Help.. :)

Which equation is not equivalent to the formula e = mc?
m equals e over c
c equals e over m
e = cm
m equals c over e
Please help THANKS!

Answers

Answer 1
m equals c over e is not equal to e=mc


Answer 2

Answer with Step-by-step explanation:

we are given a equation:

e=mc

We have to find which equation is not equivalent to the above formula.

e=mc

Dividing both sides by c,we get

m=e/c

i.e. m equals e over c

e=mc

Dividing both sides by m,we get

c=e/m

i.e. c equals e over m

e=mc=cmBut m is not equal to c over e

Hence, The equation which is not equivalent to e=mc is:

m equals c over e


Related Questions

Andrei has a job in the circus walking on stilts. Andrei is 11/10 meters tall. The foot supports of his stilts are 23/10 meters high.
How high is the top of Andrei's head when he is walking on his stilts?

Answers

[tex] \frac{23}{10} + \frac{11}{10} = \frac{34}{10}[/tex]
The top of his head will be 3.4m high.

What is the distance between (–6, 2) and (8, 10) on a coordinate grid?

Answers

Distance Formula: d = √(x₂ - x₁)² + (y₂ - y₁)²

(-6 , 2) and (8 , 10)
 x₁   y₁         x₂    y₂

d = √(8 - (-6))² + (10 - 2)²
d = √(8+6)² + (10 - 2)²
d = √(14)² + (8)²
d = √(196) + (64)
d = √ 260
d = 2√65

I think this is right, but I am not sure.

Answer:

D. √260

Step-by-step explanation:

Use the distance formula then input the points (–6, 2) and (8, 10) into it to get √(-6 −2)^2 + (2 −10)^2. Finaly simplify/solve and you get √260.

The sun’s rays are striking the ground at a 55° angle, and the length of the shadow of a tree is 56 feet. How tall is the tree?

select one:
a. 80.0 feet
b. 45.9 feet ( Incorrect)
c. 34.2 feet (incorrect)
d. 32.1 feet

Answers

tan 55 = h / 56  where h = height of the tree.
h = 56 tan 55
   =  79.98 feet

Its a

Department w had 2,400 units, one-third completed at the beginning of the period; 16,000 units were transferred to department x from department w during the period; and 1,800 units were one-half completed at the end of the period. assume the completion ratios apply to direct materials and conversion costs. what is the equivalent units of production used to compute unit conversion cost on the cost of production report for department w? assume the company uses fifo.

Answers

Final answer:

The equivalent units of production for calculating conversion costs in Department W using FIFO are 16,900 units. This consists of 16,000 units transferred out and 900 equivalent units for the 1,800 units at half completion stage.

Explanation:

To calculate the equivalent units of production for unit conversion cost in Department W, using the FIFO method, we need to account only for the work done in the current period. Department W had 2,400 units at the beginning that were one-third completed, which means 800 units (2,400 units * 1/3) were already processed in the previous period. Therefore, these do not count for the current period. During the period, 16,000 units were transferred out. We also need to consider the 1,800 units at the end at one-half completion, which contributes 900 equivalent units (1,800 units * 1/2) for the current period.

To determine the number of equivalent units for conversion costs, we perform the following calculation:

Equivalent units for units transferred to Department X: 16,000 units (these are complete with respect to Department W's work).Equivalent units for ending work-in-process: 1,800 units * 1/2 = 900 units.Total equivalent units of production for conversion costs: 16,000 units + 900 units = 16,900 units.

0.2(x + 1) + 0.5x = –0.3(x – 4)

Answers

the answer will be x=2

Convert 64.32° into degrees, minutes, and seconds.

Answers

First, we already have 64°. We take out the remaining 0.32°. 

The conversion factors necessary to answer this item are,
                     1° = 60'
                      1' = 60''

number of minutes = (0.32°)(60' / 1°) = 19.2'

We already have 19' and 0.2'. 

number of seconds = 0.2' x (60'' / 1') = 12''

Thus, the answer is 64°19'12''. 

Triple my number add six and subtract twice my number my number plus three

Answers

3N + 6 - 2N = N + 3
N + 6 = N + 3
N cancels out.
Therefore it is a false statement.

Use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of t.) −1 1 s2 − 720 s7

Answers

The inverse Laplace transform of [tex]\( \frac{1}{s^2 - 720s^7} \) is \( (1 - \frac{1}{720})t + e^{720t} \).[/tex]

To find the inverse Laplace transform of [tex]\( \frac{1}{s^2 - 720s^7} \),[/tex] we can use the method of partial fraction decomposition. First, factor the denominator:

[tex]\[ s^2 - 720s^7 = s^2(1 - 720s^5) \][/tex]

Now, we can write the partial fraction decomposition as:

[tex]\[ \frac{1}{s^2(1 - 720s^5)} = \frac{A}{s} + \frac{B}{s^2} + \frac{Cs^5 + D}{1 - 720s^5} \][/tex]

Multiplying both sides by [tex]\( s^2(1 - 720s^5) \)[/tex], we get:

[tex]\[ 1 = As(1 - 720s^5) + Bs(1 - 720s^5) + (Cs^5 + D)s^2 \]\[ 1 = As - 720As^6 + Bs - 720Bs^6 + Cs^7 + Ds^2 \][/tex]

Equating coefficients:

For [tex]\( s^6 \):[/tex]

-720A - 720B = 0

A + B = 0

A = -B

For [tex]\( s^7 \):[/tex]

C = 0

For [tex]\( s^2 \):[/tex]

D = 1

Substituting back:

A = -B

D = 1

C = 0

So, the partial fraction decomposition is:

[tex]\[ \frac{1}{s^2(1 - 720s^5)} = \frac{-B}{s} + \frac{1}{s^2} + \frac{D}{1 - 720s^5} \][/tex]

Now, we can find the values of [tex]\( A \), \( B \), and \( D \):[/tex]

A = -B

D = 1

Now, we can use Theorem 7.2.1 to find the inverse Laplace transform:

[tex]\[ \mathcal{L}^{-1}\left( \frac{1}{s^2(1 - 720s^5)} \right) = -B \mathcal{L}^{-1}\left( \frac{1}{s} \right) + \mathcal{L}^{-1}\left( \frac{1}{s^2} \right) + D \mathcal{L}^{-1}\left( \frac{1}{1 - 720s^5} \right) \][/tex]

[tex]\[ = -B + t + D \mathcal{L}^{-1}\left( e^{720t} \right) \][/tex]

[tex]\[ = -B + t + De^{720t} \][/tex]

Since [tex]\( B = \frac{1}{720} \), \( D = 1 \)[/tex], the inverse Laplace transform is:

[tex]\[ \mathcal{L}^{-1}\left( \frac{1}{s^2(1 - 720s^5)} \right) = -\frac{1}{720}t + t + e^{720t} \][/tex]

[tex]\[ = \left( 1 - \frac{1}{720} \right)t + e^{720t} \][/tex]

Complete Question:

Use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of [tex]\( \frac{1}{s^2 - 720s^7} \).[/tex]

What is the general form of the equation for the given circle centered at O(0, 0)? x2 + y2 + 41 = 0 x2 + y2 − 41 = 0 x2 + y2 + x + y − 41 = 0 x2 + y2 + x − y − 41 = 0

Answers

I would say the second one.
x^2 + y^2 = 41
Answer:

The  general form of the equation for the given circle centered at O(0, 0) is:

                                [tex]x^2+y^2-41=0[/tex]

Step-by-step explanation:

We know that the standard form of circle is given by:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

where the circle is centered at (h,k) and the radius of circle is: r units

1)

[tex]x^2+y^2+41=0[/tex]

i.e. we have:

[tex]x^2+y^2=-41[/tex]

which is not possible.

( Since, the sum of the square of two numbers has to be greater than or equal to 0)

Hence, option: 1 is incorrect.

2)

[tex]x^2+y^2-41=0[/tex]

It could also be written as:

[tex]x^2+y^2=41[/tex]

which is also represented by:

[tex](x-0)^2+(y-0)^2=(\sqrt{41})^2[/tex]

This means that the circle is centered at (0,0).

3)

[tex]x^2+y^2+x+y-41=0[/tex]

It could be written in standard form by:

[tex](x+\dfrac{1}{2})^2+(y+\dfrac{1}{2})^2=(\sqrt{\dfrac{83}{2}})^2[/tex]

Hence, the circle is centered at [tex](-\dfrac{1}{2},-\dfrac{1}{2})[/tex]

Hence, option: 3 is incorrect.

4)

[tex]x^2+y^2+x-y=41[/tex]

In standard form it could be written by:

[tex](x+\dfrac{1}{2})^2+(y-\dfrac{1}{2})^2=(\sqrt{\dfrac{83}{2})^2[/tex]

Hence, the circle is centered at:

[tex](\dfrac{-1}{2},\dfrac{1}{2})[/tex]

Find the rectangular coordinates of the point with the polar coordinates. ordered pair negative 5 comma 5 pi divided by 3

Answers

[tex]\bf \begin{array}{rllll} (-5&,&\frac{5\pi }{3})\\ \uparrow &&\uparrow \\ r&&\theta \end{array}\qquad \begin{cases} x=rcos(\theta )\\ y=rsin(\theta )\\ ----------\\ x=(-5)cos\left( \frac{5\pi }{3} \right)\\ \qquad -5\cdot \frac{1}{2}\\ \qquad -\frac{5}{2}\\ y=(-5)sin\left( \frac{5\pi }{3} \right)\\ \qquad -5\cdot -\frac{\sqrt{3}}{2}\\ \qquad \frac{5\sqrt{3}}{2} \end{cases}\implies \left(-\frac{5}{2}\ ,\ \frac{5\sqrt{3}}{2} \right)[/tex]

The principal $3000 is accumulated with 3% interest, compounded semiannually for 6 years.

Answers

The formula is
A=p (1+r/k)^kt
A accumulated amount?
P principle 3000
R interest rate 0.03
K compounded semiannually 2
T time 6 years
A=3,000×(1+0.03÷2)^(2×6)
A=3,586.85

An earthquake with a rating of 3.2 is not usually felt. What is the value of x when the Richter scale rating is 3.2? Round your answer to the nearest hundredth.

Answers

10^3.2=1584.893≈1584.89

There was 2/3 of a pan of a lasagna in the refrigerator. Bill and his friends ate half of what was left. Write a number sentence and draw a model to represent the problem. How much of the pan did they eat?

Answers

Bill and his friends ate 1/3 of the pan, you get this by doing: 2/3 / 1/2 = 1/3 or 0.3333

write the smallest numeral possible using the digits 9, 3 and 6

Answers

Final answer:

The smallest numeral that can be created from the digits 9, 3, and 6 is 369. This is achieved by arranging the digits in ascending order.

Explanation:

The smallest numeral that can be formed using the digits 9, 3, and 6 is 369. In mathematics, when we are to create the smallest possible numeral from a given set of digits, we arrange the digits in increasing order from left to right, that means the smallest digit will be on the left-most side and the largest digit will be on the right-most side.

So, with the digits 9, 3, and 6, we place 3 first as it's the smallest, then 6 as it's the next smallest, and finally 9, resulting in the smallest numeral 369.

Learn more about Creating smallest numeral here:

https://brainly.com/question/32283211

#SPJ2

The smallest numeral possible using the digits 9, 3, and 6 is 369, arranged in ascending order.

To write the smallest numeral possible using the digits 9, 3, and 6, we arrange the digits in ascending order. The smallest digit is placed at the beginning, followed by the larger ones. Therefore, the smallest numeral we can create is 369.

please factor this problem x^2+7x-8

Answers

(x+8)(x-1)

Check:
8-1=7
8*-1=-8

Sidney made $26 more than seven times Casey's weekly salary. If x represents Casey's weekly salary, write an expression for sidney's weekly salary

Answers

7x+26 becase it is 7 times and then you add 26

hey can you just please help me solve these two problems
1- according to the bipartisan policy center (BPC), 57.5% of all eligible voted in the 20112 presidential elections. while there are over 350 million Americans, the BPC estimates that only 219 million are eligible to vote. how many eligible voters in 2012 election?

2-sarah's sandwich shop sells a specialty sandwich for $4.95 that contains a quarter of a pound of turkey. if sarah buys 12 pounds of turkey meat but eats a tenth of a pound on the way to her sandwich shop, what is the maximum number of sandwiches she can make?

Answers

2)

well, she needs 1/4lb to make a sandwich, well, she bought 12lbs and then she couldn't resist, because she got some ketchup also I gather, she couldn't resist giving it a nibble and ate 1/10lb

so.. is 12 - 1/10, and how many times 1/4 goes into that difference

[tex]\bf 12-\cfrac{1}{10}\implies \cfrac{120-1}{10}\implies \cfrac{119}{10} \\\\\\ \textit{how many times }\frac{1}{4}\textit{ goes in to }\frac{119}{10}? \\\\\\ \cfrac{\frac{119}{10}}{\frac{1}{4}}\implies \cfrac{119}{10}\cdot \cfrac{4}{1}\implies \cfrac{238}{5}\implies \boxed{47\frac{3}{5}} \\\\\\ \cfrac{47\cdot 5+3}{5}\implies \cfrac{238}{5}[/tex]

well, noone is going to buy a half-eaten sandwich or 3/5 of a sandwich, so, she can only make 47 whole sandwiches, hmmmm  I'm thinking she can just give the 3/5 to the dogs.

simplify the expression I-30I

Answers

it would be only 30        

There is a line through the origin that divides the region bounded by the parabola
y=4x−3x^2 and the x-axis into two regions with equal area. What is the slope of that line?

Answers

First, solve f(x)=4x-3x^2=0,
or
x(4-3x)=0
=>
x=0, x=4/3
The area enclosed by the parabola over the x-axis is therefore
A=integral f(x)dx from 0 to 4/3=[2x^2-x^3] from 0 to 4/3 = 32/27
Let the line intersect the parabola at a point (a,f(a)) such that the area bounded by the line, the parabola and the x-axis is half of A, or A/2, then the area consists of a triangle and a section below the parabola, the area is therefore
a*f(a)/2 + integral f(x)dx  from a to 4/3  =  A/2 = 16/27
=>
2a^2-3a^3/2+a^3-2a^2+32/27=16/27
=>
(1/2)a^3=16/27
a=(32/27)^(1/3)
=(2/3)(4^(1/3))
=1.058267368...

Slope of line is therefore
m=y/x=f(a)/a=4-2(4^(1/3))
=0.825197896... (approx.)


A bag of fruit contains 3 apples and 2 oranges and 1 banana and 4 pears.Gerald will randomly selected two pieces of fruit one at a time from the bag and not put is back. What is the probability that the first piece of fruit Gerald selects will be a banana and the second piece of fruit will be a pear??

Answers

Final answer:

The probability that Gerald will first select a banana and then a pear from the bag without replacement is 2/45.

Explanation:

To determine the probability that Gerald selects a banana first and then a pear without replacement, we have to consider the total number of possible outcomes for each draw and the favorable outcomes for the event.

For the first draw, the total number of fruits is 10 (3 apples + 2 oranges + 1 banana + 4 pears). The favorable outcome of drawing a banana is 1 since there's only one banana.

The probability of drawing a banana on the first draw is therefore 1/10. After drawing the banana, there are 9 fruits left in the bag with 4 pears among them.

The probability of then drawing a pear is 4/9. To find the total probability of both events happening in sequence (a banana first and then a pear), multiply the two probabilities:

P(banana first and pear second) = P(banana first) × P(pear second)
= (1/10) × (4/9)
= 4/90
= 2/45.

The simplification process shows that the probability Gerald will first select a banana and then a pear is 2/45.

The function for the cost of materials to make a shirt is f(x) = five sixths x + 5, where x is the number of shirts. The function for the selling price of those shirts is g(f(x)), where g(x) = 5x + 6. Find the selling price of 18 shirts

Answers

[tex]\bf \begin{cases} f(x)=\cfrac{5}{6}x+5\\\\ g(x)=5x+6 \end{cases}\qquad g(\ f(x)\ )=5[\ f(x)\ ]+6 \\\\\\ f(18)=\cfrac{5}{6}(18)+5\implies f(18)=\cfrac{5\cdot 18}{6}+5\implies f(18)=15+5 \\\\\\ \boxed{f(18)=20}\\\\ -------------------------------\\\\ g(\ f(18)\ )=5[\ f(18)\ ]+6\implies g(\ f(18)\ )=5[\ 20\ ]+6 \\\\\\ g(\ f(18)\ )=106[/tex]

A rocket is launched straight up from the ground, with an initial velocity of 224 feet per second. The equation for the height of the rocket at time t is given by:
h=-16t^2+224t

(Use quadratic equation)

A.) Find the time when the rocket reaches 720 feet.


B.) Find the time when the rocket completes its trajectory and hits the ground.


Answers

We can model the equation of the height of the rocket as ∩-shape curve as shown below

Part A: 

The time when the height is 720 feet

[tex]720 = -16 t^{2}+224t [/tex], rearrange to make one side is zero
[tex]16 t^{2}-224t+720=0 [/tex], divide each term by 16
[tex] t^{2} -14t+45 =0[/tex], factorise to give
[tex](t-9)(t-5)=0[/tex]
[tex]t=9[/tex] and [tex]t=5[/tex]

So the rocket reaches the height of 720 feet twice; when t=5 and t=9

Part B:

We will need to find the values of t when the rocket on the ground. The first value of t will be zero as this will be when t=0. We can find the other value of t by equating the function by 0

[tex]0=-16 t^{2}+224t [/tex]
[tex]0=-16t(t-14)[/tex]
[tex]-16t=0[/tex] and [tex]t-14=0[/tex]
[tex]t=0[/tex] and [tex]t=14[/tex]

So the time interval when the rocket was launched and when it hits the ground is 14-0 = 14 seconds




A.) The rocket reaches 720 feet in 5 seconds and 9 seconds.

B.) The rocket completes its trajectory and hits the ground in 14 seconds

Further explanation

A quadratic equation has the following general form:

[tex]ax^2 + bx + c = 0[/tex]

The formula to solve this equation is :

[tex]\large {\boxed {x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} } }[/tex]

Let's try to solve the problem now.

Question A:

Given :

[tex]h = -16 t^2 + 224t[/tex]

The rocket reaches 720 feet → h = 720 feet

[tex]720 = -16 t^2 + 224t[/tex]

[tex]16 t^2 - 224t + 720 = 0[/tex]

[tex]16 (t^2 - 14t + 45 = 0)[/tex]

[tex]t^2 - 14t + 45 = 0[/tex]

[tex]t^2 - 9t - 5t + 45 = 0[/tex]

[tex]t(t - 9) - 5(t - 9) = 0[/tex]

[tex](t - 5)(t - 9) = 0[/tex]

[tex]t = 5 ~ or ~ t = 9[/tex]

The rocket reaches 720 feet in 5 seconds and 9 seconds.

Question B:

The rocket hits the ground → h = 0 feet

[tex]0 = -16 t^2 + 224t[/tex]

[tex]16 (t^2 - 14t ) = 0[/tex]

[tex]t^2 - 14t = 0[/tex]

[tex]t( t - 14 ) = 0[/tex]

[tex]t = 0 ~ or ~ t = 14[/tex]

The rocket completes its trajectory and hits the ground in 14 seconds

Learn moremethod for solving a quadratic equation : https://brainly.com/question/10278062solution(s) to the equation : https://brainly.com/question/4372455best way to solve quadratic equation : https://brainly.com/question/9438071

Answer details

Grade: College

Subject: Mathematics

Chapter: Quadratic Equation

Keywords: Quadratic , Equation , Formula , Rocket , Maximum , Minimum , Time , Trajectory , Ground

Please I'm stuck in this problem

Answers

The answer is 2wx^5(the root is 3) square root of 9w. I hope this makes sense.

How do you find a vector that is orthogonal to 5i + 12j ?

Answers

[tex]\bf \textit{perpendicular, negative-reciprocal slope for slope}\quad \cfrac{a}{b}\\\\ slope=\cfrac{a}{{{ b}}}\qquad negative\implies -\cfrac{a}{{{ b}}}\qquad reciprocal\implies - \cfrac{{{ b}}}{a}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \boxed{5i+12j}\implies \begin{array}{rllll} \ \textless \ 5&,&12\ \textgreater \ \\ x&&y \end{array}\quad slope=\cfrac{y}{x}\implies \cfrac{12}{5} \\\\\\ slope=\cfrac{12}{{{ 5}}}\qquad negative\implies -\cfrac{12}{{{ 5}}}\qquad reciprocal\implies - \cfrac{{{ 5}}}{12} \\\\\\ \ \textless \ 12, -5\ \textgreater \ \ or\ \ \textless \ -12,5\ \textgreater \ \implies \boxed{12i-5j\ or\ -12i+5j}[/tex]

if we were to place <5, 12> in standard position, so it'd be originating from 0,0, then the rise is 12 and the run is 5.

so any other vector that has a negative reciprocal slope to it, will then be perpendicular or "orthogonal" to it.

so... for example a parallel to <-12, 5> is say hmmm < -144, 60>, if you simplify that fraction, you'd end up with <-12, 5>, since all we did was multiply both coordinates by 12.

or using a unit vector for those above, then

[tex]\bf \textit{unit vector}\qquad \cfrac{\ \textless \ a,b\ \textgreater \ }{||\ \textless \ a,b\ \textgreater \ ||}\implies \cfrac{\ \textless \ a,b\ \textgreater \ }{\sqrt{a^2+b^2}}\implies \cfrac{a}{\sqrt{a^2+b^2}},\cfrac{b}{\sqrt{a^2+b^2}} \\\\\\ \cfrac{12,-5}{\sqrt{12^2+5^2}}\implies \cfrac{12,-5}{13}\implies \boxed{\cfrac{12}{13}\ ,\ \cfrac{-5}{13}} \\\\\\ \cfrac{-12,5}{\sqrt{12^2+5^2}}\implies \cfrac{-12,5}{13}\implies \boxed{\cfrac{-12}{13}\ ,\ \cfrac{5}{13}}[/tex]

To find a vector orthogonal to 5i + 12j, we can use the property that orthogonal vectors have a dot product of 0. By setting up equations and solving them accordingly, you can find a vector that is perpendicular to 5i + 12j.

Orthogonal vectors: To find a vector orthogonal to 5i + 12j, we need to find a vector with a dot product of 0 with 5i + 12j. Since the dot product of orthogonal vectors is zero, we can set up equations and solve them to find a vector that is perpendicular to 5i + 12j.

How many inches are in a foot?

Answers

there are 12 inches in a foot
There are 12 inches in a foot.

The average score on a standardized test is 500 points with a standard deviation of 50 points. If 2,000 students take the test at a local school, how many students do you expect to score between 500 and 600 points?

Answers

To solve this problem, we use the z statistic. The formula for z score is given as:

z = (x – u) / s

Where,

x = sample score

u = the average score = 500

s = standard deviation = 50

 

First, we calculate for z when x = 500

z = (500 – 500) / 50

z = 0 / 50

z = 0

Using the standard z table, at z = 0, the value of P is: (P = proportion)

P (z = 0)= 0.5

 

Secondly, we calculate for z when x = 600

z = (600 – 500) / 50

z = 100 / 50

z = 2

Using the standard z table, at z = 2, the value of P is: (P = proportion)

P (z = 2) = 0.9772

 

Since we want to find the proportion between 500 and 600, therefore we subtract the two:

P (500 ≥ x ≥ 600) = 0.9772 – 0.5

P (500 ≥ x ≥ 600) = 0.4772

 

Answer:

Around 47.72% of students have score from 500 to 600.

Answer:

To solve this problem, we use the z statistic. The formula for z score is given as:

z = (x – u) / s

Where,

x = sample score

u = the average score = 500

s = standard deviation = 50

First, we calculate for z when x = 500

z = (500 – 500) / 50

z = 0 / 50

z = 0

Using the standard z table, at z = 0, the value of P is: (P = proportion)

P (z = 0)= 0.5

Secondly, we calculate for z when x = 600

z = (600 – 500) / 50

z = 100 / 50

z = 2

Using the standard z table, at z = 2, the value of P is: (P = proportion)

P (z = 2) = 0.9772

Since we want to find the proportion between 500 and 600, therefore we subtract the two:

P (500 ≥ x ≥ 600) = 0.9772 – 0.5

P (500 ≥ x ≥ 600) = 0.4772

Answer:

Around 47.72% of students have score from 500 to 600.

Step-by-step explanation:

Write the equation of the line that is parallel to the line 7−4x=7y 7 − 4x = 7 y through the point (2,0).

Answers

Final answer:

To find the equation of a line parallel to the given line, we can use the slope of the given line and the point-slope form of a line. The equation of the line parallel to 7−4x=7y and passing through the point (2,0) is y = (7/4)x - (7/2).

Explanation:

To find the equation of a line parallel to the given line, we need to find the slope of the given line first. The slope-intercept form of a line is y = mx + b, where m is the slope and b is the y-intercept. Rearranging the given equation, we have y = (7/4)x - 1. Dividing the coefficient of x by the coefficient of y, we find that the slope of the given line is 7/4. Since the line we're looking for is parallel to this line, it will also have a slope of 7/4. Now, we can use the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point on the line. Substituting in the values (2, 0) and slope (7/4), we can solve for y to find the equation of the line.

Using the point-slope form, we have y - 0 = (7/4)(x - 2). Simplifying, we get y = (7/4)x - (7/2), which is the equation of the line parallel to the given line and passing through the point (2, 0).

Final answer:

The equation of the line parallel to 7 - 4x = 7y through the point (2, 0) is y = (-4/7)x + 8/7.

Explanation:

To find the equation of a line parallel to the line 7 - 4x = 7y, we need to find the slope of the given line. First, rearrange the equation in the form y = mx + b, where m is the slope. So, 7y = 7 - 4x becomes y = (-4/7)x + 1. The slope of this line is -4/7. Since the line we want is parallel, it will have the same slope.

Next, we have the point (2, 0) through which the line passes. To find the equation, we'll use the point-slope form: y - y1 = m(x - x1). Substituting the given values, we have y - 0 = (-4/7)(x - 2). Simplifying, we get y = (-4/7)x + 8/7.

Therefore, the equation of the line parallel to 7 - 4x = 7y through the point (2, 0) is y = (-4/7)x + 8/7.

When patey pontoons issued 6% bonds on january 1, 2016, with a face amount of $600,000, the market yield for bonds of similar risk and maturity was 7%. the bonds mature december 31, 2019 (4 years). interest is paid semiannually on june 30 and december 31?

Answers

You are given a bond interest of 6% that was given on January 1, 2016, with a face value of $600,000. Also, the market yield for bonds of similar risk, that the market yield for bonds of similar risk and maturity was 7% and the interest is paid semiannually on June 30 and December 31. You are to find the bond value on January 1, 2016. In here, because the yield of the market is above 6%, the bonds will have a discount for bonds less than $600,000.

Cash interest
= 0.06 * $600,000 * 6/12 (because it is done semiannually)
= $18,000
7%/2 = 3.5%

PV of interest at 3.5%
= $18,000 * 6.87396
= $123,731

PV of face at 3.5%
= $600,000 * 0.75941
= $455,646

Value of bond
= PV on interest + PV of face
= $123,731 + $455,646
$579,377

Without solving, decide what method you would use to solve each system: graphing, substitution, or elimination. Explain. 4s-3t=8 ; t=-2s-1

Answers

I would use substitution. The value of t in terms of s is already given so you can just plug that into the equation like this.
4s-3(-2s-1)=8

Quadrilateral ABCD is similar to quadrilateral EFGH. The lengths of the three longest sides in quadrilateral ABCD are 60 feet, 40 feet, and 30 feet long. If the two shortest sides of quadrilateral EFGH are 6 feet long and 12 feet long, how long is the 4th side on quadrilateral ABCD?

Answers

Final answer:

The length of the fourth side on quadrilateral ABCD is 120 feet.

Explanation:

Given that quadrilateral ABCD is similar to quadrilateral EFGH, we can use the property of similar figures to find the length of the fourth side on quadrilateral ABCD.

If the two shortest sides of quadrilateral EFGH are 6 feet and 12 feet long, we can set up a proportion using the corresponding sides of the two quadrilaterals.

Let x be the length of the fourth side on quadrilateral ABCD.

Using the property of similar figures, we have:

(60/6) = (x/12)

Cross multiplying, we get:

6x = 720

Dividing both sides by 6, we find:

x = 120

Therefore, the length of the fourth side on quadrilateral ABCD is 120 feet.

Other Questions
Question part points submissions used use a power series to approximate the definite integral, i, to six decimal places. 0.3 ln(1 + x4) dx 0 Nitrogen has an electronegativity of 3.0, and hydrogen has an electronegativity of 2.1. which describes the bond between nitrogen and hydrogen? How does the government take an active role in controlling the economy? 49pts and brainliest i need this in by 2:33Mia creates a box plot using 28, 34, 40, 24, 44, 49, and 32 as the data. Which of the following box plots shows the data accurately? A box plot is drawn with end points at 24 and 49.The box extends from 32 to 48 and a vertical line is drawn inside the box at 38. A box plot is drawn with end points at 24 and 49.The box extends from 26 to 42 and a vertical line is drawn inside the box at 32. A box plot is drawn with end points at 24 and 49.The box extends from 30 to 46 and a vertical line is drawn inside the box at 36. A box plot is drawn with end points at 24 and 49.The box extends from 28 to 44 and a vertical line is drawn inside the box at 34. What is the area for this problem? PLEASE HELP!! 18 POINTS16.(08.06 MC)A zoo train ride costs $5 per adult and $1 per child. On a certain day, the total number of adults (a) and children (c) who took the ride was 17, and the total money collected was $65. What was the number of children and the number of adults who took the train ride that day, and which pair of equations can be solved to find the numbers? (1 point)5 childrenand 12 adults Equation 1: a + c = 17 Equation 2: 5a c = 6512 childrenand 5 adults Equation 1: a + c = 17 Equation 2: 5a + c = 6512 childrenand 5 adults Equation 1: a + c = 17 Equation 2: 5a c = 655 childrenand 12 adults Equation 1: a + c = 17 Equation 2: 5a + c = 65 What is the length of a diagonal of a square with a side length of 6? Where does the normal line to the parabola, given below, at the given point, intersect the parabola a second time? illustrate with a sketch. (round the answers to three decimal places.) y = 4 x - 2 x^ 2 p = (2, 0)? Translation of mRNA into segments of tRNA allows which organic molecules to combine to form proteins at the ribosome?complex carbohydratesnucleic acidssimple carbohydratesamino acidslipids Why has it been necessary to make changes in the constitution by methods in addition to formal amendment? 17.Evaluate. Show your work.a.6!b.6P5c.12C3 Describe the reunion between odysseus and telemachus. Which branch of the government is responsible for drawing up articles of impeachment against an American president ? A. Federal district court B. Senate C. House of Representatives D. Supreme Court What is the term for a more complex production strategy that combines approaches from more than one basic strategy? Find the 4th term if the sequend in which a1 = 2 and a n+1 = -4a n + 2***PLEASE HELP** Why is it important to know the interest rate on your credit card? The higher the interest rate, the more money you will be paying back The higher the interest rate, the less money you will be paying back The lower the interest rate, the more credit you can open The lower the interest rate, the more money you can spend A country population in 1991 was 231 million in 1999 it was 233 million . Estimate the population in 2003 using the exponential growth formula. Round you answer to the nearest million Typically, a programmer develops a programs logic, writes the code, and ____ the program, receiving a list of syntax errors. Classify each of the changes as a physical change or a chemical change. "burning wood" The study of the importance of satisfying love and acceptance needs best describes which school of psychology Steam Workshop Downloader