the OH- concentration. Let x be the concentration of OH-. Since the initial concentration of NH3 is 0.0325 M, the initial concentration of OH- is 0 M.Using the Kb expression, we can set up the equation: Kb = (x)(x)/(0.0325 - x). Solving for x gives us x = 7.6 x 10-4 M. Therefore, the hydroxide ion concentration is 7.6 x 10-4 M.To calculate the percent ionization, we can use the formula: % ionization = (OH- concentration / initial ammonia concentration) x 100. Plugging in the values, we get % ionization = (7.6 x 10-4 / 0.0325) x 100 = 2.34%.Biology
which variable is measured in an experiment?
A. dependent variable
B. independent variable
C. experimental variable
Anwser:
The correct option is A.
Explnation:
The dependent variable is the variable that is measured during the experiment, it is the variable that is affected during the experiment. Experiments are design in such a way that the dependent variable depends on and respond to independent variable.
Earth is the only planet that has a _____ and a _____.
How much oxygen gas can be produced through the decomposition of potassium chlorate (KClO3) if 194.7 g of potassium chlorate is heated and fully decomposes? The equation for this reaction must be balanced first. KClO3 (s) -> KCl (s) + O2 (g) A. 194.70 grams
B. 76.26 grams
C. 2.47 grams
D. 2.38 grams
When 194.7g of potassium chlorate is fully decomposed, it produces 76.26g of oxygen gas.
Explanation:The decomposition of potassium chlorate (KClO3) when heated produces potassium chloride (KCl) and oxygen (O2). But first, we need to balance the chemical equation. A balanced equation of this chemical reaction is 2KClO3 -> 2KCl + 3O2 which means 2 moles of potassium chlorate produce 3 moles of oxygen.
The molar mass of KClO3 is 39.1 (K) + 35.5 (Cl) + (16.0 x 3)(O) = 122.6 g/mol. Given 194.7g of KClO3, the moles of KClO3 = 194.7g / 122.6 g/mol = 1.59 moles.
From the balanced equation, we know that 2 moles of KClO3 produces 3 moles of O2. Therefore, 1.59 moles of KClO3 will produce (1.59/2)*3 = 2.38 moles of O2. Finally, by multiplying the moles of O2 by its molar mass (32 g/mol), we get the mass of oxygen that gets produced = 2.38 * 32 = 76.26 g.
So, when fully decomposed, 194.7g of potassium chlorate will produce 76.26g of oxygen gas.
Learn more about Chemical Decomposition here:https://brainly.com/question/33839344
#SPJ12
A combination reaction occurs when one reactant forms two or more products true or false
Answer:
its true for apex ;)
Explanation:
Write balanced chemical equation for the oxidation of fe2+(aq) by s2o2−6 (aq).
Which laws can be combined to form the ideal gas law?
Boyle’s law and Charles’s law
Gay-Lussac’s law and Avogadro’s law
Charles’s law, Avogadro’s law, and Boyle’s law
Dalton’s law, Gay-Lussac’s law, and Avogadro’s law
Charles’s law, Avogadro’s law, and Boyle’s law can be combined to form the ideal gas law.
What is Boyle's law?
Boyle's law is an experimental gas law which describes how the pressure of the gas decreases as the volume increases. It's statement can be stated as, the absolute pressure which is exerted by a given mass of an ideal gas is inversely proportional to its volume provided temperature and amount of gas remains unchanged.
Mathematically, it can be stated as,
P∝1/V or PV=K. The equation states that the product of of pressure and volume is constant for a given mass of gas and the equation holds true as long as temperature is maintained constant.
According to the equation the unknown pressure and volume of any one gas can be determined if two gases are to be considered.That is,
P₁V₁=P₂V₂
Learn more about Boyle's law,here:
https://brainly.com/question/21184611
#SPJ5
How many moles of libr are contained in 347 g of water in a 0.175 m libr solution?
Answer:
Molaridad = número de lunares de soluto/Kg de disolvente
La molaridad se da en el problema como 0,175 m
Masa de disolvente = 347 gm = 0,347 Kg
por lo tanto
0.175 = número de lunares de LiBr / 0.347
número de lunares de LiBr = 0,175 x 0,347 = 0,060725 lunares
Explanation:
Consider the reaction between hcl and o2: 4hcl(g)+o2(g)→2h2o(l)+2cl2(g) when 63.1 g of hcl are allowed to react with 17.2 g of o2, 59.6 g of cl2 are collected.
The chemistry question involves a reaction of HCl and O2 to form H2O and Cl2. This involves principles of stoichiometry and energy dynamics, as well as the concept of limiting reactants.
Explanation:The reaction being described here is a chemical reaction where hydrochloric acid (HCl) and oxygen (O2) react to form water (H2O) and chlorine gas (Cl2). Because 59.6g of Cl2 are formed when 63.1g of HCl reacts with 17.2g of O2, this reaction demonstrates the concept of stoichiometry, where the amount of reactants determines the amount of product formed. We can also talk about the energy changes during this reaction. For example, when H-Cl bonds are formed, energy is released. Therefore this is also an exothermic reaction.
Further, it looks like this situation involves a limiting reactant, since there seems to be excess HCl or O2 left over after the reaction is complete. This is because the ratios of the reactants are important in determining how much product is produced. Here, it seems either HCl or O2 was in excess and hence remained unreacted at the end of the reaction.
Learn more about Chemical Reactions here:https://brainly.com/question/34137415
#SPJ3
HCl is the limiting reactant. The theoretical yield of Cl₂ is 61.37 g, and the percent yield is 75.1%.
To determine the limiting reactant, theoretical yield, and percent yield for the reaction between HCl and O₂, follow these steps:
Step A: Determine the Limiting ReactantThe balanced reaction is:
4 HCl(g) + O₂(g) → 2 H₂O(l) + 2 Cl₂(g)
First, calculate the moles of HCl and O2:
63.1 g HCl × (1 mol HCl / 36.46 g HCl) ≈ 1.73 mol HClUsing the stoichiometric ratio from the balanced equation:
0.5375 mol O₂ × (4 mol HCl / 1 mol O₂) = 2.15 mol HClSince only 1.73 mol of HCl are available, HCl is the limiting reactant. Hence, HCl is the limiting reactant.
Step B: Determine the Theoretical Yield of Cl₂From the balanced equation, 4 mol HCl produces 2 mol Cl₂. Therefore:
1.73 mol HCl × (2 mol Cl₂ / 4 mol HCl) = 0.865 mol Cl₂Convert moles of Cl₂ to grams:
0.865 mol Cl₂ × 70.90 g Cl₂ / 1 mol Cl₂ ≈ 61.37 g Cl₂The theoretical yield of Cl₂ is 61.37 g.
Step C: Determine the Percent YieldThe percent yield is given by:
Percent yield = (Actual yield / Theoretical yield) × 100The percent yield of Cl₂ is 75.1%
Complete Question.
Consider the reaction between HCl and O2: 4HCl(g)+O2(g)→2H2O(l)+2Cl2(g) When 63.1 g of HCl are allowed to react with 17.2 g of O2, 46.1 g of Cl2 are collected.
A. Determine the limiting reactant for the reaction.
Express your answer as a chemical formula.
B. Determine the theoretical yield of Cl2 for the reaction.
C. Determine the percent yield for the reaction.
If liquid a is more volatile than liquid b, which is also true? hints if liquid a is more volatile than liquid b, which is also true? liquid a has a lower vapor pressure than liquid
b. liquid a has stronger intermolecular forces than liquid
b. liquid a evaporates more slowly than liquid
b. liquid a has a lower boiling point than liquid
b.
Answer:
Liquid a has a lower boiling point than liquid b.
Explanation:
Hello,
In this case, volatility is associated with three factors:
1. Vapor pressure: this is the pressure exerted by the gas molecules in equilibrium with the liquid. The higher the vapor pressure, the higher the volatility.
2. Intermolecular forces: are the interactions attracting or repelling the material's molecules. The stronger the forces, the lower the volatility as the molecules remain strongly closer.
3. Boiling point: is the condition of both temperature and pressure at which a liquid passes from liquid to gas. The lower the boiling point, the higher the volatility as more molecules easily pass from liquid to gas.
In such a way since liquid a is more volatile than liquid b, the answer is liquid a has a lower boiling point than liquid b based on the aforesaid factors.
Best regards.
Acids generally have an excess of ______ ions in solution, while bases usually have an excess of ______ ions in solution.
A student arranged the four cards sequentially in a row on the basis of the periods when these events occurred. The card showing the earliest event was placed on the extreme left. Which of these cards was placed third in the row?
The sequences of the geological happenings in the periodical order is called the geological time's scale. The card of the third row depicts the first flowering plant.
What is the order of the events?Events of the evolution can be explained based on the geological timelines and are arranged on the basis of their discoveries. In the question, the order of the events is arranged from the earliest to the newest.
The earliest event was the appearance of life in the sea followed by the rock formation. The third event was the appearance of the flowering plant on the land followed by land animals.
Therefore, the third card depicts the flowering land plant.
Learn more about flowering plants here:
https://brainly.com/question/8664323
Rank the homologous series for a set of alkanes by their boiling point? The boiling points for a set of compounds in a homologous series can be qualitatively predicted using intermolecular force strengths. Using their condensed structural formulas, rank the homologous series for a set of alkanes by their boiling point.
Rank these alkanes from highest to lowest boiling points
1....; The correct answer is heptane 3,3-dimethylpentane hexane butane. Thanks though, your tip helped!
Alkanes from highest to lowest boiling points:
1. heptane2. 3.3 dimethyl pentane3. hexane4. butaneFurther explanationAlkanes are saturated hydrocarbons with all carbon bonds being single bonds
General formula:
[tex]\large{\boxed {\bold {C_nH_{2n + 2}}}[/tex]
There are several rules for naming alkanes from IUPAC:
the name of the branch followed by the name of the main chain the main chain is the longest chain that has the most branches branches are given the name alkyl with the symbol -R, and begin with a number, with the position of the branch getting the smallest number more than one branch is prefixed in, tri, tetra, penta, etc. and in alphabetical order with the smallest number.In determining the alkane boiling point, if in the same homologous series, then just look for alkanes with the largest relative molecular mass that will have a large boiling point too. So in an alkane in the form of a straight-chain, the more carbon atoms, the longer the main chain, the bigger the boiling point.
But if the relative molecular mass is the same, the alkanes have fewer branches will have a greater boiling point.
The more branches, the lower the boiling point, even though the number of carbon atoms is the same (as in isomers)
In isomers that have the same molecular formula and relative molecular mass, alkanes that have the fewest branches will have the largest boiling point.
So that the general determination of the alkane boiling point is (based on its priority)
1. relative molecular massthe greater the higher the boiling point
2. main chain branchthe fewer branches the higher the boiling point
The branching on the main chain in the alkane structure causes the attraction between the molecules to be lower so that to release this attractive force only requires low energy, ie at low temperatures
The relative molecular mass of each alkane in the above problem is:
1. heptane: 1002. 3.3 dimethyl pentane: 1003. hexane: 864. Butane: 58The relative molecular mass values above indicate that there are similarities in the relative molecular mass values of heptane and 3.3 dimethyl pentane. But because the unbranched chain has a higher boiling point so heptane has a greater boiling point than 3.3 dimethyl pentane
Learn morethe name of this hydrocarbon
https://brainly.com/question/3551546
the correct name of the compound
https://brainly.com/question/9535482
type of organic compound contains the following functional group
https://brainly.com/question/2288180
Keywords: alkanes, main chains, branches, boiling points, relative molecular mass
What is present in the glucose molecule that is missing in the carbon dioxide molecule?