For a demonstration, a professor uses a razor blade to cut a thin slit in a piece of aluminum foil. When she shines a laser pointer (λ=680nm) through the slit onto a screen 5.5 m away, a diffraction pattern appears. The bright band in the center of the pattern is 7.8 cm wide. What is the width of the slit?

Answers

Answer 1

Answer:

    a = 4.8 10⁻⁵ m

Explanation:

The diffraction phenomenon is described by the expression

        a sin θ = m λ

How the pattern is observed on a distant screen

        tan θ = y / L = sin θ / cos θ

Since the angle is very small in these experiments ’we can approximate the tangent function

    tan θ = sin θ = y / L

We substitute

           a y / L = m λ

The first minimum occurs for m = 1

        a = λ L / y

        a = 680 10⁻⁹ 5.5 / 0.078

        a = 4.8 10⁻⁵ m


Related Questions

Two objects are moving at equal speed along a level, frictionless surface. The second object has twice the mass of the first object. They both slide up the same frictionless incline plane. Which object rises to a greater height?

a. Object 1 rises to the greater height because it weighs less.
b. Object 2 rises to the greater height because it possesses a larger amount of kinetic energy.
c. Object 2 rises to the greater height because it contains more mass.
d. Object 1 rises to the greater height because it possesses a smaller amount of kinetic energy.
e. The two objects rise to the same height.

Answers

Answer:

Option E is correct.

The two objects rise to the same height.

Explanation:

Let the mass, velocity and height the bigger object will rise to be M, V and H respectively.

Let the mass, velocity and height the object will rise to be m, v and h respectively.

Note that V = v

Using the work energy theorem

The change in kinetic energy of a body between two points is equal to the work done on the body between those two points.

Change in kinetic energy of the bigger object = (final kinetic energy) - (initial kinetic energy) = 0 - (1/2)(M)(V²) = (-MV²/2)

(The final kinetic energy = 0 J because the object comes to rest at the final point)

Work done on the bigger object = work done by all the forces acting on the body

But the only force acting on the body is the force of gravity (since the inclined plane is frictionless)

Workdone on the body = work done by the force of gravity in moving the body up a height of H = - MgH

(-MV²/2) = - MgH

H = (V²/2g)

For the small body,

Change in kinetic energy of the bigger object = (final kinetic energy) - (initial kinetic energy) = 0 - (1/2)(m)(v²) = (-mv²/2)

Workdone on the body = work done by the force of gravity in moving the body up a height of H = - mgh

(-mv²/2) = - mgh

h = (v²/2g)

Since V = v as given in the question (Both bodies have the same speeds)

H = h = (V²/2g) = (v²/2g)

Hope this Helps!!!

Bulb ܣ is rated for 20W at 12V. Bulb ܤ is rated for 20W at 120V. The two bulbs are mistakenly mixed up so that bulb ܣ is connected to a 120V line and bulb ܤ is connected to a 12V line. a. Determine the power dissipated by Bulb ܣ while connected to the 120Vline. b. Determine the power dissipated by Bulb ܤ while connected to the 12Vline. c. Which bulb, if any, is more likely to burn out and why?

Answers

Answer:

a. 2000W

b.0.2W

c. Bulb 1

Explanation:

Data given:

bulb 1 rating =20w,12v

bulb 2 rating =20w,120v.

we calculate the resistance for each bulb

[tex]bulb 1: R=\frac{V^2}{P}\\ bulb 1: R=\frac{12^2}{20}\\ R=7.2 ohms[/tex]

for bulb 2

[tex]bulb 2: R=\frac{V^2}{P}\\ bulb 2: R=\frac{120^2}{20}\\ R=720 ohms[/tex]

when miss connection occur we need to calculate the dissipated power from wash bulb

a. for bulb 1 with R=7.2ohms and V=120v,

the power is calculated as

[tex]P=\frac{v^2}{R}\\ P=\frac{120^2}{7.2}\\ P=2000W[/tex]

b. for bulb 2 with R=720 ohms and V=12v,

the power is calculated as

[tex]P=\frac{v^2}{R}\\ P=\frac{12^2}{720}\\ P=0.2W\\[/tex]

c. Bulb 1 is more likely to burn out because it is operating above the rated power.

A force in the +x-direction with magnitude F(x)=18.0N−(0.530N/m)x is applied to a 5.10-kg box that is sitting on the horizontal, frictionless surface of a frozen lake. F(x) is the only horizontal force on the box.If the box is initially at rest at x=0, what is its speed after it has traveled 14.0 m ?

Answers

Answer:

[tex]v=7.62\ m.s^{-1}[/tex]

Explanation:

Given:

initial position of the box, [tex]x=0\ m[/tex]final position of the box, [tex]x'=14\ m[/tex]mass of the box under the force, [tex]m=5.1\ m[/tex]initial speed of the box, [tex]u=0\ m.s^{-1}[/tex]function of force, [tex]F(x)=18-0.53x\ [N][/tex]

where:

[tex]x=[/tex] distance in the +ve x-direction

We know:

[tex]F=m.a\\\Rightarrow a=\frac{F}{m}[/tex]

Now force change in force on the body:

[tex]F(x)=18-0.53(x'-x)[/tex]

[tex]F=18-0.53\times (14-0)[/tex]

[tex]F=10.58\ N[/tex]

Now the acceleration due to the force:

[tex]a=\frac{F}{m}[/tex]

[tex]a=\frac{10.58}{5.1}[/tex]

[tex]a=2.0745\ m.s^{-2}[/tex]

Now using equation of motion:

[tex]v^2=u^2+2a.x'[/tex]

[tex]v^2=0^2+2\times 2.0745\times 14[/tex]

[tex]v=7.62\ m.s^{-1}[/tex]

A girl whirls a stone in a horizontal circle 1.50 m above the ground by means of a string 165 cm long. The string breaks, and the stone flies of horizontally and strike the ground 6.90 m away. What is the centripetal acceleration of the stone while in circular motion

Answers

Answer:

95.5ms-2

Explanation:

First we obtain the time taken for the motion from the equation of motion. Secondly we obtain the horizontal velocity of the stone. This can now be used to calculate the centripetal acceleration. Note that the length of the chord is the radius of the circle around which the stone moves.

All details are contained in the detailed step-by-step solution attached to this answer.

At the bottom of its path, the ball strikes a 2.30 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after the collision.

Answers

Answer:

(a). The speed of the ball after collision is 2.01 m/s.

(b). The speed of the block after collision 1.11 m/s.

Explanation:

Suppose, A steel ball of mass 0.500 kg is fastened to a cord that is 50.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal.

Given that,

Mass of steel block = 2.30 kg

Mass of ball = 0.500 kg

Length of cord = 50.0 cm

We need to calculate the initial speed of the ball

Using conservation of energy

[tex]\dfrac{1}{2}mv^2=mgl[/tex]

[tex]v=\sqrt{2gl}[/tex]

Put the value into the formula

[tex]u=\sqrt{2\times9.8\times50.0\times10^{-2}}[/tex]

[tex]u=3.13\ m/s[/tex]

The initial speed of the ball [tex]u_{1}=3.13\ m/s[/tex]

The initial speed of the block [tex]u_{2}=0[/tex]

(a). We need to calculate the speed of the ball after collision

Using formula of collision

[tex]v_{1}=(\dfrac{m_{1}-m_{2}}{m_{1}+m_{2}})u_{1}+(\dfrac{2m_{2}}{m_{1}+m_{2}})u_{2}[/tex]

Put the value into the formula

[tex]v_{1}=(\dfrac{0.5-2.30}{0.5+2.30})\times3.13[/tex]

[tex]v_{1}=-2.01\ m/s[/tex]

Negative sign shows the opposite direction of initial direction.

(b). We need to calculate the speed of the block after collision

Using formula of collision

[tex]v_{2}=(\dfrac{2m_{1}}{m_{1}+m_{2}})u_{1}+(\dfrac{m_{1}-m_{2}}{m_{1}+m_{2}})u_{2}[/tex]

Put the value into the formula

[tex]v_{2}=(\dfrac{2\times0.5}{0.5+2.30})\times3.13+0[/tex]

[tex]v_{2}=1.11\ m/s[/tex]

Hence, (a). The speed of the ball after collision is 2.01 m/s.

(b). The speed of the block after collision 1.11 m/s.

Explain why the particle in a box and the harmonic oscillator are useful models for quantum mechanical systems: what chemically significant systems can they be used to represent

Answers

Answer:

Because it's used to find definite solutions to More complex quantum mechanical system. Harmonic oscillator helps in determining motion of small mass if strings.

Explanation:

The particle box is very precise when using it to calculate or find definite solutions in complex quantum mechanics in which particles might be trapped in a regions of electric potentials. Since we're dealing with electric potentials here, the harmonic oscillator is needed because it has to do squarely wit potential energy which is given as

V(x) = 0.5kx²

Where k is force constant and x is distance.

Final answer:

The particle in a box and the harmonic oscillator models are useful for understanding quantum mechanical systems. They can be used to represent various chemically significant systems, including blackbody radiators, atomic and molecular spectra, and optoelectronic devices.

Explanation:

The particle in a box and the harmonic oscillator are useful models for quantum mechanical systems because they provide insights into the behavior of particles in confined spaces and under the influence of potential energy. The particle in a box model describes a particle free to move in a small space surrounded by impenetrable barriers, and can be used to represent systems such as blackbody radiators, atomic and molecular spectra, and optoelectronic devices. The harmonic oscillator model, on the other hand, represents systems with periodic motion, such as molecular vibrations and wave packets in quantum optics.

Incandescent light bulbs contain a metallic filament inside. Metallic systems have allowed energy levels in a continuous range of energy, so electrons can make transitions of any energy within that range. In our lab, we will connect a light bulb to a variable AC voltage source (a Variac), which can deliver 0-140 V to the filament. The higher the voltage, the hotter we make the temperature, and the more energy we are giving the electrons in the metal, Suppose that at 20 V the filament is a dull red color, which means that most of the photons being emitted are red. When we increase the voltage, what color of light do you expect the filament to emit?

Answers

Answer:

Since at 20V most of the photons released are red then when the voltage keeps increasing the hotter the filament will be, therefore the color of light will be bright red.

Explanation:

The higher the energy the more the electrons in the molecules of the object will be excited, and when they de-excite to their ground states they release energy in the form of infrared light. The increase in voltage and higher temperatures make the object release brighter color and sometimes at the highest temperatures +1400 degrees Celsius, the color glows hot white.

If 745-nm and 660-nm light passes through two slits 0.54 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.0 m away

Answers

Answer:

0.82 mm

Explanation:

The formula for calculation an [tex]n^{th}[/tex] bright fringe from the central maxima is given as:

[tex]y_n=\frac{n \lambda D}{d}[/tex]

so for the distance of the second-order fringe when wavelength [tex]\lambda_1[/tex] = 745-nm can be calculated as:

[tex]y_2 = \frac{n \lambda_1 D}{d}[/tex]

where;

n = 2

[tex]\lambda_1[/tex] = 745-nm

D = 1.0 m

d = 0.54 mm

substituting the parameters in the above equation; we have:

[tex]y_2 = \frac{2(745nm*\frac{10^{-9m}}{1.0nm}(1.0m) }{0.54 (\frac{10^{-3m}} {1.0mm})}[/tex]

[tex]y_2[/tex] = 0.00276 m

[tex]y_2[/tex] = 2.76 × 10 ⁻³ m

The distance of the second order fringe when the wavelength [tex]\lambda_2[/tex] = 660-nm is as follows:

[tex]y^'}_2 = \frac{2(660nm*\frac{10^{-9m}}{1.0nm}(1.0m) }{0.54 (\frac{10^{-3m}} {1.0mm})}[/tex]

[tex]y^'}_2[/tex] = 1.94 × 10 ⁻³ m

So, the distance apart the two fringe can now be calculated as:

[tex]\delta y = y_2-y^{'}_2[/tex]

[tex]\delta y[/tex] = 2.76 × 10 ⁻³ m - 1.94 × 10 ⁻³ m

[tex]\delta y[/tex] = 10 ⁻³ (2.76 - 1.94)

[tex]\delta y[/tex] = 10 ⁻³ (0.82)

[tex]\delta y[/tex] = 0.82 × 10 ⁻³ m

[tex]\delta y[/tex] =  0.82 × 10 ⁻³ m [tex](\frac{1.0mm}{10^{-3}m} )[/tex]

[tex]\delta y[/tex] = 0.82 mm

Thus, the distance apart the second-order fringes for these two wavelengths = 0.82 mm

3. A uniformly charged ring of radius 10.0 cm has a total T charge of 75.0 mC. Find the electric field on the axis of the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm from the center of the ring.

Answers

To solve this problem we will apply the concepts related to the electric field in a ring. This concept is already standardized in the following mathematical expression, which relates the coulomb constant, the distance to the axis, the distance of the two points. Mathematically it is described as,

[tex]E = \frac{k_exq}{(x^2+r^2)^{(3/2)}} \hat{i}[/tex]

Here,

[tex]k_e[/tex] = Coulomb constant

q = Charge

x = Distance to the axis

r = Distance between the charges

Our values are given as,

[tex]r = 10.0cm = 10*10^{-2} m[/tex]

[tex]q = 75\mu C = 75*10^{-6} C[/tex]

[tex]x_a = 1.00cm[/tex]

[tex]x_b = 5.00cm[/tex]

[tex]x_c = 30cm[/tex]

[tex]x_d = 100cm[/tex]

So applying this to our 4 distances, we have

PART A)

[tex]E_a = \frac{(9*10^9)(1.00*10^{-2})(75*10^{-6})}{((1.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_a = 6.64*10^6N/C \hat{i}[/tex]

PART B)

[tex]E_b = \frac{(9*10^9)(5.00*10^{-2})(75*10^{-6})}{((5.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_b = 24.1*10^6N/C \hat{i}[/tex]

PART C)

[tex]E_c = \frac{(9*10^9)(30.00*10^{-2})(75*10^{-6})}{((30.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_c = 6.39*10^6N/C \hat{i}[/tex]

PART D)

[tex]E_d = \frac{(9*10^9)(100.00*10^{-2})(75*10^{-6})}{((100.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]

[tex]E_d = 0.664*10^6N/C \hat{i}[/tex]

A charge of 8.473 nC is uniformly distributed along the x-axis from −1 m to 1 m . What is the electric potential (relative to zero at infinity) of the point at 5 m on the x-axis? The value of the Coulomb constant is 8.98755 × 10^9 N · m2 /C^2 . Answer in units of V.

Answers

Final Answer:

The electric potential at 5 meters on the x-axis due to a uniformly distributed charge of 8.473 nC along the x-axis from -1m to 1m is approximately 51.84 volts.

Explanation:

To determine the electric potential at a point on the x-axis created by a uniformly distributed charge, we can use the formula for electric potential due to continuous charge distribution. For a continuous charge distribution along the x-axis, the electric potential (V) at a point (P) is given by the integral of [tex]\(k \cdot \frac{dq}{r}\), where \(k\)[/tex] is Coulomb's constant, (dq) is the small charge element, and \(r) is the distance between the charge element and the point (P).

In this scenario, we integrate the expression across the entire distribution of charge from -1m to 1m along the x-axis to find the total potential at point 5m on the x-axis. Since the charge is uniformly distributed, we can represent (dq) as [tex]\(\lambda dx\),[/tex]where [tex]\(\lambda\)[/tex] is the charge per unit length and \(dx\) is the small element of length along the axis.

By integrating this expression and plugging in the given values into the formula, we obtain the result of approximately 51.84 volts for the electric potential at the point 5m away from the charge distribution on the x-axis.

This value signifies the work done per unit charge to bring a positive test charge from infinity to the specified point, considering the influence of the continuous charge distribution along the x-axis.

"".

Two light bulbs are operated at a potential difference of 110 V. Light bulb A produces 60 W of power and light bulb B produces 100 W of power. Which statement below is correct?

a. The 60 W bulb has a greater resistance and smaller current than the 100 W bulb.

b. The 60 W bulb has a smaller resistance and smaller current than the 100 W bulb.

c. The 60 W bulb has a greater resistance and greater current than the 100 W bulb.

d. The 60 W bulb has a smaller resistance and greater current than the 100 W bulb.

Answers

Answer:a

Explanation:

Given

Potential difference [tex]V=110\ V[/tex]

Power of bulb A [tex]P_A=60\ W[/tex]

Power of bulb B [tex]P_B=100\ W[/tex]

If voltage is same for both the bulbs then Power is given by

[tex]P=\dfrac{V^2}{R}[/tex]

[tex]P_A=\dfrac{(110)^2}{R_A}[/tex]

[tex]60=\dfrac{110^2}{R_A}[/tex]

[tex]R_A=201.66\ \Omega[/tex]

similarly

[tex]R_B=\dfrac{110^2}{100}[/tex]

[tex]R_B=121\ \Omega[/tex]

[tex]R_A>R_B[/tex]

so current in bulb A is smaller than B

Thus the 60 W bulb has a greater resistance.

Thus option (a) is correct

The correct statement is that a) the 60 W bulb has a greater resistance and smaller current than the 100 W bulb, since both bulbs are operated at the same voltage but the 60 W bulb has lower power.

To determine the correct statement about the resistance and current for two light bulbs operated at a potential difference of 110 V, we need to consider the power ratings of the bulbs and know that power (P) is the product of current (I) and voltage (V), P = IV. Furthermore, by using Ohm's law (V = IR), we can infer that Power can also be expressed as P = I2R or P = V²/R, which relates power to resistance (R).

Both bulbs operate at the same voltage (110 V), which means their power differences are due to differences in current and resistance.

For bulb A (60 W): P = V²/R, so R = V²/P = (110 V)2/60 W.

For bulb B (100 W): R = V²/P = (110 V)²/100 W.

Comparing these two, bulb A has higher resistance because it has lower power for the same voltage. Also, since P = IV, and bulb A has a lower power at the same voltage, it must also have a smaller current. Therefore, the correct answer is: a. The 60 W bulb has a greater resistance and smaller current than the 100 W bulb.

An airplane propeller is 2.18 m in length (from tip to tip) and has a mass of 102 kg. When the airplane's engine is first started, it applies a constant net torque of 1950 N⋅m to the propeller, which starts from rest.What is the angular acceleration of the propeller? Treat the propeller as a slender rod.

Answers

Answer:

Explanation:

Moment of inertia of propeller

= (1/12) m l²

=( 1 / 12) x 102 x 2.18²

= 40.4 kgm²

torque = 1950 N-m

angular acceleration

=  torque / moment of inertia

= 1950 / 40.4

= 48.26 rad / s²

Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the heart, which can be modeled as a 500 ohm resistance. The peak amplitude of the pulses is required to be 5 V. However, the battery delivers only 2.5 V. Therefore, we decide to charge two equal value capacitors in parallel from the 2.5V battery and then switch the capacitors in series with the heart during the 1ms pulse. What is the minimum value of the capacitances required so the output pulse amplitude remains between 4.9 V and 5.0 V throughout its 1ms duration

Answers

Answer:

Minimum capacitance = 200 μF

Explanation:

From image B attached, we can calculate the current flowing through the capacitors.

Thus;

Since V=IR; I = V/R = 5/500 = 0.01 A

Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V

So minimum capacitance will be determined from;

i(t) = C(dv/dt)

So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]

C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF

Final answer:

To find the minimum capacitance for the cardiac pacemaker circuit to maintain the pulse amplitude between 4.9V and 5.0V over 1ms, use the discharging formula for a capacitor and solve for the capacitance with the given resistance and time.

Explanation:

The problem involves designing a cardiac pacemaker circuit where two capacitors charged to 2.5V in parallel are switched to series to deliver a pulse of 5V across a 500-ohm resistor, which models the heart. The question asks for the minimum value of the capacitance needed to ensure the voltage does not drop below 4.9V over the 1ms duration of the pulse.

To solve for the capacitance (C), we use the formula for the discharging of a capacitor through a resistor (Q = Q0e-(t/RC)), where Q is the charge at time t, Q0 is the initial charge, R is the resistance, and C is the capacitance. The minimum voltage (V min) we want after 1ms is 4.9V, which will be across two capacitors in series, effectively having a 5.0V drop across two capacitances when fully charged. The effective capacitance when two identical capacitors are in series is half that of one capacitor, so we need to calculate for C based on an effective voltage drop from 5.0V to 4.9V across a single capacitor, equivalent to the heart resistance of 500 ohms, over 1ms.

We rearrange the discharging formula to solve for C:

V = V 0 e -(t/RC)

Now we solve for C:

C = -t / (R*ln(V/V 0 )

Plugging in the values:

C = -0.001s / (500Ω*ln(4.9V/5.0V))

This calculation will give us the minimum capacitance value to ensure the pulse amplitude stays between 4.9V and 5.0V during the 1ms pulse duration.

Two long parallel wires 20 cm apart carry currents of 5.0 A and 8.0 A in the same direction. Is there any point between the two wires where the magnetic field is zero?

Answers

Answer:

x= 0.077 m from the wire carrying 5.0 A current.

Explanation:

If the wire can be approximated as an infinite one, and we can neglect the diameter of the wire, we can find the magnetic field B at a distance d from the wire, with the following expression:

       [tex]B =\frac{\mu_{0} * I}{2*\pi*d}[/tex]

Due to the currents are in the same direction, this means that the magnetic field lines (taking the shape of circumferences) will have opposite directions between the wires.So, if we assume that at some distance from both wires, the magnetic field will be 0, we can write the following equation:

       [tex]\frac{\mu_{0} * I_{1}}{2*\pi*x} - \frac{\mu_{0} * I_{2} }{2*\pi*(d-x)} = 0[/tex]

where I₁ = 5.0A, I₂= 8.0A and d = 0.2 mSimplifying common terms, we can solve for x, as follows:

        [tex]\frac{I_{1} }{x} = \frac{I_{2} }{(d-x)} \\ \frac{5.0A}{x(m)} = \frac{8.0A}{(0.2m-x(m))}[/tex]

        ⇒ [tex]x =\frac{1m}{13} = 0.077 m = 7.7 cm[/tex]

A proton moves perpendicular to a uniform magnetic field B at a speed of 1.00 x10^7 m/s and experiences an acceleration of 2.00 x10^13 m/s^2. in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field for which the magnitude of the field is a minimium

Answers

Answer:

So, Magnitude of the field (B) = 2.09 x 10^(-2) T.

It's in the negative direction since acceleration is in positive direction.

Explanation:

First of all, since acceleration is in positive x- direction, the magnetic field must be in negative y- direction.

We know that The magnitude of the Lorentz force F is; F = qvB sinθ

So, B = F/(qvsinθ)

F = ma.

Speed(v) = 1.00 x10^(7) m/s

acceleration (a) = 2.00 x10^(13) m/s^(2)

Mass of proton = 1.673 × 10^(-27) kilograms

q(elementary charge of proton) = 1.602×10^(−19)

Since right hand thumb rule, θ= 90°

So;B = [1.673 × 10^(-27) x 2.00 x10^(13)] / [ {1.602×10^(−19)} x {1.00 x10^(7)} x sin 90]

So,B = 2.09 x 10^(-2) T.

It's in the negative direction since acceleration is in positive direction.

Final answer:

The magnitude of the magnetic field that the proton experiences is 2.08 x 10^-4 Tesla. The direction of the magnetic field, determined by the right-hand rule, is in the negative y-direction.

Explanation:

The force experienced by a charged particle moving within a magnetic field, like the proton in your question, can be calculated using the Lorentz force law: F = qvBsinθ, where F is the force, q is the charge of the particle, v is its velocity, B is the magnetic field, and θ is the angle between the velocity and the magnetic field. Because the proton is moving perpendicular to the field, θ = 90°, and sinθ = 1. Therefore, F = qvB. To find the magnetic field, B, we can rearrange this formula to give B = F/qv.

Now, we know from Newton's second law that F = ma, so we can replace F in our formula with the proton's mass (m, which is 1.67 x 10^-27 kg for a proton) times the given acceleration (a), yielding B = ma/qv.

Substitute the given values for acceleration, proton's charge, and velocity into our equation, we get: B = (1.67 x 10^-27 kg)(2 x 10^13 m/s^2) / (1.60 x 10^-19 C)(1 x 10^7 m/s) = 2.08 x 10^-4 Tesla (T).

The direction of the magnetic field is given by the right-hand rule as discussed in Essential Knowledge 2.D.1. If you arrange your right hand such that your thumb points in the direction of the proton's velocity (positive z-direction) and your fingers curl in the direction of the force (positive x-direction), your palm points in the direction of the magnetic field, which would be in the negative y-direction.

Learn more about Magnetic Field here:

https://brainly.com/question/36936308

#SPJ3

Old cannons were built on wheeled carts, both to facilitate moving the cannon and to allow the cannon to recoil when fired. When a 150 kg cannon and cart recoils at 1.5 m/s, at what velocity would a 10 kg cannonball leave the cannon?

Answers

Answer:

22.5 m/s

Explanation:

Applying Newton's third law of motion

Momentum of the cannon and cart = momentum of the cannonball

MV = mv..................... Equation 1

Where M = mass of the cannon and the cart, V = Recoil velocity of the cannon and the cart, m = mass of the cannonball, v = velocity of the cannonball

make v the subject of the equation

v = MV/m............. Equation 2

Given: M = 150 kg, V = 1.5 m/s, m = 10 kg

Substitute into equation 2

v = 150(1.5)/10

v = 22.5 m/s

Hence the cannonball leave the cannon with a velocity of 22.5 m/s

Answer:

v2 = 22.5 m/s

Explanation:

Momentum is how hard to stop or turn a moving object . Generally, momentum measures mass in motion. Momentum is a vector quantity. Mathematically,

p = mass ×  velocity

The total momentum of an isolated system of  bodies remains constant.

mometum before = 0

mass of the canon (m1) = 150 kg

mass of the ball (m2) = 10 kg

velocity of the ball (v2) = ?

velocity of the cannon(v1) = 1.5 m/s

momentum after = momentum before

m2v2 + m1v1 = 0

10v2 = 150 × 1.5

10v2 = 225

divide both sides by 10

v2 = 225/10

v2 = 22.5 m/s

A racquet ball with mass m = 0.238 kg is moving toward the wall at v = 12.4 m/s and at an angle of θ = 31° with respect to the horizontal. The ball makes a perfectly elastic collision with the solid, frictionless wall and rebounds at the same angle with respect to the horizontal. The ball is in contact with the wall for t = 0.078 s. 1)What is the magnitude of the initial momentum of the racquet ball?

Answers

Answer:

[tex]||\vec p || = 2.951\,\frac{kg\cdot m}{s}[/tex]

Explanation:

The initial momentum of the racquet ball is:

[tex]||\vec p || = (0.238\,kg)\cdot (12.4\,\frac{m}{s} )[/tex]

[tex]||\vec p || = 2.951\,\frac{kg\cdot m}{s}[/tex]

Two coils have the same number of circular turns and carry the same current. Each rotates in a magnetic field acting perpendicularly to its axis of rotation. Coil 1 has a radius of 5.6 cm and rotates in a 0.24-T field. Coil 2 rotates in a 0.44-T field. Each coil experiences the same maximum torque. What is the radius (in cm) of coil 2?

Answers

Answer:

4.14 cm.

Explanation:

Given,

For Coil 1

radius of coil, r₁ = 5.6 cm

Magnetic field, B₁ = 0.24 T

For Coil 2

radius of coil, r₂ = ?

Magnetic field, B₂ = 0.44 T

Using formula of maximum torque

[tex]\tau_{max}= NIAB[/tex]

Since both the coil experience same maximum torques

now,

[tex] NIA_1B_1 = NIA_2B_2[/tex]

[tex]A_1B_1 = A_2B_2[/tex]

[tex] r_1^2 B_1 = r_2^2 B_2[/tex]

[tex] 5.6^2\times 0.24= r_2^2\times 0.44[/tex]

[tex]r_2 = 4.14\ cm[/tex]

Radius of the coil 2 is equal to 4.14 cm.

A 0.60-kg particle has a speed of 2.0 m/s at point A and a kinetic energy of 7.5 J at point B. What is (a) its kinetic energy at A? (b) Its speed at point B ? (c) The total work done on the particle as it moves from A to B ?

Answers

Answer:

Explanation:

note:

solution is attached due to error in mathematical equation. please find the attachment

Answer:

(a) 1.2 J

(b) 5 m/s

(c)  6.3 J

Explanation:

(a) Kinetic energy at A

Ek = 1/2mv².................. Equation 1

Where Ek = Kinetic energy at A, m = mass of the particle, v = velocity at A.

Given: m = 0.6 kg, v = 2.0 m/s

Substitute into equation 1

Ek = 1/2(0.6)(2²)

Ek = 0.6(2)

Ek = 1.2 J.

(b)

Speed at point B

Ek' = 1/2mv'²............... Equation 2

Make v' the subject of the equation,

v' = √(2Ek'/m).................. Equation 3

Where, Ek' = kinetic energy at B, v' = velocity at B.

Given: Ek' = 7.5 J, m = 0.6 kg,

Substitute into equation 3

v' = √[(2×7.5)/0.6]

v' =√(15/0.6)

v' = √25

v' = 5 m/s.

(c)

Wt =  Δ kinetic energy from A to B

Where Wt = total work done as the particle moves from A to B.

Wt = 1/2m(v'²-v²)

Wt = 1/2(0.6)(5²-2²)

Wt = 0.3(25-4)

Wt = 0.3(21)

Wt = 6.3 J

In the Rutherford model of hydrogen the electron (mass=9.11x10-31 kg) is in a planetary type orbit around the proton (mass=1.67x10-27 kg). Assume that the radius of the orbit is 2.5 Angstroms (10-10 m). (a) What is the magnitude of the gravitational force of attraction between electron and proton? AN (b) What is the magnitude of the electric force of attraction between electron and proton? N

Answers

Answer:

(a) [tex]F_g=1.62*10^{-48}N[/tex]

(b) [tex]F_e=3.68*10^{-9}N[/tex]

Explanation:

(a) We use Newton's law of universal gravitation, in order to calculate the gravitational force between electron and proton:

[tex]F_g=-G\frac{m_1m_2}{r^2}[/tex]

Where G is the Cavendish gravitational constant, [tex]m_1[/tex] and [tex]m_2[/tex] are the masses of the electron and the proton respectively and r is the distance between them:

[tex]F_g=-6.67*10^{-11}\frac{N\cdot m^2}{kg^2}\frac{(9.11*10^{-31}kg)(1.67*10^{-27}kg)}{(2.5*10^{-10}m)^2}\\F_g=-1.62*10^{-48}N[/tex]

The minus sing indicates that the force is repulsive. Thus, its magnitude is:

[tex]F_g=1.62*10^{-48}N[/tex]

(b) We use Coulomb's law, in order to calculate the electric force between electron and proton, here k is the Coulomb constant and e is the elementary charge:

[tex]F_e=-k\frac{e^2}{r^2}\\F_e=-8.99*10^{9}\frac{N\cdot m^2}{C^2}\frac{(1.6*10^{-19}C)^2}{(2.5*10^{-10}m)^2}\\F_e=-3.68*10^{-9}N[/tex]

Its magnitude is:

[tex]F_e=3.68*10^{-9}N[/tex]

A 1 kg object is initially 20m above the ground and rises to a height of 40m. Liz and Connor each measure its position, but each of them uses a different coordinate system. Select the choice that best represent the Δ P E as measured by the two scientists. Where we define Δ P E = P E f i n a l − P E i n i t i a l . Assume g = 10 m / s 2 .

Answers

Final answer:

The change in potential energy as the object rises from 20m to 40m is 200 Joules. This result is the same regardless of the coordinate system used.

Explanation:

The change in potential energy, Δ P E, can be calculated using the formula Δ P E = P E f i n a l − P E i n i t i a l. Here, P E f i n a l is the final potential energy when the object is at 40m, and P E i n i t i a l is the initial potential energy when the object is at 20m. To get these values, we use the formula for gravitational potential energy: P E = m g h, where m is mass, g is the acceleration due to gravity, and h is the height above ground.

So, P E f i n a l = m g h = 1kg * 10 m/s² * 40m = 400 J (Joules), and P E i n i t i a l = m g h = 1kg * 10 m/s² * 20m = 200 J. Hence, Δ P E = P E f i n a l − P E i n i t i a l = 400 J - 200 J = 200 J. Regardless of their coordinate systems, both Liz and Connor should get the same Δ P E, assuming they've correctly identified the initial and final heights.

Learn more about Potential Energy here:

https://brainly.com/question/18741280

#SPJ12

Final answer:

The change in potential energy (ΔPE) as measured by both scientists would be 200J. This is calculated using the formula ΔPE = PEfinal - PEinitial, and substituting given values for mass, gravity, and height.

Explanation:

In this scenario, the change in potential energy (ΔPE) is determined by the difference in heights and the weight of the object. We calculate ΔPE with the formula ΔPE = PEfinal − PEinitial. Given that PE is calculated as m*g*h where m is mass, g is gravity (which we assume as 10m/s² here), and h is height, we can substitute these values in. Initially, the object is at 20m, so PEinitial is m*g*h = 1kg*10m/s²*20m = 200 J (joules). Finally, it rises to 40m, so PEfinal = 1kg*10m/s²*40m = 400 J. Hence, ΔPE is PEfinal−PEinitial = 400J – 200J = 200J. Therefore, the change in potential energy, as measured by both Liz and Connor, would be 200J regardless of their coordinate systems.

Learn more about Potential Energy here:

https://brainly.com/question/24284560

#SPJ2

Consider a sphere, an infinitely long cylinder, and a plane of infinite length and width (a, b and c below). Imagine that you can hover above each one in your own personal helicopter. In which case do you have the most freedom to move about without your view of the object changing? In other words, for each case consider if there are directions that you can move in without the objects distance or orientation, relative to you, changing.

Answers

Answer:

A plane of infinite length and width.

Explanation:

For the case of the sphere, we should consider spherical coordinates.

You can move around the sphere without changing your distance from the center of the sphere, however you can alter your azimuthal angle and polar angle, since they are symmetric in spherical coordinate system.

r --> Cannot change

Φ --> Free to change

θ --> Free to change

For the case of the infinite cylinder, we should consider cylindrical coordinates.

You can change your height and angular coordinate, but you cannot change your distance from the axis of the cylinder.

r --> Cannot change

θ --> Free to change

z --> Free to change

For the case of the infinite plane, we should consider cartesian coordinates.

Since the length and width of the plane is infinite, we cannot recognize whether we are getting closer or further away.

x --> Free to move

y --> Free to move

z --> Free to move

Therefore, in the case of infinite plane you have the most freedom to move about without your view of the object changing.

Final answer:

An infinite plane allows the most freedom of movement without changing the view, due to its infinite symmetry. In contrast, a sphere and a cylinder have more limited symmetrical properties, resulting in a restricted freedom of movement to keep the view unchanged.

Explanation:

When comparing the freedom to move above a sphere, an infinitely long cylinder, and an infinite plane, the plane provides the most freedom without changing your view of the object. On a sphere, any move results in a different orientation or distance from the surface. With the cylinder, movement along the axis does not change the view, but any other direction does. However, the infinite plane allows movement in any direction on a two-dimensional plane without changing the viewed geometry or orientation.

From a mathematical perspective, this question revolves around symmetry and geometric invariance under transformation. The infinite plane exhibits infinite symmetry; therefore, no matter how you move parallel to its surface, the view remains unchanged. Conversely, a sphere has rotational symmetry around its center, and a cylinder along its axis, limiting the directions in which one can move without altering the perceived distance or orientation.

In a typical Van de Graaff linear accelerator, protons are accelerated through a potential difference of 20 MV. What is their kinetic energy if they started from rest? Give your answer in (a) eV, (b) keV,(c) MeV, (d) GeV, and (e) joules.

Answers

Answer:

a) 2 x10^7 eV

b) 2 x10^4 keV

c) 20 MeV

d) 0.02 Gev

e) 3.2 x 10^-12J

Explanation:

The potential difference = 20 x 10^6 V

The charge on the proton = 1.6 x10^-19

The work done to move the proton will be basically the proton will acquire if it accelerates.

Kinetic energy gained = ΔVq = 20 x10^6 x 1.6 x 10^-19

                                                 =3.2 x 10^-12J or 2 x10^7 eV

2 x10^7 eV = 2 x10^4 keV = 20 MeV = 0.02 Gev

Explanation:

Below is an attachment containing the solution.

The electron drift speed in a metal wire is exceedingly slow. Yet, when you turnon the light switch the light begins to illuminate almost immediately. Explain whyt his is not a paradox?

Answers

Explanation:

The misunderstanding here is that the thing that turns on the light bulb is not the same electrons near the light switch. So, the electrons near the switch is not moving all the way across the circuit instantly. The electrons are distributed across the wire. When the light switch is turned on, the circuit is connected and there is a potential difference between the bulb and the source. This potential difference creates an electric field, and free electrons move under the influence of this electric field according to Coulomb's Law. When they start to move the electrons closest to the bulb causes the bulb to glow.

So, the important factor here is not the drift velocity of the electrons but the number of electrons and the strength of the electric field.

Two infinite plane sheets with uniform surface charge densities are placed parallel to each other with separation d. in the region between the sheets, where does the total electric field have the greatest magnitude ? please explain

Answers

The density given implies that the total electric field will have a uniform magnitude.

What is density?

Density simply means the degree of compactness that can be found in a substance.

It should be noted that for an infinite sheet of charge, the electric field will be perpendicular to the surface.

In this case, it doesn't depend on the distance of points and is uniform all through. Therefore, the total electric field will have a uniform magnitude.

Learn more about density on:

https://brainly.com/question/406690

To model a tornado, superimpose the stream function for a vortex (Eq. 6.91) and a source (Eq. 6.83). Assume that the circulation is 8000 m2 /s and the pressure at the radius of 40 m is 2 kPa less than atmospheric

Answers

Answer:

The stream function for this potential flow is -4696.8

Explanation:

Given that,

Circulation = 8000 m²/s

Radius = 40 m

Pressure = 2 kPa

Suppose the determine the stream function for this potential flow

We need to calculate the stream function

Using formula of stream function

[tex]\Psi=-(\dfrac{\Gamma}{2\pi})ln(r)[/tex]

Where, Γ = circulation

r = radius

Put the value into the formula

[tex]\Psi=-\dfrac{8000}{2\pi}\times ln(40)[/tex]

[tex]\Psi=-4696.8[/tex]

Hence, The stream function for this potential flow is -4696.8

A 0.140 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.900 m/s . It has a head-on collision with a 0.297 kg glider that is moving to the left with a speed of 2.25 m/s . Suppose the collision is elastic.

Answers

Answer:

(a). The final velocity of the first glider is −2.15 m/s.

(b). The final velocity of the second glider is -1.67 m/s.

Explanation:

Given that,

Mass of glider = 0.140 kg

Speed = 0.900 m/s

Mass of another glider = 0.297 kg

Speed =2 .25 m/s

Suppose, Find the magnitude of the final velocity of the first glider.

Find the magnitude of the final velocity of the second glider.

(a). We need to calculate the final velocity of the first glider

Using formula of collision

[tex]v_{1}=\dfrac{u_{1}(m_{1}-m_{2})+2m_{2}u_{2}}{m_{1}+m_{2}}[/tex]

Put the value into the formula

[tex]v_{1}=\dfrac{0.900(0.140+0.297)+2\times(-0.297)\times2.25}{0.140+0.297}[/tex]

[tex]v_{1}=-2.15\ m/s[/tex]

(b). We need to calculate the final velocity of the second glider

Using formula of collision

[tex]v_{2}=\dfrac{u_{2}(m_{2}-m_{1})+2m_{1}u_{1}}{m_{1}+m_{2}}[/tex]

Put the value into the formula

[tex]v_{1}=\dfrac{-2.25(0.297+0.140)+2\times(0.140)\times0.900}{0.140+0.297}[/tex]

[tex]v_{1}=-1.67\ m/s[/tex]

Hence,  (a). The final velocity of the first glider is −2.15 m/s.

(b). The final velocity of the second glider is -1.67 m/s.

Answer with Explanation:

We are given that

Mass of glider=m=0.14 kg

Initial speed of first glider, u=0.9 m/s

m'=0.297 kg

Initial speed of second glider, u'=-2.25m/s

a.We have to find the magnitude of final velocity of 0.140 kg glider.

The collision is elastic then the final velocity of 0.140 kg glider

[tex]v=\frac{(m-m')u+2m'u'}{m+m'}[/tex]

Substitute the values

[tex]v=\frac{(0.140-0.297)\times 0.9+2\times 0.297\times (-2.25)}{0.140+0.297}=-3.38m/s[/tex]

Magnitude of final velocity of 0.140 kg glider=3.38 m/s

b.[tex]v'=\frac{u'(m'-m)+2mu}{m+m'}[/tex]

[tex]v'=\frac{-2.25(0.297-0.140)+2\times 0.140\times 0.9}{0.140+0.297}=-0.23 m/s[/tex]

Hence, the magnitude of final velocity of 0.297 kg glider=0.23 m/s

A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from the center of the disk to a point on the surface of the disk. Find (by direct integration) the electric potential at P.

Answers

Answer:

Explanation:

dV = k (dq)/d

dV = k (sigma da)/d

dV = k (5 C r (r dr d(phi)))/d

d = sqrt(r^2 + x^2)

dV = 5 k C (r^2/sqrt(r^2+x^2)) dr d(phi)

==> V = int{5 k C (r^2/sqrt(r^2+x^2)) dr d(phi)} ; from r=0 to r=R and phi=0 to phi=2pi

==> V = 5 k C int{(r^2/sqrt(r^2+x^2)) dr d(phi)} ; from r=0 to r=R and phi=0 to phi=2pi

==> V = 5 k C (2 pi) int{(r^2/sqrt(r^2+x^2)) dr} ; from r=0 to r=R

==> V = 5 k C (2 pi) (1/2) (R sqrt(R^2+x^2) - x^2 ln(sqrt(r^2+x^2) + r) + x^2 Ln(x))

A 12.0-N object is oscillating in simple harmonic motion at the end of an ideal vertical spring. Its vertical position y as a function of time t is given by y(t)=4.50cmcos[(19.5s−1)t−π/8].(a) What is the spring constant of the spring?

Answers

Answer:

465.6 N/m

Explanation:

We are given that

F=12 N

[tex]y(t)=4.50cos\left \{(19.5s^{-1}t-\frac{\pi}{8}\right \}[/tex]

We have to find the spring constant of the spring.

[tex]F=mg[/tex]

Where [tex]g=9.8 m/s^2[/tex]

Using the formula

[tex]12=m\times 9.8[/tex]

[tex]m=\frac{12}{9.8}[/tex]kg

Compare the given equation with

[tex]y(t)=Acos(\omega t-\phi)[/tex]

We get [tex]\omega=19.5[/tex]

[tex]k=m\omega^2[/tex]

Using the formula

Spring constant,[tex]k=\frac{12}{9.8}\times (19.5)^2=465.6 N/m[/tex]

Final answer:

The spring constant (k) for the object executing simple harmonic motion is approximately 463.29 N/m, calculated using the provided angular frequency and the mass of the object.

Explanation:

To find the spring constant (k) of the spring for an object executing simple harmonic motion (SHM), we use the equation of motion provided:


  y(t) = 4.50 cm cos[(19.5 s-1)t - π/8]

From the equation of motion, we can see that the angular frequency (ω) is 19.5 s-1. In SHM, the angular frequency ω is related to the spring constant k and the mass m by the following equation:


  ω = sqrt(k/m)

To calculate k, we rearrange the equation to solve for k:


  k = mω2

First, we find the mass (m) by using the weight of the object (12.0 N):


  m = weight / g = 12.0 N / 9.81 m/s2 ≈ 1.22 kg

Then we calculate the spring constant (k):


  k = (1.22 kg)(19.5 s-1)2 ≈ 463.29 N/m

Therefore, the spring constant of the spring is approximately 463.29 N/m.

A train, traveling at a constant speed of 22.0 m/s, comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2. How far has the train traveled up the incline after 7.30 s

Answers

Answer:

123.30 m

Explanation:

Given

Speed, u = 22 m/s

acceleration, a = 1.40 m/s²

time, t = 7.30 s

From equation of motion,

                       v = u + at

where,

v is the final velocity

u is the initial velocity

a is the acceleration

t is time  

                       V = at + U

using equation  v - u = at to get line equation for the graph of the motion of the train on the incline plane

                       [tex]V_{x} = mt + V_{o}[/tex]      where m is the slope

Comparing equation (1) and (2)

[tex]V = V_{x}[/tex]

a = m    

[tex]U = V_{o}[/tex]

Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.

          a = -  1.40 m/s²

Sunstituting a = -  1.40 m/s² and  u = 22 m/s

                        [tex]V_{x} = -1.40t + 22[/tex]

                            [tex]V_{x} = -1.40(7.30) + 22[/tex]

                             [tex]V_{x} = -10.22 + 22[/tex]

                             [tex]V_{x} = 11. 78 m/s[/tex]

The speed of the train at 7.30 s is 11.78 m/s.

The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.

           Area of triangle +  Area of rectangle

          [tex][\frac{1}{2} * (22 - 11.78) * (7.30)] + [(11.78 - 0) * (7.30)][/tex]

                           = 37.303 + 85.994

                           = 123. 297 m

                           ≈ 123. 30 m

                 

Answer:

123.297 m

Explanation:

A train, traveling at a constant speed of 22.0 m/s,

v = 22.0 m/s

the train slows down with a constant acceleration of magnitude 1.40 m/s².

[tex]a_s[/tex] = -1.4 m/s²

How far has the train traveled up the incline after 7.30 s

t =7.30 s

We can calculate the distance traveled up the incline after 7.30 s by using the formula:

[tex]x_f =x_i+v_xt+\frac{1}{2}a_st^2[/tex]

where;

[tex]x_f[/tex] = the distance traveled up

[tex]x_i[/tex] = 0

[tex]v_x[/tex] = speed of the train

[tex]a_s[/tex] = deceleration

t = time

Substituting our data; we have:

[tex]x_f = 0+(22m/s)(7.30s)+\frac{1}{2}(-1.4m/s^2)(7.30s)[/tex]

[tex]x_f =16.06 -37.303[/tex]

[tex]x_f[/tex] = 123.297 m

Other Questions
enny, Inc., is looking at setting up a new manufacturing plant in South Park. The company bought some land six years ago for $8.2 million in anticipation of using it as a warehouse and distribution site, but the company has since decided to rent facilities elsewhere. The land would net $11 million if it were sold today. The company now wants to build its new manufacturing plant on this land; the plant will cost $22.2 million to build, and the site requires $970,000 worth of grading before it is suitable for construction. What is the proper cash flow amount to use as the initial investment in fixed assets when evaluating this project A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the cylinder is held in place only by the pressure of the air. One day when the atmospheric pressure is 100 kPa, it takes a 173 N force to pull the cap off. A bag contains 15 green, 18 yellow, and 16 orange balls. One ball is randomly selected.To the nearest percent, what is the probability of the event?Drag and drop the correct value into the box.P(yellow) =31%33%37%42% A running back with a mass of 86 kg and a velocity of 9 m/s (toward the right) collides with, and is held by, a 129-kg defensive tackle going in the opposite direction (toward the left). What is the velocity of the tackle before the collision for their velocity afterward to be zero What is an amendment A sociologist surveyed 300 people about their level of anxiety on a scale of 1 to 100. Unfortunately, the person inputting the data into the computer accidentally transposed six of the numbers causing the statistics to have errors.What type of error is this?1. Sampling error 2. Non sampling error Easter Wings by George Herbert Lord, who createdst man in wealth and store, Though foolishly he lost the same, Decaying more and more, Till he became Most poore: With thee O let me rise As larks, harmoniously, And sing this day thy victories: Then shall the fall further the flight in me. My tender age in sorrow did beginne And still with sicknesses and shame. Thou didst so punish sinne, That I became Most thinne. With thee Let me combine, And feel thy victorie: For, if I imp my wing on thine, Affliction shall advance the flight in me. 2 Select the correct answer. What does the structure of the poem as the outspread wings of a flying bird convey? A. the idea of victory in the second stanza of the poem B. the poet's wish to rise from the fallen state of humanity C. the overwhelming beauty of nature D. the effect of harmonious flight of birds Harry saved $100 each week for 8 weeks. He earned $48 on his savings of $800. What interest did Harry earn for every $100? The _______________ community has low diversity with microorganisms primarily in the Leptospirillum groups II and III and from the Ferroplasma types I and II. All of the following are the interrelated components of a feasibility analysis EXCEPT: 1. Industry and market feasibility analysis 2. Make or buy feasibility analysis 3. Product or service feasibility analysis 4. Financial feasibility analysis Which artwork is an example of an assemblage?Sorry I don't know how to submit the pictures ;( Which of the following is a true statement about antibiotic resistant bactethey attack the immune systemthey can spread through the airthey are not affected by antibioticsthey only attack human, not animals What is homeostasis? (A.the maintenance of a relatively stable internal environmentB.the release of signals that cause body cells to increase their activityC.a type of body temperature regulation that depends on the external environmentD. a process in which the response to a stimulus causes a reaction that opposes the original stimulus Solve the last Y pls uwu Chuck Praeger has made a name for himself by being able to sell golf equipment to anyone, anywhere, anytime. Chuck would like to expand his business into Pacific Rim countries and has begun making inquiries into potential distributors. Chuck is convinced that his golf equipment will sell itself. But Chuck is preparing his special "hard-sell" presentation for Asia because he wants to make a good first impression. As a Pacific Rim expert, what do you tell Chuck?1. Be sure to have a tight legal contract ready to avoid product piracy problems.2. Aggressive salesmanship is unlikely to work in Pacific Rim countries.3. Have plenty of English-language business cards to pass around because Asians are impressed with all things about the United States.4. Avoid the confusion introduced by third-party contacts.5. Aggressive salesmanship is unlikely to work in Pacific Rim countries. Which is true about atoms?A. They are extremely large.B. They can be broken downC. They are extremely small.D. They are only in solids. A man can swim at 4 ft/s in still water. He wishes to cross tje 40-ft wide river to point B, 30 ft downstream. If the river flows with a velocity of 2 ft/s, determine the speed of the man and the time needed to make the crossing. Note While in the water he must not direct himself toward point B to reach the point. What is the energy in the spark produced by discharging the second capacitor? 1. The same as the discharge spark of the first capacitor 2. More energetic than the discharge spark of the first capacitor 3. Less energetic than the discharge spark of the first capacitor The Sun Has Long Been Set by William Wordsworth The sun has long been set, The stars are out by twos and threes, The little birds are piping yet Among the bushes and trees; There's a cuckoo, and one or two thrushes, And a far-off wind that rushes, And a sound of water that gushes, And the cuckoo's sovereign cry Fills all the hollow of the sky. Who would "go parading" In London, "and masquerading," On such a night of June With that beautiful soft half-moon, And all these innocent blisses? On such a night as this is! Summer, an excerpt by Amy Lowell Some men there are who find in nature all Their inspiration, hers the sympathy Which spurs them on to any great endeavor, To them the fields and woods are closest friends, And they hold dear communion with the hills; The voice of waters soothes them with its fall, And the great winds bring healing in their sound. To them a city is a prison house Where pent up human forces labour and strive, Where beauty dwells not, driven forth by man; But where in winter they must live until Summer gives back the spaces of the hills. To me it is not so. I love the earth And all the gifts of her so lavish hand: Sunshine and flowers, rivers and rushing winds, Thick branches swaying in a winter storm, And moonlight playing in a boat's wide wake; But more than these, and much, ah, how much more, I love the very human heart of man. Above me spreads the hot, blue mid-day sky, Far down the hillside lies the sleeping lake Lazily reflecting back the sun, And scarcely ruffled by the little breeze Which wanders idly through the nodding ferns. The blue crest of the distant mountain, tops The green crest of the hill on which I sit; And it is summer, glorious, deep-toned summer, The very crown of nature's changing year When all her surging life is at its full. To me alone it is a time of pause, A void and silent space between two worlds, When inspiration lags, and feeling sleeps, Gathering strength for efforts yet to come. Which of the following describes a key similarity between the two poems?A. Both make incorrect assumptions about science.B. Both reveal surprises at the ending.C. Both express anger at another person.D. Both describe the natural world around them. A new article reported that college students who have part-time jobs work an average of 15 hour per week. The staff of a college from for newspaper thought that the average might be different from 15 hours per week for their college. Data were collected on the number of hours worked per week for a random sample of students at the college who have part-time jobs. The data were used to test the hypotheses H_o: mu = 15 H_a: mu notequalto 15. where mu is the mean number of hours worked per week for all students at the college with part-time jobs. The results of the test are shown in the table below. Assuming all conditions for inference were met, which of the following represents a 95 percent confidence interval for mu? (A) 13.755 plusminus 0.244 (B) 13.755 plusminus 0.286 (C) 13.755 plusminus 0.707 (D) 13.755 plusminus 1.245 E) 13, 755 plusminus 1.456 Steam Workshop Downloader