Gina is driving her car down the street. She has a teddy bear sitting on the back seat. A dog runs in front of Gina's car, so she quickly applies the brakes. The force of the brakes causes the car to stop, but the teddy bear continues to move forward until it hits the car's dashboard. The teddy bear did not stop at the same time as the car because A. objects in motion tend to stay in motion unless acted upon by an outside force. B. only objects touching the Earth's surface can be acted upon by an outside force. C. more force is required to stop softer objects than to stop harder objects. D. objects in motion can only be stopped by the application of a balanced force.

Answers

Answer 1

object in motion tends to be in motion unless acted upon by an external force

Answer 2

Answer:

The answer is A) objects in motion tend to stay in motion unless acted upon by an outside force

Explanation:

Newton's laws of motion are three laws that describe the relationship between forces acting on an object and the motion of that object. Newton's first law of motion states that an object that is at rest or in uniform motion tends to stay at rest or in uniform motion, respectively, until acted upon by an outside force.


Related Questions

If 25.21 ml of naoh sloution is required to react completed with .550 g khp, what is the molarity of the naoh solution

Answers

The molarity of the NaOH solution is calculated by determining the moles of KHP, which is 0.002693 mol, and then using the volume of the NaOH solution that reacted with KHP. The molarity comes out to be 0.1068 M.

To determine the molarity of the NaOH solution, we need to know the stoichiometry of the reaction between NaOH and KHP (potassium hydrogen phthalate). The equation for the reaction is:

KHP + NaOH -> KNaP + H2O

Each mole of KHP reacts with one mole of NaOH. First, we determine the moles of KHP:

Molar mass of KHP (C8H5KO4) = 204.22 g/mol

Moles of KHP = mass of KHP / molar mass of KHP

Moles of KHP = 0.550 g / 204.22 g/mol = 0.002693 mol KHP

Since the mole ratio between KHP and NaOH is 1:1, the moles of NaOH will also be 0.002693 mol. We can now determine the molarity (M) of the NaOH solution.

Molarity (M) = moles of solute / liters of solution

Molarity of NaOH = 0.002693 mol / 0.02521 L = 0.1068 M

Therefore, the molarity of the NaOH solution is 0.1068 M.

The molarity of the NaOH solution is [tex]{0.107 \text{ M}[/tex]

To find the molarity of the NaOH solution, follow these steps:

1. Write the balanced chemical equation for the reaction between NaOH and KHP (potassium hydrogen phthalate). The reaction is as follows:

  [tex]\[ \text{NaOH} + \text{KHC}_8\text{H}_4\text{O}_4 \rightarrow \text{KNaC}_8\text{H}_4\text{O}_4 + \text{H}_2\text{O} \][/tex]

2. Calculate the moles of KHP that reacted with the NaOH solution. The molar mass of KHP [tex](KHC$_8$H$_4$O$_4$)[/tex] is 204.22 g/mol. Using the given mass of KHP (0.550 g), we can find the moles of KHP:

  [tex]\[ \text{moles of KHP} = \frac{\text{mass of KHP}}{\text{molar mass of KHP}} = \frac{0.550 \text{ g}}{204.22 \text{ g/mol}} \][/tex]

3. Perform the calculation for the moles of KHP:

  [tex]\[ \text{moles of KHP} = \frac{0.550}{204.22} \approx 0.002693 \text{ mol} \][/tex]

4. Since the reaction between NaOH and KHP occurs in a 1:1 molar ratio, the moles of NaOH that reacted with KHP are equal to the moles of KHP:

 [tex]\[ \text{moles of NaOH} = \text{moles of KHP} = 0.002693 \text{ mol} \][/tex]

5. Calculate the molarity of the NaOH solution. The volume of the NaOH solution used is 25.21 ml, which is equivalent to 0.02521 L (since 1 L = 1000 ml):

 [tex]\[ \text{Molarity of NaOH} = \frac{\text{moles of NaOH}}{\text{volume of NaOH in liters}} = \frac{0.002693 \text{ mol}}{0.02521 \text{ L}} \][/tex]

6. Perform the calculation for the molarity of NaOH:

  [tex]\[ \text{Molarity of NaOH} = \frac{0.002693}{0.02521} \approx 0.1068 \text{ M} \][/tex]

7. To express the molarity with the correct number of significant figures, consider the given data. The volume of NaOH has four significant figures (25.21 ml), and the mass of KHP has three significant figures (0.550 g). Therefore, the molarity should be expressed with three significant figures:

  [tex]\[ \text{Molarity of NaOH} = 0.107 \text{ M} \][/tex]

A gas has a volume of 50.0 cm3 at a temperature of -73°C. What volume would the gas occupy at a temperature of -123°C if the pressure stays constant?

f 5.0 cm3

g 3.75 cm3

h 37.5 cm3

j 50.0 cm3

Answers

Answer:

h. 37.5 cm³

Explanation:

We can use the general law of ideal gas: PV = nRT.

where, P is the pressure of the gas in atm.

V is the volume of the gas in L.

n  is the no. of moles of the gas in mol.

R is the general gas constant,

T is the temperature of the gas in K.

If n and P are constant, and have different values of V and T:

(V₁T₂) = (V₂T₁).  

V₁ = 50.0 cm³, T₁ = -73°C + 273 = 200 K,

V₂ = ??? cm³, ​T₂ = -123°C + 273 = 150 K.

∴ V₂ = (V₁T₂)/(T₁) = (50.0 cm³)(150 K)/(200 K) = 37.5 cm³.

So, the right choice is: h. 37.5 cm³.

A chemist dissolves 274.mg of pure barium hydroxide in enough water to make up 50.ml of solution. calculate the ph of the solution. (the temperature of the solution is 25°c.)

Answers

Answer:

12.81.

Explanation:

Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 liter of the solution.

M = (no. of moles of solute)/(Volume of the solution (L))

M = (mass/molar mass) NaCl / (Volume of the solution (L))

mass of Ba(OH)₂ = 274 mg = 0.274 g, molar mass of Ba(OH)₂ = 171.34 g/mol, Volume of water = 50.0 mL = 0.05 L.

M = (mass/molar mass) Ba(OH)₂ / (Volume of the solution (L)) = (0.274 g / 171.34 g/mol) / (0.05 L) = 0.03 M.

Ba(OH)₂ is dissociated according to:

Ba(OH)₂ → Ba²⁺ + 2OH⁻,

Every 1.0 mol of Ba(OH)₂ gives 2.0 moles of OH⁻.

∴ [OH⁻] = 2(0.032 M) = 0.064 M.

∵ pOH = -log[OH⁻]

∴ pOH = -log(0.064) = 1.194.

∵ pH + pOH = 14.

∴ pH = 14 - pOH = 14 - 1.194 = 12.81.

Choose the correct statements.
A. The noble gases are very unstable.
B. In the world, elements are usually in their pure form.
C. Eight electrons in the outer shell is the most stable configuration.
D. A chemical bond is a strong attractive force between atoms.

Answers

Answer:

The correct answer to your question is:  C

Explanation:

A. The noble gases are very unstable.  This option is wrong because noble gases are the most stable elements.

B. In the world, elements are usually in their pure form.  this option is wrong because most of the elements are part of compounds.

C. Eight electrons in the outer shell is the most stable configuration.  This option is correct, metals and non metals reach stability by gaining or losing electrons to reach electrons

D. A chemical bond is a strong attractive force between atoms. This option is also right, this is a correct definition of chemical bond.

What element on the periodic table is named after the european capital where it was discovered in 1923?

Answers

Answer:

The element is Hafnium

Explanation:

Hi, Hafnium was discovered in 1923 by George Charles de Hevesy y Dirk Coster in Denmark. It's name was given after the capital of that country: Copenhagen which name in latin is Hafnia.

What holds quarks together?

Answers

gluons because they so tightly  glue quarks together.

1. When describing wavelengths, frequency is the number of crests or troughs passing through a given point over a given unit of time.

True False

2. Physics is the study of matter.

True
False

Answers

The study of chemicals and bonds is called chemistry. There are different types of elements and these are metals and nonmetals.

What is wavelength?

The wavelength is the spatial period of a periodic wave.

According to the question, the answer to both questions is as follows:-

When describing wavelengths, frequency is the number of crests or troughs passing through a given point over a given unit of time is true.Physics is the study of matter is true.

For more information about the matter, refer to the link:-

https://brainly.in/question/3403229

which of the following best describes what happens to the force of attraction if the distance between two objects increase?
1.it varies
2.it decreases
3.it increases
4.it stays the same

Answers

Answer:

3.it increases

Explanation:

Final answer:

The force of attraction decreases when the distance between two objects increases, according to the inverse-square law for forces like gravity and electrostatic forces.

Explanation:

When the distance between two objects increases, the force of attraction between them decreases. This principle is observed in both gravitational and electrostatic forces. The magnitude of the force actually decreases as the square of the distance increases. If the distance doubles, the force between the objects would decrease to one fourth of its original value. Additionally, an increase in mass for an object in uniform circular motion will result in an increase of the required centripetal force to maintain the same speed.

If a tree dies and the trunk remains undisturbed for 13,750 years, what percentage of the original 14c is still present? (the half-life of 14c is 5730 years.)

Answers

Answer:

18.94%.

Explanation:

The decay of carbon-14 is a first order reaction.The rate constant of the reaction (k) in a first order reaction = ln (2)/half-life = 0.693/(5730 year) = 1.21 x 10⁻⁴ year⁻¹.The integration law of a first order reaction is:

kt = ln [A₀]/[A]

k is the rate constant = 1.21 x 10⁻⁴ year⁻¹.

t is the time = 13,750 years.

[A₀] is the initial percentage of carbon-14 = 100.0 %.

[A] is the remaining percentage of carbon-14 = ??? %.

∵ kt = ln [Ao]/[A]

∴ (1.21 x 10⁻⁴ year⁻¹)(13,750 years) = ln (100.0%)/[A]

1.664 =  ln (100.0%)/[A]

Taking exponential for both sides:

5.279 = (100.0%)/[A]

∴ [A] = (100.0%)/5.279 = 18.94%.

If a tree dies and the trunk remains undisturbed for 13,750 years, 18.94% of the original C-14 will still be present.

What is radioactive decay?

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation.

C-14 decays with a half-life (th) of 5730 years. We can calculate the rate constant (k) using the following expression.

k = ln2 / th = ln2 / 5730 y = 1.210 × 10⁻⁴ y⁻¹

The decay follows first-order kinetics. We can calculate the fraction of the original C-14 after 13,759 years using the following expression.

[tex][C]/[C]_0 = e^{-k.t} \\[C]/[C]_0 = e^{-(1.210.10^{-4}y^{-1} ).(13,750y)} = 0.1894 = 18.94 \%[/tex]

where,

[C] is the amount of C after a time t.[C]₀ is the original amount of C.

If a tree dies and the trunk remains undisturbed for 13,750 years, 18.94% of the original C-14 will still be present.

Learn more about radioactive decay here: https://brainly.com/question/25013071

If the pH of a solution is 5, what is its OH ion concentration?

Answers

Answer:

1.0 x 10⁻⁹ M.

Explanation:

∵ pH = - log[H⁺].

∴ 5.0 = - log[H⁺].

log[H⁺] = - 5.0.

∴ [H⁺] = 1.0 x 10⁻⁵ M.

∵ [H⁺][OH⁻] = 10⁻¹⁴.

∴ [OH⁻] =  10⁻¹⁴/[H⁺] = (10⁻¹⁴)/(1.0 x 10⁻⁵ M) = 1.0 x 10⁻⁹ M.

What properties must a solid have to undergo sublimation

Answers

Answer:

Sublimation occurs in solids with vapor pressures that exceed atmospheric pressure at or near room temperature.

Explanation:

For a solid to undergo sublimation, it must have relatively low intermolecular forces on the surface allowing it to transition directly from solid to gas with the addition of energy. The heat of sublimation (AHsub) is key in understanding this process, which involves the sum of the heat of fusion and vaporization.

A solid must have certain properties to undergo sublimation. Sublimation is the direct conversion of a solid to a gas without passing through the liquid phase. To sublimate, the solid should have sufficient intermolecular forces on the surface that can be overcome relatively easily with the addition of energy, such as heat. This is why substances with higher vapor pressures near room temperature can often undergo sublimation.

The amount of energy required for a solid to sublimate is indicated by the heat of sublimation (AHsub), which is the sum of the heat of fusion (AHfus) and the heat of vaporization (AHvap). This is an application of Hess's law and signifies the total amount of energy needed to change the phase from solid to gas. The equation Q = mLs is used to calculate the energy involved in the process, where Ls represents the heat of sublimation.

Common examples of substances that can sublimate include dry ice (CO2), iodine, naphthalene, and 1,4-dichlorobenzene. Substances that sublimate have unique uses, such as dry ice being a good refrigerant, because it cools through the endothermic sublimation process without leaving a liquid residue as it transitions to gas.

During nuclear decay, if the atomic number decreases by one but the mass number is unchanged, the radiation emitted is

A positron
An alpha particle
A beta particle
None of these choices are correct

Answers

Final answer:

OPTION A.

In nuclear decay, if the atomic number decreases by one but the mass number is unchanged, the radiation emitted is a positron. This type of decay is known as positron emission.

Explanation:

During nuclear decay, if the atomic number decreases by one but the mass number is unchanged, the radiation emitted is, in fact, a positron. This type of decay is called positron emission. In positron emission, a proton in the nucleus is converted into a neutron, and a positron is emitted. This process leads to a decrease in the atomic number by one unit but the mass number remains unchanged as the overall amount of nucleons (protons + neutrons) is conserved.

Learn more about Positron Emission here:

https://brainly.com/question/30802337

#SPJ12

Final answer:

During nuclear decay, if the atomic number decreases by one but the mass number is unchanged, the radiation emitted is a beta particle.

Explanation:

During nuclear decay, if the atomic number decreases by one but the mass number is unchanged, the radiation emitted is a beta particle. Beta particles are high-energy electrons or positrons that are emitted during the decay of a nucleus. They have a negative charge and are smaller than alpha particles, making them capable of penetrating further through materials. This type of decay is referred to as beta decay.

Learn more about Beta Decay here:

https://brainly.com/question/32239385

#SPJ12

A 45.9 g sample of a metal is heated to 95.2°c and then placed in a calorimeter containing 120.0 g of water (c = 4.18 j/g°c) at 21.6°c. the final temperature of the water is 24.5°c. which metal was used?

Answers

Answer:

Iron

Explanation:

Heat released by the metal sample will be equivalent to the heat absorbed by  water.

But heat = mass × specific heat capacity × temperature change

Thus;

Heat released by the metal;

= 45.9 g × c ×(95.2 -24.5) , where c is the specific heat capacity of the metal

= 3245.13c joules

Heat absorbed by water;

= 120 g × 4.18 J/g°C × (24.5-21.6)

= 1454.64 joules

Therefore;

3245.13c joules = 1454.64 joules

c = 1454.64/3245.13

  = 0.448 J/g°C

The specific heat capacity of the  metal sample is 0.448 J/g°C. The metal use is most likely, Iron.

Final answer:

The metal used is copper.

Explanation:

The specific heat equation, q = mcΔT, can be used to determine the metal used. By plugging in the given values and solving for the metal's specific heat, we find that the closest value is to copper. Therefore, the metal used is copper.

Learn more about specific heat here:

https://brainly.com/question/31608647

#SPJ11

which metal cation has the greatest tendency to be reduced (a) Pb2+ (b) Cr3+ (c) Fe2+ (d) Sn2+

Answers

Answer:  (a) [tex]Pb^{2+}[/tex]

Explanation:

The metal with negative reduction potential will easily lose electrons and thus is oxidized and the one with positive reduction potential will easily gain electrons and thus is reduced.

Where both [tex]E^0[/tex] are standard reduction potentials.

[tex]E^0_{[Pb^{2+}/Pb]}=-0.126V[/tex]

[tex]E^0_{[Cr^{3+}/Cr]}=-0.74V[/tex]

[tex]E^0_{[Fe^{2+}/Fe]}=-0.44V[/tex]

[tex]E^0_{[Sn^{2+}/Sn]}=-0.13V[/tex]

Thus here [tex]Pb^{2+}[/tex] with negative reduction potential and least magnitude has the most tendency to gain electrons and thus can be most easily reduced.

From the data below, calculate the total heat (in j) needed to convert 0.782 mol of gaseous ethanol at 300.0°c and 1 atm to liquid ethanol at 25.0°c and 1 atm

Answers

Answer:

You must remove [tex]\text{50.6 kJ}[/tex] .

Explanation:

There are three heat transfers in this process:

Total heat = cool the vapour + condense the vapour + cool the liquid  

       q          =           q₁            +                q₂                   +           q₃

       q          =       nC₁ΔT₁        +          nΔHcond             +        nC₂ΔT₂

Let's calculate these heat transfers separately.

Data:

You don't give "the data below", so I will use my best estimates from the NIST Chemistry WebBook. You can later substitute your own values.

C₁ = specific heat capacity of vapour = 90 J·K⁻¹mol⁻¹

C₂ = specific heat capacity of liquid   = 115 J·K⁻¹mol⁻¹

ΔHcond = -38.56 kJ·mol⁻¹

Tmax = 300   °C

  b.p. =   78.4 °C

Tmin =   25.0 °C

n = 0.782 mol

Calculations:

ΔT₁ = 78.4 - 300 = -221.6 K

q₁ = 0.782 × 90 × (-221.6) = -15 600 J = -15.60 kJ

q₂ = 0.782 × (-38.56) = -30.15 kJ

ΔT = 25.0 - 78.4 = -53.4 K

q₃ = 0.782 × 115 × (-53.4) = -4802 J = 4.802 kJ

q = -15.60 - 53.4 - 4.802 = -50.6 kJ

You must remove [tex]\text{50.6 kJ}[/tex] of heat to convert the vapour to a gas.

Final answer:

To find the total heat needed to convert the gaseous ethanol to liquid, one must first consider the cooling of the gaseous ethanol, then the condensation of the gaseous ethanol, and lastly cooling the liquid ethanol to 25 degrees Celsius. Each step requires a specific calculation, and the final heat value is the sum of all energies calculated in these three steps, with all values converted to the same energy unit for accuracy.

Explanation:

We first need to handle the cooling of the gaseous ethanol. For this, we'll use the specific heat capacity ... Given that the heat capacity (cv) of ethanol is about 75 J/mol*K (approximated because the exact value can vary), the heat loss (q1) could be calculated in this way:

q = cv * n * ΔT = 75J/mol*K * 0.782mol * (300-25)K

Subsequently, for condensation, we'll use the heat of condensation ... Assuming the heat of condensation of ethanol to be around 38.56 kJ/mol (procured from a standard table or book), we get:

q = ΔHvap * n = 38.56 kJ/mol * 0.782 mol

Lastly, we need to consider cooling the liquid ethanol to 25°C ... Therefore, knowing that the specific heat of liquid ethanol is about 112 J/mol*K:

q = c * n * ΔT = 112J/mol*K * 0.782mol * (78.37-25)K

Summing all these energies, then converting to an identical energy unit, gives you the total energy required.

Learn more about Heat Calculations for Ethanol here:

https://brainly.com/question/20039043

#SPJ12

A scientist prepared an aqueous solution of a 0.45 M weak acid. The pH of the solution was 2.72. What is the percentage ionization of the acid? 19% 0.42% 42% 0.19%

Answers

Answer:

0.42%

Explanation:

∵ pH = - log[H⁺].

2.72 = - log[H⁺]

∴ [H⁺] = 1.905 x 10⁻³.

∵ [H⁺] = √Ka.C

∴ [H⁺]² = Ka.C

∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.

∵ Ka = α²C.

Where, α is the degree of dissociation.

∴ α = √(Ka/C) = √(8.065 x 10⁻⁶/0.45) = 4.234 x 10⁻³.

∴ percentage ionization of the acid = α x 100 = (4.233 x 10⁻³)(100) = 0.4233% ≅ 0.42%.

The answer is 0.42% just did it ;)

*PSYCHOLOGY*
What is the main importance of withholding personal judgment against people with mental illness?

A)You save yourself from embarrassment and humiliation.
B)Disorders don't affect you, so you don't need to get into someone's business.
C)You can attempt to objectively understand a person's troubles.
D)all of the above

Answers

Final answer:

Withholding personal judgment against people with mental illness is important to understand their troubles objectively and provide support.

Explanation:

The main importance of withholding personal judgment against people with mental illness is that it allows us to attempt to objectively understand a person's troubles. When we withhold personal judgment, we can empathize with individuals suffering from mental illness and provide them with the support and care they need. Additionally, by not judging, we create an environment that encourages open communication and reduces the stigma surrounding mental health.

What is the coefficient of the acid that produces AlCl3 in the reaction mixing Al(OH)3 and HCl after the equation has been balanced?


1

3

2

4




Answers

Answer:

3.

Explanation:

Al(OH)₃ reacts with HCl to produce AlCl₃ and water according to the balanced equation:

Al(OH)₃ + 3 HCl → AlCl₃ + 3H₂O,

It is clear that 1.0 mole of Al(OH)₃ reacts with 3.0 mole of HCl to produce 1.0 mole of AlCl₃ and 3.0 moles of H₂O,

So, the coefficient of HCl is 3.

How much energy is lost during an average chemical reaction?

Answers

In a reaction, there is no energy lost or created because of the law of conversion of energy. The energy is just transformed from one form to others.

What is a chemical reaction?

A chemical reaction is a reaction in which the reactant are combined to form products.

In a chemical reaction, energy does not lose, it is just transformed into another form.

Thus, In a reaction, there is no energy lost or created because of the law of conversion of energy. The energy is just transformed from one form to others.

Learn more about chemical reaction

https://brainly.com/question/22817140

#SPJ2

Determine the oxidation number of Cl in each of the following species.Cl2O7AlCl4-Ba(ClO2)2CIF4+

Answers

These are four questons and four answers:

Answers:

1)  7⁺2) 1⁻3) 3⁺4) 5⁺

Explanation:

Question 1) Cl₂O₇:

a) Net charge of the compound: 0

b) Rule: oxygen works with oxidation state +2, except with peroxides.

d) Rule: balance of charges: ∑ of the charges = net charge

Call X the oxidation number of Cl:

2×X + 7 (-2) = 02X - 14 = 02X = +14X = +14 /2 = + 7

Conclusion: the oxidation number of Cl in Cl₂O₇ is 7⁺.

Question 2) AlCl₄⁻

a) Net charge of the ion: - 1

b) Rule: common oxidation number of Al in compounds: +3

c) Rule: balance of charges: ∑ charges = net charge = - 1

1 (+3) + 4X = - 1+3 + 4X = - 14X = - 1 - 34X = - 4X = - 1

Conclusion: the oxidation number of Cl in AlCl₄⁻ is 1 ⁻.

Question 3) Ba(ClO₂)₂

a) Net charge of the compound: 0

b) Rule: common oxidation number of BA in compounds: +2

c) Rule: common oxidation number of O in compounds (except in peroxides): -2

d) Rule: balance of charges: ∑ charges = net charge = 0

+2 + 2X + 4 (-2) = 02X +2 - 8 = 02X - 6 = 02X = +6X = + 3

Conclusion: the oxidation number of Cl in Ba(ClO₂)₂  is 3⁺.

Question 4) CIF₄⁺

a) Net charge of the ion: + 1

b) Rule: common oxidation number of F : - 1 (it is the most electronegative)

c) Rule: balance of charges: ∑ charges = net charge = + 1

X + 4(-1) = +1X - 4 = +1X = +1 + 4X = + 5

Conclusion: the oxidation number of Cl in ClF₄⁺ is 5⁺.

How many moles of compound are there in the following?
a. 6.60 g (NH4)2SO4
b. . 4.5 kg Ca(OH)2

Answers

a) (NH4)2SO4 --- 1 mole of it contains 2 moles of N, 8 moles of H, 1 mole of S, and 4 moles of O.

MM = (2 moles N x 14.0 g/mole) + (8 moles H x 1.01 g/mole) + (1 mole S x 32.1 g/mole) + (4 moles O x 16.0 g/mole) = 132 g/mole.

6.60 g (NH4)2SO4 x (1 mole (NH4)2SO4 / 132 g (NH4)2SO4) = 0.0500 moles (NH4)2SO4

b) The molar mass for Ca(OH)2 = 74.0 g/mole, calculated like (NH4)2SO4 above.

4.5 kg Ca(OH)2 x (1000 g / 1 kg) x (1 mole Ca(OH)2 / 74.0 g Ca(OH)2) = 60.8 moles Ca(OH)2

The number of mole in the compounds are:

A. 6.60 g of (NH₄)₂SO₄ contains 0.05 mole.

B. 4.5 kg Ca(OH)₂ contains 60.81 moles

The mole of a substance is related to its mass and molar mass according to the equation:

[tex]Mole = \frac{mass}{molar mass }[/tex]

With the above formula, we can obtain the answer to the questions given above. This is illustrated below:

A. Determination of the number of mole in  6.60 g of (NH₄)₂SO₄

Molar mass of (NH₄)₂SO₄ = 2[14 + (4×1)] + 32 + (4×16)

= 2[14 + 4] + 32 + 64

= 2[18] + 32 + 64

= 36 + 32 + 64

= 132 g/mol

Mass of NH₄)₂SO₄ = 6.60 g

Mole of NH₄)₂SO₄ =?

[tex]Mole = \frac{mass}{molar mass }[/tex]

Mole of NH₄)₂SO₄ = [tex]\frac{6.6}{132}\\\\\\[/tex]

Mole of NH₄)₂SO₄ = 0.05 mole

Thus, 6.60 g of (NH₄)₂SO₄ contains 0.05 mole.

B. Determination of the number of mole in 4.5 kg Ca(OH)₂

Molar mass of Ca(OH)₂ = 40 + 2(16 + 1)

= 40 + 2(17)

= 40 + 34

= 74 g/mol

Mass of Ca(OH)₂ = 4.5 kg

= 4.5 × 1000

= 4500 g

Mole of Ca(OH)₂ =?

[tex]Mole = \frac{mass}{molar mass }[/tex]

Mole of Ca(OH)₂ = [tex]\frac{4500}{74}\\\\\\[/tex]

Mole of Ca(OH)₂ = 60.81 moles

Thus, 4.5 kg Ca(OH)₂ contains 60.81 moles

Learn more: https://brainly.com/question/17201079

Which describes the role of oxygen in photosynthesis and cellular respiration?
Oxygen is a reactant in photosynthesis and a product of cellular respiration.

Oxygen is a product of photosynthesis and a reactant in cellular respiration.

Oxygen is produced in both photosynthesis and cellular respiration.

Answers

Answer:

Oxygen is a product of photosynthesis and a reactant in cellular respiration.

Explanation:

During photosynthesis green plants manufacture their food using carbon dioxide and water in the presence of sunlight. The product of this reaction is formation of food and oxygen gas to the environment. Therefore, oxygen is given off during photosynthesis.

During cellular respiration, organisms use oxggen gas to liberate energy from food. Most times carbon dioxide is the waste product from the reaction.

Final answer:

Oxygen is produced as a byproduct of photosynthesis and consumed as a reactant in cellular respiration. These two processes are connected in the carbon cycle, recycling oxygen and carbon dioxide in Earth's atmosphere.

Explanation:

The role of oxygen in photosynthesis and cellular respiration is reciprocal. During photosynthesis, oxygen is produced as a byproduct when water molecules are split to provide electrons. This process consumes carbon dioxide and releases oxygen. On the other hand, during cellular respiration, oxygen is a reactant that works alongside glucose to produce ATP, which is the main energy currency in cells. As a result, carbon dioxide and water are generated as waste products.

Photosynthesis and cellular respiration are intimately connected in the biological carbon cycle. The oxygen released during photosynthesis is the same oxygen that is consumed during cellular respiration. This relationship sustains life on Earth by recycling oxygen and carbon dioxide in the atmosphere. Oxygen also enables cellular respiration to occur efficiently, allowing organisms to produce the ATP necessary for cellular functions.

For the reaction CH4 + 2O2 → CO2 + 2H2O, how many grams of water are produced from thecombustion of 6.35 moles of methane?

Answers

Answer:

228.6 g of H₂O

Explanation:

the balanced equation for the combustion of methane is as follows

CH₄ + 2O₂ ---> CO₂ + 2H₂O

molar ratio of CH₄ to H₂O is 1:2

when 1 mol of CH₄ reacts with excess O₂, 2 mol of H₂O is formed

therefore when 6.35 mol of CH₄ reacts - 2 x 6.35 mol = 12.7 mol of H₂O is formed

therefore mass of H₂O formed is - 12.7 mol x 18 g/mol = 228.6 g of H₂O is formed

Final answer:

Using the stoichiometry of the balanced chemical equation CH4 + 2O2 → CO2 + 2H2O, 6.35 moles of methane produce 12.7 moles of water, which is equal to 228.854 grams of water.

Explanation:

To find out how many grams of water (H₂O) are produced from the combustion of 6.35 moles of methane (CH₄), we need to use the stoichiometry of the balanced chemical equation, which is CH₄ + 2O₂ → CO₂ + 2H₂O.

According to the equation, each mole of methane produces 2 moles of water. Therefore, 6.35 moles of methane will produce 6.35 * 2 = 12.7 moles of water. The molar mass of water is 18.02 g/mol, so the total mass of water produced is 12.7 moles * 18.02 g/mol = 228.854 g of H₂O.

Consider this reaction:

Which statement is most likely true about HBr?
It turns blue litmus red.

It reacts with carbon dioxide to form a carbonate.

It feels slippery.

Answers

Answer:

It turns clear phenolphthalein pink.

answer above is for second answer

Explanation:

The statement that is most likely true about HBr is It turns blue litmus red

Properties of an acid

From the question, we are to determine which statement is most likely true about HBr

HBr is Hydrobromic acid. Since it HBr is an acid, it must have the properties  of an acid

Some of the properties of an acid are

Acids have sour taste. Acids turn blue litmus red.Acids react with active metals to yield hydrogen gas.

Hence, the statement that is most likely true about HBr is It turns blue litmus red

Learn more on the Properties of an acid here: https://brainly.com/question/9965850

Bill dropped in to see Sarah. How long is it appropriate for him to stay?

15 minutes
30 minutes
one hour

Answers

It will be appropriate for bill to stay for 30 minutes.

Which of the following statements is true for real gases? Choose all that apply. As attractive forces between molecules increase, deviations from ideal behavior become more apparent at relatively low temperatures. Attractive forces between molecules cause an increase in pressure compared to the ideal gas. As attractive forces between molecules increase, deviations from ideal behavior become more apparent at relatively high temperatures. Attractive forces between molecules cause a decrease in pressure compared to the ideal gas.

Answers

Answer:

Explanation:

Attractive forces between the gase molecules become significant at lower temperatures

Reason for that is when the temperature of the molecules decrease .the kinetic energy also decreases .at a certain low temperature the gases change into the liquid state . Therefore the attractive forces between these gas molecules become very significant near liquefying temperature . that's why they deviate from their original behavior at low temperature

Final answer:

Real gases deviate from ideal gas behavior primarily due to intermolecular attractions and the volumes of the gas molecules. The effects of these factors are more pronounced at high pressures and low temperatures.

Explanation:

The behavior of real gases deviates from ideal gas behavior due to intermolecular attractions and the finite volume of gas molecules. Attractive forces between molecules have the effect of pulling them closer together, which decreases the pressure or volume. This phenomenon is more pronounced at low temperatures as the lower kinetic energy (KE) at cold temperatures can't overcome these attractions as efficiently.

On the contrary, as the pressure increases the volume of the gas molecules themselves becomes appreciable relative to the total volume occupied by the gas. Therefore, real gases behave more like ideal gases at relatively low pressures and high temperatures, and significant deviations occur at high pressures and low temperatures.

Learn more about Real Gases here:

https://brainly.com/question/33850866

#SPJ6

9.69×10^25 formula units of iron(III) nitrate is equal to how many moles of Fe(NO3)3?

Answers

Answer:

160.9 mol ≅ 161.0 mol.

Explanation:

It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms (formula units).

Using cross multiplication:

1.0 mole of Fe(NO₃)₃ contains → 6.022 x 10²³ formula units.

??? mole of Fe(NO₃)₃ contains → 9.69 x 10²⁵ formula units.

∴ The no. of moles of He contains (9.69 x 10²⁵ formula units) = (1.0 mol)(9.69 x 10²⁵ formula units.)/(6.022 x 10²³ formula units) = 160.9 mol ≅ 161.0 mol.

When is balance achieved between the forward and reverse reactions?

Answers

Answer:

Explanation:

Balance is achieved when a reaction is in equilibrium.

At equilibrium, the rate of forward reaction is equal to the rate of backward or reverse process.

When deciding whom to invite to a party, you should consider which of the following?

ages, interests, and favorites of guests
time of the party
the place the party is to be held
all of the above

Answers

Answer:

all of the above I'm pretty sure

Final answer:

When deciding whom to invite to a party, one should consider the ages, interests, and favorites of guests, the time of the party, and the place the party is to be held, as these factors influence the event's success and shape the relationships among attendees.

Explanation:

When deciding whom to invite to a party, it is essential to consider all of the above: the ages, interests, and favorites of guests; the time of the party; and the place the party is to be held. This comprehensive approach ensures that the party is enjoyable for all attendees and suits their preferences and schedules. Not only do these factors play a crucial role in the immediate success of the event, but they can also impact the long-term relationships and social dynamics among those attending.

Considering the ages of guests is important for various reasons. From the practicality of socializing with children of differing ages, as a four-year-old would have different needs and restrictions compared to a four-month-old, to understanding the societal expectations and roles as host or guest in a setting. Furthermore, the interests of guests inform the activities and conversations that will resonate with the crowd. Additionally, by accommodating individuals' favorites, be it food, music, or decorations, you curate a personalized experience that can strengthen relationships.

The time of the party dictates its atmosphere and can affect the availability of your guests. An evening event may suit adults, while a midday gathering might be better for children. Finally, the place where the party is held influences the mood, comfort, and possible activities. Whether in a public venue or a private home, the setting establishes the tone for the interactions and experiences of those present.

How much heat is given off when 64 g liquid methanol at its freezing point changes to solid methanol?

Answers

Answer:

= 6.32 Joules

Explanation:

The heat given off by a substance while changing from liquid state to solid state without change in temperature is given by the formula;

Q = n×Lf

where, Q is the heat quantity, n is the number of moles and Lf is the molar heat of fusion. The methanol HF is 3.16 kJ/mol.

The number of moles = 64 g/32 g/mol

                                   = 2 moles

Therefore;

Heat = 2 moles × 3.16 kJ/mol

        = 6.32 Joules

Answer:

6.32 kJ

Explanation:

took the test

Other Questions
Please help ASAP!!!!! Which name is given to the price at which the marker of a car recommends that it be sold ? How can I change whole number 4 into fraction? Convert to find the equivalent rate. Is there a solution to |x| = -2 Straws are shipped into a box with dimensions of 6.0x6.0x8.0 inches. Each straw is 3/8 inches wide and 7 and 3/4 inches long. How many straws could be shipped into a box without squeezing any straws? Whats metamorphism whos the third president You have received poor grades in Spanish over the last two semesters. How can you improve your grades?defining the problemgathering informationevaluating informationselecting the best optiontaking action Oliva can type 5/12 of a page in 15 minutes. If she types at the same rate how many pages will she have typed in one hour What is the difference between new guinea and Papua New Guinea A motor attached to a 120 V/60 Hz power line draws an 8.40 A current. Its average energy dissipation is 850 W. How much series capacitance needs to be added to increase the power factor to 1.0? Item 1Which of the following numbers are integers?93.21120.2515 How many potassium ions pass through if the ion channel opens for 1.0 ms? write the factors of the quadratic equation: x^2 -4x-21=0 A food is considered high in a nutrient if it provides find the common difference in the outputs to help find the missing outputs in the table Why are action potentials usually conducted in one direction?A) The nodes of Ranvier can conduct potentials in only one direction.B) The brief refractory period prevents reopening of voltage-gated Na+ channels.C) The axon hillock has a higher membrane potential than the terminals of the axon.D) Ions can flow along the axon in only one direction.E) Voltage-gated channels for both Na+ and K+ open in only one direction. For some traits (such as birth weight in mammals), natural selection favors individuals that are average and the extremes are selected against. this is known as 1) With which of these would both Grady and Douglass MOST LIKELY agree? A)The North needs to reopen railroads to the South. B)The South needs the help of the North to rebuild. C)The South needs to be more welcoming to Northerners. D)The North needs to isolate the South for its rebellion. Steam Workshop Downloader