Final answer:
To factor 1/7 out of 1/7x+46/7, you can factor it out of each term separately and then combine like terms.
Explanation:
To factor 1/7 out of 1/7x+46/7, you can factor it out of each term separately. So you would have:
1/7(1/7x) + 1/7(46/7)
Simplifying each term gives us:
1/49x + 1/49(46)
Finally, you can combine like terms to get the answer:
1/49x + 46/49
When an elephant sat down to order a half of a third of a quarter of an eighty foot bun and a frankfurter, son was it longer than three feat o shorter
1/2 of 1/3 of 1/4 of 80ft
= 1/2 of 1/3 of (1/4 of 80ft)
= 1/2 of 1/3 of 20ft
= 1/2 of (1/3 of 20ft)
= 1/2 of (20/3) ft
= 20/6 ft
> 18/6 ft
= 3ft
So the order was longer than 3 feet.
Pls help, I can’t figure this one out
3.07 feet is your answer :)
Answer:
The radius is 4.5 ft
Step-by-step explanation:
The volume of a sphere is
V = 4/3 pi r^3
121.5 pi = 4/3 pi r^3
Divide each side by pi
121.5 = 4/3 r^3
Multiply each side by 3/4
121.5 *3/4 = r^3
91.125 = r^3
Take the cube root on each side
(91.125) ^(1/3)= (r^3)^(1/3)
4.5 = r
The radius is 4.5 ft
What does 0.5(-12p - 4) equal to?
Answer:
Use the distributive property to solve this equation: a(-b - c) = -ab - ac
Step-by-step explanation:
1. 0.5(-12p - 4) =
-6p - 2 is the answer.
Hope this helped!!!!
~Shane
Final answer:
The expression 0.5(-12p - 4) simplifies to -6p - 2 by distributing the 0.5 across each term inside the parentheses, resulting in the multiplication of -12p by 0.5 to get -6p, and -4 by 0.5 to get -2.
Explanation:
The expression 0.5(-12p - 4) can be simplified by distributing the 0.5 across the terms inside the parentheses. This is done by multiplying 0.5 by each term in the parentheses individually. The steps are as follows:
Multiply 0.5 by -12p, which gives us -6p.
Multiply 0.5 by -4, which gives us -2.
Combine these results to get the simplified expression, which is -6p - 2.
Therefore, 0.5(-12p - 4) equals -6p - 2.
A car went 120 miles in 3 hours. At this rate how long will it take for the car to travel in 350 miles
Answer:
8.75 hours
Step-by-step explanation:
120 miles in 3 hours = 40 mph
350 divided by 40 = 8.75
Alysa volunteers for 3.7 hours each day. If she volunteered for a total of 71.8 hours, for how many days did she volunteer? Round your answer to the nearest tenth of a day, if necessary.
Answer:
Step-by-step explanation:
Hello, this is simple:
You must to divide (71.8 hours)/(3.7 hours) so the result is 19.4 days
Best regards
PLEASE PLEASE HELP ME ASAP
The correct answer is 36.
What is the phase shift of a periodic function?
Answer and Explanation :
To find : What is the phase shift of a periodic function?
Solution :
The Phase shift is defined as a horizontal shift in a function in any direction.
Horizontal stretches will change the period of the function and that horizontal shift is called a phase shift or the amount of shift in a wave horizontally.
The phase shift is measured in degrees.
Refer the attached figure below for the pictorial representation of teh phase shift.
In the figure, [tex]\frac{\pi }{2} \text{ to } \pi[/tex] is showing the phase shift.
Example - Taking a general example of sin function
[tex]y = A \sin(B(x + C)) + D[/tex]
In this the phase shift is at C (positive is to the left).
Solve for x.
x2 - 2x = 0
A. 0,-2
B. 0,2
c. 1, -2
D. 1.2
Answer: B. 0, 2
Step-by-step explanation:
x² - 2x = 0
x(x - 2) = 0 Factored the left side
x = 0 and x - 2 = 0 Applied the Zero Product Property
x = 2 Solved the remaining equation
Therefore, x = 0 and x = 2
Solve the system.
2/3 x - 1 /2 y = 1
1/ 4 x + 3/8 y = -1
A) (3, 2)
B) (9, 10)
C) ( 9/ 2 , 5)
D) (- 1 /3 , - 22 /9 )
Answer:
[tex]\large\boxed{D)\ \left(-\dfrac{1}{3},\ -\dfrac{22}{9}\right)}[/tex]
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}\dfrac{2}{3}x-\dfrac{1}{2}y=1&\text{multiply both sides by 6}\\\dfrac{1}{4}x+\dfrac{3}{8}y=-1&\text{multiply both sides by 8}\end{array}\right\\\left\{\begin{array}{ccc}6\!\!\!\!\diagup^2\cdot\dfrac{2}{3\!\!\!\!\diagup_1}x-6\!\!\!\!\diagup^3\cdot\dfrac{1}{2\!\!\!\!\diagup_1}y=6\cdot1\\8\!\!\!\!\diagup^2\cdot\dfrac{1}{4\!\!\!\!\diagup_1}x+8\!\!\!\!\diagup^1\cdot\dfrac{3}{8\!\!\!\!\diagup_1}y=8\cdot(-1)\end{array}\right[/tex]
[tex]\underline{+\left\{\begin{array}{ccc}4x-3y=6\\2x+3y=-8\end{array}\right}\qquad\text{add both saides of the equations}\\.\qquad6x=-2\qquad\text{divide both sides by 6}\\.\qquad x=-\dfrac{2}{6}\\\\.\qquad\boxed{x=-\dfrac{1}{3}}\\\\\text{Put the value of x to the second equation:}\\\\2\left(-\dfrac{1}{3}\right)+3y=-8\\\\-\dfrac{2}{3}+3y=-8\qquad\text{add}\ \dfrac{2}{3}\ \text{to both sides}\\\\3y=-\dfrac{24}{3}+\dfrac{2}{3}[/tex]
[tex]3y=-\dfrac{22}{3}\qquad\text{divide both sides by 3}\ /multiply\ both\ sides\ by\ \frac{1}{3}/\\\\\boxed{y=-\dfrac{22}{9}}[/tex]
Which of the following graphs represents the equation y + 2 = 3(x-1)?
Answer:
Graph C
Step-by-step explanation:
y + 2 = 3x - 3
y = 3x - 5
Graph C touches (0,-5) and no other graphs do.
find a factor pair of 80 that has a sum of 21
16 and 5 are the factors
Answer: 5 and 16
Step-by-step explanation:
Because 5 plus 16 is 21.
then 5 times 16 is 80
Krystal City has a population of 40,500 people. It’s population is increasing at a rate of 3.8% each year. Write a function that represents each population s a function of time.
Answer:
[tex]y=40,500(1.038^{x})[/tex]
Step-by-step explanation:
Let
x----> the time in years
y----> the population
we know that
[tex]100\%+3.8\%=103.8\%=103.8/100=1.038[/tex]
so
[tex]y=40,500(1.038^{x})[/tex]
Final answer:
For Krystal City's population of 40,500 increasing at 3.8% annually, the function is [tex]P(t) = 40500(1 + 0.038)^{t[/tex].
Explanation:
A population function can be represented as:
[tex]P(t) = P_0(1 + r)^{t[/tex]
Where:
P(t) is the population after time tP0 is the initial populationr is the growth rate per yearFor Krystal City with a population of 40,500 and a growth rate of 3.8% annually, the function would be:
[tex]P(t) = 40500(1 + 0.038)^{t[/tex]
Will mark brainliest! Show work for 5 and 6!❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️
Answer:
6. decrease / 19.68 ,5. increase / 4.4
Step-by-step explanation:
What is the value of w?
Answer options: 100, 75, 40, 52.5
➷ Opposite angles in a cyclic quadrilateral total to 180 degrees
180 - 80 = 100
w = 100 degrees
✽➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Is there a rigid transformation that would map ΔABC to ΔDEC
Answer:
Yes. a rotation about point c
Step-by-step explanation:
just answered it.
A rigid transformation is a transformation that preserves the shape and size of an object. It includes translations, rotations, and reflections. Without specific information about the coordinates or measurements of the triangles, it is not possible to determine if a rigid transformation exists.
Explanation:A rigid transformation is a transformation that preserves the shape and size of an object. It includes translations, rotations, and reflections. In order for triangle ΔABC to be mapped to triangle ΔDEC, there must be a combination of translations, rotations, and reflections that can bring the two triangles into congruence.
However, without specific information about the coordinates or measurements of the vertices of the triangles, it is not possible to accurately determine if a rigid transformation exists that can map ΔABC to ΔDEC.
The period of a function is 4 pi how many cycles of the function occur in a horizontal length of 12 pi
Answer:
3 cycles
Step-by-step explanation:
in one period, you have one full cycle
because the period for this function is 4pi, you have one cycle per 4pi
if you have a total of 12pi, you would have 3 cycles (12pi/4pi=3)
hope this helps!
Answer:
1. 3
2. horizontal stretch
3. A.
Step-by-step explanation:
Devon exercised the same amount of time each day for 5
days last week. His exercise included walking and swimming.
Each day he exercised, he walked for 10 minutes. He
exercised for a total of 225 minutes last week. What is the
number of minutes Devon swam each of the 5 days last
week? And show how!
Answer:
He spent 35 minutes swimming each day.
Step-by-step explanation:
10x5=50
The multiply by 5 is the numbers of days.
225-50=175
(The 50 minutes subtracted is the time Devon walked)
175 divided by 5 = 35
He spent 35 minutes swimming
Confirm/Check
35 times 5 =175
( Again, The multiply by 5 is the 5 days.)
175+50= 225
Therefore, He swam 35 minutes each day and walked 10 minutes each day.
He swam 175 minutes in total and walked 50 minutes in total
Hoped This Helped!
The number of minutes Devon swam each day is
How do we make equations from word problems?The word problems must be thoroughly read and understood. Then we can use the given data to make the equations.
We can find the number of minutes Devon spent swimming as follows:He exercised for a total of 225 minutes in the last week.
It is also given that he exercised the amount each day for 5 days.
Therefore, the total number of minutes of exercise per day = 225/5
= 45 minutes.
It is given that he spends 10 minutes everyday walking.
Therefore the total number of time Devon spend swimming = 45 - 10
= 35 minutes
Therefore, we have found that the number of minutes Devon swam each day is 35 minutes.
Learn more about word problems here: https://brainly.com/question/13818690
#SPJ2
Hannah and Anthony are siblings who have ages that are consecutive odd integers. The sum of their ages is 92. Which equations could be used to find Hannah’s age,h, if she is the older sibling?
Answer:
the answer is 47
Step-by-step explanation:
You want to buy a tent in the shape of a pyramid. The rectangular base is 35 square feet, with a height of 4 feet. What is the volume of the tent? Round your answer to the nearest hundredth.
Answer:
46.67 cubic feet
Step-by-step explanation:
The formula for volume of a pyramid is
V = (1/3)Bh where B is the area of the base, and h is the height.
We are givne B = 35 and h = 4. Plug those values in and simplify...
V = (1/3)(35)(4)
V = (1/3)(140)
V = 140/3
V = 46 2/3 cubic feet, which is 46.666667, or 46.67 rounded to the nearest hundredth
Answer:
46.67 cubic feet
Step-by-step explanation:
Jeff has recorded the cost of insurance premiums on his car for a particular insurance company.
Years Payments
1 $1,200
6 $7,200
9 $10,800
Daniel pays $1,150 per year for insurance premiums on his car. Whose unit rate is lower in terms of cost per year, and what is the rate?
A.
Daniel's unit rate is lower. It is $1,150 per year.
B.
Jeff's unit rate is lower. It is $1,200 per year.
C.
Daniel's unit rate is lower. It is $1,200 per year.
D.
Jeff's unit rate is lower. It is $1,150 per year.
E.
Jeff and Daniel have the same unit rate. It is $1,150 per year.
For 1 year Jeff pays $1200.
For 6 years he pays 7200 / 6 = 1200 per year.
For 9 years he pays 10800 / 9 = 1200 per year.
Jeff's unit rate is $1,200 per year.
Daniel pays $1,150 per year.
150 is less than 1200, so the answer would be:
A. Daniel's unit rate is lower. It is $1,150 per year.
Answer:
View the picture for your answer!
Have a great day.
can u please help me solve 6x-3(2-3x)
Answer:
[tex]\boxed{\bold{15x-6}}[/tex]
Step By Step Explanation:
Expand [tex]\bold{-3\left(2-3x\right)}[/tex]
[tex]\bold{-6+9x}[/tex]
Rewrite Equation
[tex]\bold{6x-6+9x}[/tex]
Simplify [tex]\bold{6x-6+9x}[/tex]
[tex]\bold{15x-6}[/tex]
➤ [tex]\boxed{\bold{Mordancy}}[/tex]
find the volume of a sphere of radius 3 centimeters.
Answer:
36π cm³
Step-by-step explanation:
The volume (V) of a sphere is calculated using the formula
V = [tex]\frac{4}{3}[/tex]πr³ ← r is the radius = 3
V = [tex]\frac{4}{3}[/tex]π × 3³
= [tex]\frac{4}{3}[/tex]π × 27
= 4π × 9 ( cancelling the 3 and 27 )
= 36π cm³
Here is your answer
B) [tex]36×pi[/tex] [tex]{cm}^{3}[/tex]
REASON:
We know that,
Volume of sphere= [tex] 4/3 pi×{r}^{3} [/tex]
Here r= 3cm
So, V= [tex] 4/3 × pi× {3}^{3} cm^3 [/tex]
= [tex] 4×pi × {3}^{2} cm^3 [/tex]
= [tex] 4×9× pi cm^3 [/tex]
= [tex] 36× pi cm^3 [/tex]
HOPE IT IS USEFUL
Which of the following options is true about the solution to the given set of equations
y=6x + 9
y=6x + 2
One solution
No solution
Two solutions
Infinite solutions
Answer:
No solutions
Step-by-step explanation:
results 0=-7 which is not true
There are no solutions because the two lines are parallel and have different y-intercepts, so they will never intersect each other.
X-intercept (__,__)
Y-intercept (__,__)
Look at the picture.
The x-intercepts are where the graph crosses the x-axis, and the y-intercepts are where the graph crosses the y-axis.
x-intercept (-250, 0)
y-intercept (0, 100)
There are 26 students in the club. The French teacher will pick 3 students at random to guide visiting students from France. What is the probability that Teesha will not be picked as a guide?
Answer:
88.5
Step-by-step explanation:
Write the slope intercept form of -y = 4-x
Slope intercept form:
y=mx+b
Right now we have:
-y=4-x
x=1 because it’s not being multiplied by anything
y-intercept = 4 because it’s what you’re adding
Then we just need to move 4 to the other side of “x”
And with that, we conclude with a line in slope intercept form:
-y=x-4
It’s a negative 4 and a positive x, because you’re supposed to do the opposite
If it’s a negative, you add. If it’s a positive, you subtract.
tina’s preschool has a set of cardboard building blocks, each of which measures 9“ x 9“ x 4“. How many of these blocks will Tina need to build a wall 4 inches thick, 3 feet high, and 12 feet long?
Tina will need 64 cardboard building blocks to build the wall.
Step 1: Convert all measurements to inches.
The thickness of the wall is already 4 inches.
The height of the wall is 3 feet. Since 1 foot = 12 inches, then:
[tex]3 \text{ feet} = 3 \times 12 \text{ inches} = 36 \text{ inches}[/tex]
The length of the wall is 12 feet. Therefore:
[tex]12 \text{ feet} = 12 \times 12 \text{ inches} = 144 \text{ inches}[/tex]
Step 2: The volume of a rectangular wall can be found using the
formula:
[tex]\text{Volume} = \text{Length} \times \text{Height} \times \text{Thickness}[/tex]
Substituting the values:
[tex]\text{Volume} = 144 \text{ inches} \times 36 \text{ inches} \times 4 \text{ inches}[/tex]
[tex]\text{Volume} = 20736 \text{ cubic inches}[/tex]
Step 3: The dimensions of the block are 9 inches x 9 inches x 4 inches,
so:
[tex]\text{Volume}_{\text{block}} = 9 \text{ inches} \times 9 \text{ inches} \times 4 \text{ inches}[/tex]
[tex]\text{Volume}_{\text{block}} = 324 \text{ cubic inches}[/tex]
Step 4: To find out how many blocks are needed for the wall, divide the
total volume of the wall by the volume of one block:
[tex]\text{Number of blocks} = \frac{\text{Volume of wall}}{\text{Volume of one block}}[/tex]
[tex]\text{Number of blocks} = \frac{20736 \text{ cubic inches}}{324 \text{ cubic inches}}[/tex]
[tex]\text{Number of blocks} = 64[/tex]
What is the discriminant of the polynomial below 2x^2+4x-9
Answer:
Discriminant = 88
Step-by-step explanation:
The general form of quadratic polynomial is:
P(x) = ax² + bx + c ⇒ a is the coefficient of x² , b is the coefficient
of x and c is the numerical term
∵ The discriminant of P(x) = ax² + bx + c is b² - 4ac
∵ P(x) = 2x² + 4x - 9
∴ a = 2 , b = 4 , c = -9
∴ Discriminant = (4)² - 4(2)(-9) = 16 + 72 = 88
Answer:
The discriminant of given polynomial is 88.
Step-by-step explanation:
We have given a polynomial.
2x²+4x-9
We have to find the discriminant of given polynomial.
From polynomial, a = 2 , b = 4 and c = -9
The formula to find discriminant is
b²-4ac
Putting values in above formula, we have
(4)²-4(2)(-9)
16+72
88
The discriminant of given polynomial is 88.
The second of two numbers is 5 more than twice the first. The sum of the numbers is 44. Find the numbers by writing and solving a system of equations.
what shapes are perpendicular sides only?
Answer:
Step-by-step explanation:
A square