Find the sum of the following infinite geometric series, if it exists.
1.02 + 2.04 + 4.08 + 8.16 +…

20

Does not exist

22

24

Answers

Answer 1

We can see that for every increment, the number gets doubled positively. Since we are looking for the value when the repetition is made infinite, therefore the value at that point would also be infinite. Since infinite is imaginary, therefore the correct answer is:

Does not exist


Related Questions

Find the total area of the prism in ( _+_√_ )

Answers

First find the hypotenuse of the right triangle bases.
a^2 + b^2 = c^2
4^2 + 6^2 = c^2
16 + 36 = c^2
52 = c^2
2√13 = c

Triangle bases:
A = (1/2) * b * h * 2
A = (1/2) * 4 * 6 * 2
A = 24 ft^2

Front Rectangle:                 Left side Rectangle             Back Side Rectangle
A = 8 * 2√13 = 16√13  ft^2      A = 4 * 4 = 32 ft^2           A = 6 * 8 = 48 ft^2

24 + 32 + 48 + 16√13 =        Total area = 104 + 16√13 ft^2

(Solve for r) 0.5r − 3.8 = 5.66

Answers

0.5r - 3.8 = 5.66....add 3.8 to both sides
0.5r = 5.66 + 3.8
0.5r = 9.46...divide both sides by 0.5
r = 9.46 / 0.5
r = 18.92 <==
0.5r = 5.66 + 3.8
0.5r = 9.46
r = 9.46 ÷ 0.5
r = 18.92
r = 18/23/25

system of equations with different slopes and different y-intercepts have one solution.

A. Always
B. Sometimes
C. Never
I think it is A but I am not sure and it is impossible for system of equations with different slopes and different y-intercepts to be parallel or infinite.

Answers

The answer is :
A. Always


Also
If two equations have different slopes but equivalent y-intercepts, they will have one solution and that will be the point where the y-intercept is. If two equations have different slopes and different y-intercepts, then there will be one solution where those two lines meet. If two equations have the same slope but different y-intercepts, the lines will be parallel, and there is no possible intersection point. And if two equations have equal slopes and equal y-intercepts, these lines will have an infinite amount of solutions, because if the equations are one the same line, every single point on that line is a solution to the system.
Always. The only time you have 0 solutions is when you have two parallel lines, meaning same slope. The only time you have more than 1 is when you have the SAME line, because every point is a answer. Therefore, when you have two completely different lines, then they MUST only have 1 solution always.

If this helped please rate, thank, and give brailnliets!

Can you square both sides of an inequality

Answers

Technically you can, if both sides of the inequality have no negative integers.

Squaring both sides of an inequality can be valid if you know both sides are non-negative, but it can introduce extraneous solutions. Therefore, it's important to check any solutions against the original inequality to ensure their validity, especially in cases involving negative numbers or functions with restricted domains.

When you're working with inequalities, you have to be careful when performing operations like squaring both sides. Unlike equalities, where multiplication or division by the same number on both sides does not change equality, with inequalities, the effect can be more complex due to the direction of the inequality sign and the possibility of dealing with negative numbers.

For instance, squaring both sides of an inequality is not always a valid operation because if one or both sides of the inequality are negative, squaring could lead to incorrect results. When you square a negative number, it becomes positive, which could potentially reverse the inequality's direction. However, if you know that both sides of the inequality are non-negative, then squaring both sides is permissible. This concept is similar to solving quadratic constraints without introducing square roots, using identities like |(1 + ix)²|² = ([1 + ix|²)².

To avoid introducing solutions that were not there originally (extraneous solutions), it is important to check the solutions obtained after squaring against the original inequality. An example where squaring both sides might be questioned is when solving trigonometric inequalities, where a common mistake is to square both sides without considering the domain of the original function.

I don't get it I got a different answer then these

Answers

You should first change the denominator into same number, which is 18

So you multiply the first fraction of both numerator and denominator by 3, and the second by 2:

3(g-2) / 18 - 2(g+3) / 18 = (3g - 6 - 2g - 6) / 18 = (g-12)/18
      3(g-2) - 2(g+3)
=  ---------------------
             18

      3g - 6 -2g - 6
=  ---------------------
             18

       g - 12
=  -----------
         18

this is what i got

1. is acute. 2. is isosceles. 3. is right. Which two statements contradict each other?

Answers

Answer:

the answer is 2 and 3

Step-by-step explanation:

I took the test

what is the period of the sinusoid given by y=-4sin( [tex] \frac{2π}{3} [/tex] x) ?

Answers

[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\ f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}} \end{array} \\\\ -------------------\\\\[/tex]

[tex]\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]

[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ [/tex]

[tex]\bf \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]

with that template in mind, let's see

[tex]\bf \begin{array}{llll} y=&-4sin(&\frac{2\pi }{3}x)\\ &A&B \end{array}\qquad period\implies \cfrac{2\pi }{B}\implies \cfrac{2\pi }{\frac{2\pi }{3}}\implies \cfrac{\frac{2\pi }{1}}{\frac{2\pi }{3}} \\\\\\ \cfrac{2\pi }{1}\cdot \cfrac{3}{2\pi }\implies 3[/tex]

Answer:

The answer is 3 for A P E X

Step-by-step explanation:

What is the equation of the line that passes through the point of intersection of the lines y = 2x − 5 and y = −x + 1, and is also parallel to the line y=1/2x+4?

Answers

find inersection first

both equal y so
2x-5=-x+1
3x-5=1
3x=6
x=2
sub back

y=2x-5
y=2(2)-5
y=4-5
y=-1
intersection is (2,-1)

paralell to a line is having same slope
y=mx+b, m is slope
given
y=1/2x+4
slope is 1/2
so
y=1/2x+b
find b
given the point (2,-1) that it must pass through
(x,y) so x=2 and y=-1
-1=1/2(2)+b
-1=1+b
-2=b

the equation is y=1/2x-2
y = 2x - 5
y = -x + 1

2x - 5 = -x + 1
2x + x = 1 + 5
3x = 6
x = 6/3
x = 2

y = -x + 1
y = -2 + 1
y = -1

solution is (2,-1)...point of intersection between the 2 lines given.

y = 1/2x + 4....slope here is 1/2. A parallel line will have the same slope.

y = mx + b
slope(m) = 1/2
(2,-1)...x = 2 and y = -1
sub and find b
-1 = 1/2(2) + b
-1 = 1 + b
-1  -1 = b
-2 = b

so ur parallel equation is : y = 1/2x - 2 <==

SOMEBODY HELP ME WITH THESE PLEASE! I really need the help like NOW PLS!

Answers

93. [tex]g(n) = n - 4[/tex]
[tex]f(n) = 2n^2 - 5n[/tex]

then [tex]g(n) +f(n) = (n-4) + (2n^2 - 5n)[/tex]
                                [tex]= n - 4 + 2n^2 - 5n[/tex]
                                [tex]= 2n^2 -5n + n - 4[/tex]
                                [tex]= 2n^2 - 4n -4[/tex]


95. [tex]f(n) = -n+3[/tex]
      [tex]g(n) = n^3 + 3n[/tex]
Then [tex]f(n) . g(n) = (-n+3) . (n^3 + 3n)[/tex]
                                 [tex]= -n^4 + 3n^3 - 3n^2 + 9n [/tex]
 

97. [tex]f(x) = 3x+1[/tex]
[tex]g(x) = 2x[/tex]
For finding f(g(x)) we will plugin value of g(x) in place of x in f(x).
[tex]f(g(x)) = 3*(2x) + 1[/tex]
                  [tex]= 6x + 1[/tex]


99. [tex]f(n) = n - 3[/tex]
[tex]g(n) = 2n^2 - 3n[/tex]

[tex]g(-7) = 2*(-7)^2 - 3 * (-7) = 2* 49 + 21 = 98 + 21 = 119[/tex]
[tex]f(g(-7)) = 119 - 3 = 116[/tex]

Answer:

97.

For finding f(g(x)) we will plugin value of g(x) in place of x in f(x).

                 

99.

Step-by-step explanation:

Write an equation for the line that is parallel to the given line and that passes through the given point.

y = 1/2 – 8; (–6, –17)

A.) y = 2x – 14

B.) y = 1/5x + 5/2

C.) y = -2x + 14

D.) y = 1/2x – 14

Answers

I honestly think that the answer is d

Use the functions f(x) = 4x − 5 and g(x) = 3x + 9 to complete the function operations listed below.

Part A: Find (f + g)(x). Show your work. (3 points)

Part B: Find (f ⋅ g)(x). Show your work. (3 points)

Part C: Find f[g(x)]. Show your work. (4 points)

Answers

A:

(f+g)(x)=f(x)+g(x)

(f+g)(x)=4x-5+3x+9

(f+g)(x)=7x+4

B:

(f•g)(x)=f(x)•g(x)

(f•g)(x)=(4x-5)(3x+9)

(f•g)(x)=12x^2-15x+36x-45

(f•g)(x)=12x^2+21x-45

C:

(f○g)(x)=f(g(x))

(f○g)(x)=4(3x+9)-5

(f○g)(x)=12x+36-5

(f○g)(x)=12x+31


The sum of four consecutive whole numbers is 54, what are the four numbers

Answers

Let the four consecutive numbers be x, x+1, x+2, and x+3.

The sum of the four numbers is 54, therefore
x + (x+1) + (x+2) + (x+3) = 54
4x + 6 = 54
4x = 54 - 6 = 48
x = 12

Answer:
The four numbers are 12, 13, 14, and 15

(07.05 MC)

An equation is shown below:

4x + 2(x – 3) = 4x + 2x – 11

Part A: Solve the equation and write the number of solutions. Show all the steps. (6 points)

Part B: Name one property you used to solve this equation. (4 points

Answers

4x + 2(x - 3) = 4x + 2x - 11
4x + 2x - 6 = 4x + 2x - 11
6x - 6 = 6x - 11
6x - 6x = -11 + 6
0 = -5...incorrect......this has no solution...0 solutions

one property used was the distributive property :2(x - 3) = 2x - 6

Answer:

-6 = -11

Distributive Property

Step-by-step explanation:

A.

4x + 2(x – 3) = 4x + 2x – 11

4x + 2x - 6 = 4x + 2x - 11

6x - 6 = 6x - 11

-6 = -11

since -6 is not equal to -11, so there's no solution

B. Distributive property

(25 Points)Enter numbers to write 4.23×10^3 in standard notation.

Answers

10^3 = 1000, i.e. three 0's after the "1"

So the answer will be 4230

What are the roots of the function y = 4x2 + 2x – 30? To find the roots of the function, set y = 0. The equation is 0 = 4x2 + 2x – 30.
Factor out the GCF of .
Next, factor the trinomial completely. The equation becomes .
Use the zero product property and set each factor equal to zero and solve. The roots of the function are .

Answers

4x² + 2x - 30 = 0

factor out the GCF:
2(2x² + x - 15) = 0

factor the trinomial completely:
2x² + x - 15 = 0
2x² + 6x - 5x - 15 = 0
2x(x + 3) - 5(x + 3) = 0
(2x - 5)(x + 3) = 0

use the zero product property and set each factor equal to zero and solve:
2x - 5 = 0     or     x + 3 = 0
2x = 5                   x = -3
x = 2.5

The roots of the function are x=-3,  x=2.5

The roots of the equation [tex]y=4x^2+2x-30[/tex] are x = -3 and x = 5/2

Roots of a quadratic equation

The given quadratic equation is:

[tex]y=4x^2+2x-30[/tex]

Set y = 0

[tex]4x^2+2x-30=0[/tex]

Factor the trinomial completely

[tex]4x^2-10x+12x-30=0\\\\2x(2x-5)+6(2x-5)=0\\\\(2x-5)(2x+6)=0[/tex]

Set each factor to zero and solve

2x  -  5  =  0

2x  =  5

x  =  5/2

2x  +  6  =  0

2x  =  -6

x  =  -6/2

x  =  -3

The roots of the equation [tex]y=4x^2+2x-30[/tex] are x = -3 and x = 5/2

Learn more on roots of a quadratic equation here: https://brainly.com/question/776122

traveling at 65 miles per hour how many minutes rounded to the nearest whole number does it takes to drive 125 miles from san digit to malibu

Answers

divide total miles by speed

125/65 = 1.923 hours

there are 60 minutes per hour

multiply 1.923*60 = 115.384 minutes

 rounded off to nearest whole number = 115 minutes

A line passes through (2, –1) and (8, 4).Write an equation for the line in point-slope form.
Rewrite the equation in standard form using integers.

Answers

Hello : let  A(2,-1)    B(8,4)
the slope is :   (YB - YA)/(XB -XA)
(4+1)/(8-2)  = 5/6


an equation for the line in point-slope form is : y-(-1) =( 5/6)(x-2)
y+1 = (5/6)x -5/3
6y+6 = 5x -10
the equation in standard form is : 5x-6y = 16

Answer: Equation of line in point slope form,

[tex]y + 1 = 5 ( x - 2 )[/tex]

And, Equation of line in standard form,

[tex]5 x - 6 y = 16[/tex]

Step-by-step explanation:

Since, If a line passes through two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] ,

Then the equation of line,

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)[/tex]

Here [tex]x_1 = 2[/tex], [tex]y_1=-1[/tex], [tex]x_2=8[/tex] and [tex]y_2=4[/tex]

Thus, the equation of the given line,

[tex]y-(-1)=\frac{4-(-1)}{8-2} (x-2)[/tex]

⇒ [tex]y+1=\frac{4+1}{8-2} (x-2)[/tex]

⇒ [tex]y+1=\frac{5}{6} (x-2)[/tex] -----(1)

⇒  [tex]6(y+1)= 5(x-2)[/tex]

⇒ 6 y + 6 = 5 x - 10

⇒ 6 = 5x - 6y - 10 ( By subtracting by on both sides )

⇒ 6 + 10 = 5x - 6y  ( By adding 10 on both sides )

⇒ 16 = 5x - 6y

⇒ 5 x - 6 y = 16 ------(2)

Since, in slope for of a line is, [tex]y-y_1= m (x-x_1)[/tex]

Thus, equation (1) shows the in slope form of the line.

And, standard form of the line is ax + by = c where a, b and c are the integers.

Thus, equation (2) shows the standard form of the given line.



The sum of two rational numbers will always be

Answers

that would always be rational

Jean has 5 different colors of markers: red, blue, green, orange, and purple. Two colors are used to make a sign. How many different combinations are possible? List them.

Answers

We need to find the number of possible combinations of r objects from a set of n objects. 
Jean has 5 different colors which means that n=5 and 2 colors are used to make a sign, which means r=2.
The number of combinations can be calculated with the formula: 
C=n!/((n-r)!r!)
C=5!/(5-2)!*2!
C=5*4*3!/3!*2*1
C=20/2=10
The possible combinations are:
1.red blue
2.red green
3.red orange
4.red purple
5. blue green
6. blue orange
7. blue purple
8. green orange
9. green purple
10. orange purple

A rectangular garden has length twice as great as its width. A second rectangular garden has the same width as the first garden and length that is 4 meters greater than the length of the first garden. The second garden has area of 70 square meters. What is the width of the two gardens?

Answers

The widht of the two gardens is 5metres by each

Assume that the flask shown in the diagram can be modeled as a combination of a sphere and a cylinder. Based on this assumption, the volume of the flask is ____ cubic inches. If both the sphere and the cylinder are dilated by a scale factor of 2, the resulting volume would be _____ times the original volume.

options for the first blank are: 20.22, 35.08, 50.07, or 100.11

options for the second blank are: 2, 4, 6 or 8

Answers

The total volume of the flask will be 50.06 [tex]\rm inches ^3[/tex] and if both the sphere and the cylinder are dilated by a scale factor of 2, the resulting volume would be '8' times the original volume.

Given :

Flask can be modeled as a combination of a sphere and a cylinder.

The volume of Sphere is given by the:

[tex]V_s = \dfrac{4}{3}\pi r^3[/tex]

Given - diameter of sphere = 4.5 inches. Therefore, radius is 2.25 inches.

Now, the volume of sphere of radius 2.25 inches will be:

[tex]V_s = \dfrac{4}{3}\times \pi\times (2.25)^3[/tex]

[tex]\rm V_s = 47.71\; inches^3[/tex]

The volume of Cylinder is given by the:

[tex]V_c = \pi r^2h[/tex]

Given - diameter of cylinder = 1 inches then radius is 0.5 inches and height is 3 inches.

Now, the volume of cylinder of radius 0.5 inches and height 3 inches will be:

[tex]V_c = \pi\times (0.5)^2 \times 3[/tex]

[tex]\rm V_c = 2.35\; inches^3[/tex]

Therefore the total volume of the flask will be = 47.71 + 2.35 = 50.06 [tex]\rm inches ^3[/tex].

Now, if both the sphere and the cylinder are dilated by a scale factor of 2 than:

Radius of sphere = [tex]2.25\times 2[/tex] = 4.5 inches

Radius of cylinder = [tex]0.5\times 2[/tex] = 1 inch

Height of cylinder = [tex]3\times 2[/tex] = 6 inches

Now, the volume of sphere when radius is 4.5 inches will be:

[tex]V_s' = \dfrac{4}{3}\times \pi \times (4.5)^3[/tex]

[tex]\rm V_s' = 381.70\; inches ^3[/tex]

And the volume of cylinder when radius is 1 inch and height is 6 inches will be:

[tex]V_c' = \pi \times (1)^2\times 6[/tex]

[tex]\rm V_c'=18.85\;inches^3[/tex]

Therefore the total volume of the flask after dilation by a scale factor of 2 will be = 381.70 + 18.85 = 400.55 [tex]\rm inches ^3[/tex].

Now, divide volume with dilation by theorginal volume of the flask.

[tex]\dfrac{400.55}{50.06}=8[/tex]

Therefore, if both the sphere and the cylinder are dilated by a scale factor of 2, the resulting volume would be '8' times the original volume.

For more information, refer the link given below:

https://brainly.com/question/15861918

Use complete sentences to describe the range of the sine function.

Answers

The Range of a function is the set of all values that that function can take.

Given the sine function f(x)=sinx,

This function is the function which calculates the sine of the values of x.

According to the definition of the sine of an angle x in the unit circle, 

[tex]-1 \leq sinx \leq 1[/tex],

so the sine of an angle is always larger or equal to -1, and smaller or equal to 1.

This means that the values that the sine function takes are any values between -1 and 1, inclusive.

This determines the Range of the sine function. 

So the Range of the sine function is [-1, 1]

The transformation from f to g represents a __________ stretch. f(x) = Square root of x. and g(x) = 6Square root of x.

Answers

The answer is vertical.
Answer:

The transformation from f to g represents a Vertical stretch.

Step-by-step explanation:

We are given a parent function f(x) as:

                      [tex]f(x)=\sqrt{x}[/tex]

and the transformed function g(x) as:

        [tex]g(x)=6\sqrt{x}[/tex]

We know that any function transformation of the type:

      f(x) → a f(x)

represents either a vertical stretch stretch or compression depending on the value of a.

If   0<a<1 then the transformation is a vertical compression and if a>1 then the transformation is a vertical stretch.

Here we have a=6>1

Hence, the transformation is a VERTICAL STRETCH.

let n be the first 3 of consecutive even integers. what is the sum of those integers?

Answers

assuming you meant that n is the first of the 3 even integers

even integers are 2 apart

so the 3 integers are n,n+2,n+4
the sum is n+n+2+n+4=3n+6

the sum is 3n+6

How could the relationship of the data be classified?

scatter plot with points loosely scattered going down to the right

A positive correlation
A causation
A negative correlation
No correlation

Answers

It would be C. A negative correlation. Think of it as a line. If a line goes to the right and is dipped downward just a little bit, it would have a negative slope.

Answer: A negative correlation


Step-by-step explanation:

If the points in the scatter plot scattered going down to the right, it shows that there are inverse relationship between the quantities.

With the increase of one quantity or variable there is decrease in the other quantity or variable.

Therefore, if in the scatter plot with points loosely scattered going down to the right , then the relationship of the data be classified as a negative correlation.



Line BC has an equation of a line y = 2x + 3, and line EF has an equation of a line y = negative one over 2 x + 4. These two equations represent

Answers

They represent that the 2 lines are perpendicular because, the slopes of two perpendicular lines are always negative reciprocals of one another.

Answer:

Perpendicular lines.

Step-by-step explanation:

We have been given that line BC has an equation of a line [tex]y=2x+3[/tex] and line EF has an equation of a line [tex]y=-\frac{1}{2}x+4[/tex]. We are asked to determine what these both equations represent.

We know that slope of two perpendicular lines is negative reciprocal of each other. This means the product of slope of both lines is equal to [tex]-1[/tex].

Let us find the product of slopes of both lines.

[tex]2\times \frac{-1}{2}[/tex]

Upon cancelling 2 with 2 we will get,

[tex]=-1[/tex]

Therefore, the given two equations represent equations of two perpendicular lines.

A rectangle is 42 square feet. what percent of the area of the rectangle is a square with side lengths of 6 feet?

Answers

area = L x w

42 = 6 x w

w=42/6 = 7

rectangle is 6 x 7

square would be 6 x 6 = 36 square feet

36/42 = 0.857 = 85.7% ( Round answer if needed)

Two 6-sided dice are rolled. what is the probability the sum of the two numbers on the die will be 4?

Answers

1+3=4. 2+2=4. 3+1=4.
3/6 or 1/2 if only addition
5-1=4. 6-2=4.
2/6 or 1/3 if only subtraction
if both 5/6

Answer:

[tex]\frac{1}{12}[/tex].

Step-by-step explanation:

Given : Two 6-sided dice are rolled.

To find : what is the probability the sum of the two numbers on the die will be 4.

Solution : We have given

Two 6-sided dice are rolled.

Dice have number { 1,2,3,4,5,6}  { 1,2,3,4,5,6} .

[tex]Probability =\frac{outcome\ happn}{total\ outcome}[/tex].

sum of the two numbers on the die will be 4.

Case (1) : first dice rolled 3 and second dice rolled 1.

{3,1}

3 +1 = 4 .

Case (2) : first dice rolled 1 and second dice rolled 3 .

{1,3}

1 + 3 = 4 .

Case (3) : first dice rolled 2 and second dice rolled 2.

{2,2}

2 + 2 = 4.

Then there are 3 possible outcomes where the sum of the two dice is equal to 4.

The number of total possible outcomes = 36.

[tex]Probability =\frac{3}{36}[/tex].

[tex]Probability =\frac{1}{12}[/tex].

Probability of getting sum of two dice is [tex]\frac{1}{12}[/tex].

Therefore,  [tex]\frac{1}{12}[/tex].

(02.02 MC)

Line segment RS is shown on a coordinate grid:
The line segment is rotated 270 degrees counterclockwise about the origin to form R'S'. Which statement describes R'S'?
R'S' is parallel to RS.
R'S' is half the length of RS
. R'S' is twice the length of RS.
R'S' is equal in length to RS.

Answers

R'S' is equal in length to RS.

length doesnt change, it was just rotated.
I think it's R'S' is equal in length to RS.

A) side-side-side triangle similarity postulate
B) angle-angle triangle similarity postulate
C) angle-side-angle triangle similarity postulate
D) hypotenuse-lag triangle similarity postulate

Answers

The question tells you that  the 3 corresponding angles are equal.

For similarity you only have to know that 2 corresponding angles are equal.
The answer is B.) Angle-Angle Triangle Similarity Postulate, however the extra pair of congruent angles were unnecessary since the Angle-Angle Similarity Postulate only needs two pairs of angles to be congruent in order to be true.
Other Questions
Which cell of hematopoiesis is responsible for the production of red blood cells (rbcs) and platelets? Which expression is equivalent to (2x^2 + 4x 7)(x 3)?A. x(2x^2 + 4x 7) + 3(2x^2 + 4x 7)B. x(2x^2 + 4x 7) 3C. 3x(2x^2 + 4x 7)D. (2x^2 + 4x 7)(x) + (2x^2 + 4x 7)(3) 1. Identify the number of independent and subordinate clauses in the following group of words. Early bicycles had one very large wheel and one very small wheel Early bicycles had onryg whel and one vey smalleel When are sports drinks appropriate for hydration? Maddie's doctor used a lot of technical language when explaining her diagnosis. What is the first thing Maddie should do if she is not clear on what the doctor said? This composer, who lived the life of a vagabond, was assisted by the generosity of his friends, with whom he lodged when he was broke. although he disastrously contracted syphilis in 1822, his final years saw the creations of composed some of his greatest works. during a brief lifespan of only thirty-one years, he composed symphonies, piano sonatas, string quartets, masses, four operas, and more than six hundred lieder.? The sum of three consecutive odd integers is 207. What are the integers? 15 tan^3 x=5 tan x Find all solutions of the equation in the interval [0, 2). (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION.) The matrix a is 13 by 91. give the smallest possible dimension for nula. Jamie has invested $1500 in a savings account. Each month the account pays an interest of 3.8%. How much money will she have in her account 4 years later if she does not make any deposits or withdrawals (round to the nearest dollar)?A)$1,257B)$1,557C)$1,559D)$2,341 Find the slope of the line on the graph. Write your answer as a fraction or a whole number, not a mixed number or decimal. A car travels south at 30 m/s for 5 minutes. What is its velocity Which of the following is not an example of a type of cause-and-effect writing? descriptive essayhistorical articleprediction essayprocess explanation ) the two boxers battled toe-to-toe until the final round, when the longtime champion of the ring was finally ______ by his young opponents stamina. In what ways did the physical setting of the Indus River valley encourage the growth of civilization what common conflict in magical realist literature often leads the reader to the central theme of a story? Which word best completes this sentence? Yo compro _____ regla para mi clase de matemticas. unos un una unas You invest $300 in an account at 7.5% per year simple interest. How much will you have in the account at the beginning of the 11th year The yellow region in the map below shows which predominant religion of Europe?A.) Eastern OrthodoxyB.) ProtestantismC.) JudaismD.) Roman Catholicism (Write the rate as a fraction, then find each unit rate.)A wheel rotates through 1,800 degrees in 5 revolutions. Steam Workshop Downloader