To illustrate the definition of a limit, we need to find values of δ for different values of ε. We can solve inequalities involving the expression (5x − 3) - 2 to find suitable values of δ for ε = 0.1, ε = 0.05, and ε = 0.01.
Explanation:Limits are an important concept in calculus. In this case, we are given that the limit as x approaches 1 of the expression (5x − 3) is 2. To illustrate the definition, we need to find values of δ that correspond to different values of ε. We can start by setting ε to 0.1 and then solve for δ.
When ε = 0.1, we want to find δ such that |(5x − 3) - 2| < 0.1 whenever 0 < |x - 1| < δ. We can solve this inequality by manipulating it and simplifying it to find a suitable value of δ. Similarly, we can find values of δ corresponding to ε = 0.05 and ε = 0.01 by solving the inequalities |(5x − 3) - 2| < 0.05 and |(5x − 3) - 2| < 0.01, respectively.
Learn more about Limits here:https://brainly.com/question/8533149
#SPJ2
What is 1/4 of 268 ?
To find 1/4 of 268, you divide 268 by 4. The result of this operation is 67.
Explanation:Calculating 1/4 of a number involves a simple mathematical operation known as division. In this case, we want to find out what is 1/4 of 268. To do this, you simply divide 268 by 4.
The calculation is as follows:
Divide the number 268 by 4.268 ÷ 4 equals 67.This means that 1/4 of 268 is 67.
Learn more about Mathematical Division here:https://brainly.com/question/32582499
#SPJ6
53 ℃ below zero degrees
Devaughn is 13 years older than Sydney. The sum of their ages is 77 . What is Sydney's age?
other form to write 600,000+80,000+10
how to solve this linear equation step by step please
From 1980 to 1990, the consumer price index (CPI) increased from 82.4 to 130.7. If a bottle of dish soap cost $0.74 in 1980 and the price of dish soap increased at the same rate as the CPI from 1980 to 1990, by approximately how much did the price of a bottle of dish soap increase from 1980 to 1990?
Using proportions, it is found that the price of a bottle of dish soap increased $0.43 from 1980 to 1990.
What is a proportion?A proportion is a fraction of a total amount, and the measures are related using a rule of three.
The percent increase, as a proportion, of the CPI is given by:
P = 130.7/82.4 = 1.5862.
Hence, for the price of the bottle:
Pb = $0.74 x 1.5862 = $1.17.
The difference is:
1.17 - 0.74 = $0.43.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
Answer: $0.43
Step-by-step explanation:
The cool dude above me already explained it
There are two aircraft carriers, A and B, and the carrier A is longer in length the carrier B. The total length of these two carriers is 4178 feet, while the difference of their lengths is only 14 feet.
Answer:
Length of carrier A = 2096 feet Length of carrier B=2082 feet.Step-by-step explanation:
Given , two air craft carriers are A and B . The carrier A is longer than the carrier B in length.
Total length of two carriers =4178 feet
Difference of two carriers = 14 feet
Let
Length of carrier A =x feet
And
Legth of carrier B =y feet
According to question
The I equation is
x+y=4178
The II equation is
x-y= 14
Substitution method: In this method step I : we find value of x or y from the equation I
Step II: put the value of x or y in II equation then we get the value of another varaiable x or y
Step : Again put the obatined value of variable x or y from step II in equation I then we get value of other variable x or y .
By using substitution method ,
we find value of x from equation I
x= 4178-y
Now, put the value of x in equation II then we get
4178-y-y=14
4178-2y=14
4178-14=2y
4164=2y
[tex]y=\frac{4164}{2}[/tex]
y= 2082
Again , put the value of y in equation I
2082 +x=4178
x= 4178-2082
x=2096
Hence, the length of carrier A = 2096 feet
The length of carrier B= 2082 feet
Final answer:
To solve the problem, we set up two equations based on the given total length and the length difference of the two aircraft carriers. By solving these equations, we find that carrier A is 2096 feet long and carrier B is 2082 feet long.
Explanation:
The student's question involves solving a system of linear equations to find the lengths of two aircraft carriers, A and B. Given that the total length is 4178 feet and the length difference is 14 feet, we can set up the following equations:
Equation 1: A + B = 4178
Equation 2: A - B = 14
To solve for A and B, we can add the two equations together to eliminate B.
This gives us 2A = 4192, hence A = 2096 feet.
Substituting A back into one of the equations, we find B = 2082 feet.
Therefore, carrier A is 2096 feet long and carrier B is 2082 feet long.
If you earn $3500 per month and you expect your earnings to increase by 2.3% per year, how much do you think you will be making in 10 years? (Express your answer rounded correctly to the nearest cent!)
Final answer:
Your expected monthly earnings in 10 years, with a 2.3% annual increase, would be $4424.10, rounded to the nearest cent.
Explanation:
To calculate your expected monthly earnings in 10 years, taking into account a 2.3% annual increase, we will use the formula for compound interest: P(1 + r)^n, where:
P is the principal amount (your current earnings)
r is the annual raise rate
n is the number of years
Your current monthly earnings are $3500. The annual raise rate is 2.3%, so r is 0.023 when expressed as a decimal. The number of years, n, is 10.
Plugging the values into the formula, we get:
Earnings in 10 years = $3500 * (1 + 0.023)^10
Calculating the result, we find that your expected monthly earnings in 10 years are:
$4424.10
A dozen eggs cost $1.10 in Dover. In Ensley, the eggs cost 10% more than in Dover. Find the price of a dozen eggs in Ensley.
Final answer:
The price of a dozen eggs in Ensley is $1.21.
Explanation:
To find the price of a dozen eggs in Ensley, we need to consider that the eggs in Ensley cost 10% more than in Dover. If a dozen eggs in Dover cost $1.10, we can calculate the 10% increase by multiplying $1.10 by 1.10:
$1.10 x 1.10 = $1.21
Therefore, a dozen eggs in Ensley cost $1.21.
Explain the place value relationship when the same two digits are next to each other in a multi-digit number.
What's the correct answer for this?
Determine whether each of the functions log(n + 1) and log(n2 + 1) is o(log n)
Both functions log(n + 1) and log(n^2 + 1) are not o(log n). For large values of n, log(n + 1) is approximately equal to log n, and log(n^2 + 1) behaves like 2*log n, none of which grows strictly slower than log n.
To determine whether the functions log(n + 1) and log(n2 + 1) are o(log n), we'll use the definition of little-o notation. A function f(n) is said to be o(g(n)) if for any positive constant c > 0, there exists a threshold n0 such that for all n > n0, f(n) < c * g(n). In other words, f(n) grows slower than any constant multiple of g(n) as n approaches infinity.
Analysis for log(n + 1)
When n is very large, the +1 becomes negligible, and log(n + 1) behaves similarly to log n. Therefore,
log(n + 1) ≈ log n when n is large.
This implies that log(n + 1) is not o(log n) because it does not grow strictly slower than any multiple of log n.
Analysis for log(n2 + 1)
Using logarithm properties:
log(n2 + 1) < log(n2 + n2) = log(2n2) = log 2 + 2*log n.
As n grows, the constant term (log 2) becomes insignificant, and the function approaches the behavior of 2*log n. However, since there is a multiple of log n (which is 2*log n), this still means that log(n2 + 1) is not o(log n) because it grows faster, not slower, than log n.
The building of Jim's Hardware is assessed at $109,000. The tax rate is $86.95 per $1,000 of assessed valuation. The tax due is A. $8,695.45. B. $947.75. C. $9,477.55. D. $8,659.54. E. 94,698.23.
If the rate of inflation is 3.7% per year, the future price pt (in dollars) of a certain item can be modeled by the following exponential function, where t is the number of years from today. =pt400( 1.037)t Find the current price of the item and the price 8 years from today. Round your answers to the nearest dollar as necessary.
What is the step by step process of solving for the GCF from a list of terms.
Ex. (see picture)
A and B are mutually exclusive events. P(A) = 1/3 and P(B) = 1/2. What is the P(A or B)?
A single batch of cookies requires two cups of sugar and three cups of flour. if more than one batch or a partial batch was made, the unit rate of sugar to flour would remain the same. match the correct amount of sugar to the correct amount of flour to keep the same unit rate of sugar and flour in a single batch. 11.5 cups of flour 4.5 cups of sugar 6.75 cups of flour 12 cups of flour 5 cups of sugar 11.25 cups of flour 7.5 cups of sugar 7.5 cups of flour 8 cups of sugar 4 cups of sugar
Answer:11.5
Step-by-step explanation: 11.5
Manuel is choosing a 3 -letter password from the letters A, B, C, D, and E. The password cannot have the same letter repeated in it. How many such passwords are possible?
Use the half-angle identities to find the exact value of cos 15 degrees.
This is what I have so far:
cos15 degrees = cos1/2(30 degree) = sqrt (1+cos30)/2 = sqrt (1+ sqrt3/2)/ 2
But.. I don't understand how the cos30 turns into sqrt 3/2??
The cosine value of cos(15) is [tex]\sqrt[/tex](1 + [tex]\sqrt[/tex]3/2)/2
The trigonometry identity of half angles is given as:
cos([tex]\theta[/tex]/2) = [tex]\sqrt{[/tex](1 + cos([tex]\theta[/tex]))/2
Substitute 30 for [tex]\theta[/tex]
So, the equation becomes
cos(30/2) = [tex]\sqrt[/tex](1 + cos(30))/2
In trigonometry, we have:
cos(30) = [tex]\sqrt[/tex]3/2
So, we have:
cos(30/2) = [tex]\sqrt[/tex](1 + [tex]\sqrt[/tex]3/2)/2
Divide 30 by 2
cos(15) = [tex]\sqrt[/tex](1 + [tex]\sqrt[/tex]3/2)/2
Hence, the cosine value of cos(15) is [tex]\sqrt[/tex](1 + [tex]\sqrt[/tex]3/2)/2
Read more about trigonometry identities at:
https://brainly.com/question/7331447
Mark deposited $9,000 into two saving accounts bearing simple interest. One of the accounts has an interest rate of 8% while the other rate is 7%. If the total interest earned after one year is $700, find the amount deposited into each of the accounts
Malia is observing the velocity of a cyclist at different times. After two hours, the velocity of the cyclist is 15 km/h. After five hours, the velocity of the cyclist is 12 km/h.
Part A: Write an equation in two variables in the standard form that can be used to describe the velocity of the cyclist at different times. Show your work and define the variables used. (5 points)
Part B: How can you graph the equations obtained in Part A for the first 12 hours? (5 points)
Round 241,639 to the nearest thousand
Two perpendicular lines intersect at the origin. If the slope of the first line is .5, what is the equation of the second line?. .
Round 65.85 to the nearest whole number
What is the value of b2 - 4ac for the following equation? x(x + 8) = 9 28 64 100
Answer:
C) 100
Step-by-step explanation:
The given equation is x(x + 8) = 9
Distributing x insides, we get
x^2 + 8x = 9
Now set the equation equal to zero.
x^2 + 8x - 9 =0
Here a = 1, b = 8, and c = -9
b^2 - 4ac = (8)^2 - 4*1*-9
= 64 + 36
= 100
Therefore, b^2 - 4ac = 100.
Answer: C) 100
Hope this will helpful.
Thank you.
Answer:
C. 100
Step-by-step explanation:
Find the value of each determinant
The question is about finding the value of a determinant for matrices, a fundamental concept in Mathematics, especially linear algebra. For 2 × 2 matrices, the determinant calculation is straightforward and essential for various applications.
Explanation:The subject of this question is clearly Mathematics, specifically it pertains to linear algebra and the concept of determinants. The task involves finding the value of a determinant for a given matrix. For a 2 × 2 matrix, the determinant is found using a simple formula: if the matrix is given by
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix}\]
then the determinant is calculated as \(ad - bc\). Additionally, the determinant provides important information about the matrix, such as whether the matrix is invertible and the product of its eigenvalues.
To understand determinants for larger matrices, a recursive approach is often used, breaking down the determinant into smaller matrices until 2 × 2 matrices are reached, where the simple formula can be applied. Also of note is that the determinant of the product of two matrices is equal to the product of their determinants (det(AB) = det(A)det(B)).
This fundamental concept is crucial for many applications in mathematics, including solving systems of linear equations, finding eigenvalues, and understanding linear transformations.
write 103,727,495 in word form and expanded
7^-2 without exponent
The spending limit on John’s credit card is given by the function f(x)=15,000+1.5x , where x is his monthly income. f^-1x . The variable x represents in the inverse function. If John's spending limit is $60,000, his monthly income is .
A rectangular yard measuring 26ft by 40ft is bordered (and surrounded) by a fence. Inside, a walk that is 2ft wide goes all the way along the fence. Find the area of this walk. Be sure to include the correct unit in your answer.