(02.03 LC)
Read the following statement:
Line segment AB is congruent to line segment CD.
Which of the following is an equivalent statement?
AB overbar similar to CD overbar
AB overbar congruent to CD overbar
AB overbar equal to CD overbar
AB overbar element to CD overbar
Answer:
AB overbar congruent to CD overbar
Explanation:
The question is asking whether Line segment AB is CONGRUENT to line segment CD.
The meaning of congruent is having the same shape and size.
Congruent ≅
Element ∈
Equal =
Similar ~
In conclusion, you could say:
AB ≅ CD
I cannot type the lines over the top AB and CD but they are there.
(I know this question is probably old, and i am also tying this so I remember as well, but the other answer didn't have a bit bigger explanation so if anyone comes across this i hope this helped. :)
If two or more objects are the same copy in length and shape then that will be said to be congruent thus AB overbar is congruent to CD overbar and AB overbar is equal to CD overbar are the equivalent thus options (B) and (C) is correct.
What is congruence?If two figures are exactly the same in sense of their length side all things then they will be congruent.
In other meaning, if you can copy a figure then that copy and the original figure will be congruent.
All line segments are in the same shape and have degrees as one in the equation therefore only one criterion which is length is needed to prove congruency.
So, congruent lines are lines whose lengths are the same.
The sign of congruency is ≅ so AB ≅ CD.
Hence " AB overbar is congruent to CD overbar and AB overbar is equal to CD overbar are the equivalent to AB ≅ CD".
To learn more about congruence,
https://brainly.com/question/12413243
#SPJ5
How to find the volume of a parallelepiped with 8 vertices?
The volume of parallelepiped with 8 vertices is 75 units.
What is Volume of Parallelepiped?A parallelepiped's volume is determined by multiplying its surface area by its height.
The area of the parallelogram base is the cross product's magnitude, ∥a×b∥ , according to its geometric specification, and the vector a×b direction is perpendicular to the base.
Given:
let the 8 vertices are (0,0,0), (3,0,0), (0,5,1), (3,5,1), (2,0,5), (5,0,5), (2,5,6), and (5,5,6).
so, Volume = det [tex]|\left[\begin{array}{ccc}0&3&2\\5&0&0\\1&0&5\end{array}\right] |[/tex]
= |0( 0- 0) - 3(25- 0) + 2(0 - 0)|
= |0 - 75 + 0|
= |- 75|
= 75 units
Hence, the volume of parallelepiped with 8 vertices is 75 units.
Learn more about Volume of Parallelepiped here:
https://brainly.com/question/29140066
#SPJ5
Find the sum of the first 100 terms in the series
[tex] \frac{1}{(1*2)} + \frac{1}{(2*3)} + \frac{1}{(3*4)} + . . . \frac{1}{n*(n+1)} [/tex]
What is the structure of a polynomial expression that can be factored by grouping
A polynomial expression can be factored by grouping when it has at least four terms. To factor by grouping, group the terms into pairs, factor out the greatest common factor from each pair, apply the distributive property to factor out the common binomial factor, and simplify.
Explanation:A polynomial expression can be factored by grouping when it has at least four terms. To factor by grouping, follow these steps:
Group the terms of the polynomial into pairs.Factor out the greatest common factor from each pair of terms.Apply the distributive property to factor out the common binomial factor.Simplify the expression by combining like terms.For example, let's consider the polynomial expression 3x^3 - 3x^2 + 2x - 2. We can group the terms as (3x^3 - 3x^2) + (2x - 2). Factor out the greatest common factor from each pair of terms, which gives us 3x^2(x - 1) + 2(x - 1). Applying the distributive property, we can factor out the common binomial factor (x - 1), resulting in (x - 1)(3x^2 + 2). This is the factored form of the original polynomial.
A polynomial expression that can be factored by grouping typically has four terms that are grouped into pairs, with each pair having a common factor. After factoring out the common factors from each pair, if the resulting binomials are identical, the expression can then be factored into the product of two binomials.
Explanation:The structure of a polynomial expression that can be factored by grouping typically involves four terms with the possibility of factoring pairs of terms separately. To use this method, you would look for common factors in the first two terms and in the last two terms. If a common factor is found in both pairs, you can then factor out these common factors and check if the resulting binomials are identical. If so, you can factor out the binomial, leaving you with a product of two binomials as the factored form of the polynomial.
Here is a step-by-step example:
Consider the polynomial ax + ay + bx + by.Group the first two terms and the last two terms: (ax + ay) + (bx + by).Factor out the common factors in each group: a(x + y) + b(x + y).Notice that the binomial (x + y) is common to both groups, so you can factor it out: (x + y)(a + b).Thus, you've factored the original polynomial by grouping.
The Russo-Japanese War was a conflict between Russia and Japan that started in the year 1904. Let x represent any year. Write an inequality in terms of x and 1904 that is true only for values of x that represent years before the start of the Russo-Japanese War.
The length of a rectangle is five times its width. if the area of the rectangle is 320 feet, find its perimeter.
An electronics store is having a going-out-of-business sale. They have 220 computers in their inventory, and they believe they can sell 3 computers every day. If y represents the total number of computers in their inventory and x represents the number of days, which function rule describes this situation?
A. y=3x-220
B. y=220-3x
C. y=3(x-l)-220
D. y=220-3(x-1)
Answer:
B. y=220-3xStep-by-step explanation:
Givens:
220 computers are in the inventory.They sell 3 computers per day.x refers to days.y refers to the total number of computers in the inventory.Basically, the number of computer sold has to subtracted from the inventory, because those are articles that are going out, after being sold, they won't exist in the inventory anymore.
So, this difference between the existence in the inventory and the number of computer sold is best modelled by the second option, because the number of article sold has to subtracted from the inventory, not in the opposite way as the option A states.
If 220 computers is the existence in the inventory, that's the initial condition, which won't variate, because the number of articles in the inventory is represented by y. Also, if they sell 3 computers per day, the expression would be 3x.
Now, after we sell we take out the articles sold from the inventory, then, the function would be:
y = 220 - 3x
Therefore, option B is the answer.
Find the equation of the line specified.
The slope is -7, and it passes through ( 5, -3).
a.
y = -7x - 3
c.
y = -14x + 32
b.
y = -7x + 32
d.
y = -7x - 38
Please select the best answer from the choices provided
Answer:
answer is b
Step-by-step explanation:
A soccer field measures 300 feet by 180 feet. What is the area of the field?
Answer:
1.24 acres or 54,000 feet
by-step explanation:
54000=1.2396694
300*180=54000
Then round up 1.2396694 and u get 1.24
What is the answer to the problem 5 + 6 (2+3) ^2
Suppose a simple random sample of size n is obtained from a population whose distribution is skewed right. as the sample size nâ increases, what happens to the shape of the distribution of the sampleâ mean?
As the sample size increases, the distribution of the sample mean tends to become more normal regardless of the population distribution due to the Central Limit Theorem. The mean of the sampling distribution approaches the population mean, and the standard error decreases, resulting in more reliable statistical analyses.
Effects of Increasing Sample Size on the Distribution of the Sample Mean
As the sample size n increases, the distribution of the sample mean tends to become more normal, even if the population distribution is not normal. This is a result of the Central Limit Theorem, which states that the sampling distribution of the mean approaches a normal distribution as n, the sample size, increases. According to the law of large numbers, the mean of the sample means will get closer to the population mean as sample size grows.
When the population is skewed right and we take a simple random sample, the original distribution being non-normal requires a larger sample size to make the sample mean distribution resemble a normal distribution. Generally, sample sizes equal to or greater than 30 are considered sufficient for the sampling distribution to be normal; however, if the original population distribution is further from a normal curve, a larger sample size may be needed to achieve normality.
The practical implication of this is that as sample size increases, the variability (as measured by the standard error) of the sample mean decreases, and this results in a sampling distribution that is more tightly clustered around the true population mean. Therefore, statistical analyses and predictions become more reliable with larger samples.
Write the equations in graphing form, then state the vertex of the parabola or the center and radius of the circle.
x^2+y^2+y+2=8
Carmen hiked at Yosemite national park for 1.25 hours. Her average speed was 3.9 miles per hour. How many miles did she hike? Give the exact answer- do not round!
You are typing a paper. At 4:04pm you have typed 275 words. By 4:18pm you have 765 words. Find the rate of change in words per minute. Round your answer to the nearest whole number.
A). None of these
B). 20 words per minute
C). 43 words per minute
D). 35 words per minute
E). 55 words per minute
The rate of change in words per minute will be [tex]35[/tex] words per minute.
What is rate of change ?Rate of change is a rate that tells how one quantity changes in relation to another quantity.
i.e. Rate of change [tex]=\frac{Change\ in\ words}{Change\ in\ time}[/tex]
We have,
At [tex]4:04[/tex] pm typed [tex]275[/tex] words,
By [tex]4:18[/tex] pm you have [tex]765[/tex] words.
So,
Change in type [tex]= 4:18\ PM -4:04\ PM=14[/tex]
So,
Rate of change [tex]=\frac{Change\ in\ words}{Change\ in\ time}[/tex]
[tex]=\frac{765-275}{14}[/tex]
[tex]=\frac{490}{14}[/tex]
Rate of change [tex]=35[/tex] words per minute
So, the rate of change is [tex]35[/tex] words per minute which is given in option [tex](D)[/tex].
Hence, we can say that the rate of change in words per minute will be [tex]35[/tex] words per minute.
To know more about Rate of change click here
https://brainly.com/question/12786410
#SPJ3
Is the square root of 113 rational or irrational?
Answer:
[tex]\sqrt{113}[/tex] is an irrational number.
Step-by-step explanation:
We are asked to find whether square root of 113 is rational or irrational.
We know that a number is rational number when it can be written as a fraction.
Upon finding the value of [tex]\sqrt{113}[/tex], we will get:
[tex]\sqrt{113}=10.6301458127346[/tex]
We can see that [tex]\sqrt{113}[/tex] has neither non-terminating nor a repeating decimal, therefore, it cannot be written as a fraction and it is an irrational number.
determine the slope of y=3x^2-8 at (x,y)
If Matrix A has dimensions 1x4 and Matrix B has dimensions 3x4, can these be multiplied?
Whats the answer to this?
19/7 = 114/x
= 114*7 = 798
798/19 = 42
answer is 42
Do not use spaces in your answer. If f(x) = (-x)3, then f(-3) =
A regular octagon has a radius of 6 ft and a side length of 4.6 ft. what is the approximate area of the octagon? 71 ft2 101 ft2 110 ft2 202 ft2
Answer:
Option B is correct.
The approximate area of regular octagon is, 101 square ft.
Step-by-step explanation:
Given: A regular octagon has a radius of 6 ft and a side length of 4.6 ft.
To find the area of a regular octagon(A) of side length a is given by :
[tex]A=2\cdot(1+\sqrt{2})a^2[/tex]
Given the length of side, a= 4.6 ft
Substitute the value of a=4.6 ft in the given formula of area:
[tex]A=2\cdot(1+\sqrt{2})\cdot(4.6)^2[/tex] or
[tex]A=(2+2\sqrt{2})\cdot (21.16)[/tex] or
[tex]A=(2+2.828)\cdot(21.16)[/tex]
Simplify:
[tex]A=4.828\cdot 21.16 =102.16048[/tex] square ft.
therefore, the approximate area of regular octagon is, 101 square ft
Human iq scores are approximately normally distributed with mean 100 and standard deviation 15. determine the minimum iq scores for the top 5% of the population.
To solve this problem, we make use of the z statistic. A population of 5% means that we are looking for the population at >95%, P = 0.95. Using the standard distribution tables for z, a value of P = 0.95 indicates a value of z of z = 1.645
Now given the z and standard deviation s and the mean u, we can calculate for the value of IQ of the top 5% (x):
x = z s + u
x = 1.645 (15) + 100
x = 24.675 + 100
x = 124.675
Therefore the minimum iq score for the top 5% of the population is around 124.675
The minimum IQ score for the top 5% of the population, with a normal distribution mean of 100 and a standard deviation of 15, is approximately 124.7. This is found by using the z-score that corresponds to the 95th percentile, which is 1.645, and applying it to the formula for a score in a normal distribution.
To determine the minimum IQ score for the top 5% of the population, given that human IQ scores are approximately normally distributed with a mean of 100 and a standard deviation of 15, we can use the properties of the normal distribution. Typically, the top 5% of values on a normal distribution lie above a certain z-score threshold. This z-score corresponds to the point on the distribution where the cumulative area to the left is 95% (100% - 5%), since we are looking for the score above which the top 5% of scores fall.
To find this z-score, we look up the value in a standard normal distribution table or use a statistical software or calculator. The z-score that corresponds to the 95th percentile is typically around 1.645. To find the actual IQ score, we can then apply the following formula:
IQ Score = Mean + (Z-score * Standard Deviation)
Plugging the values in:
IQ Score = 100 + (1.645 * 15)
IQ Score = 100 + 24.675
IQ Score = 124.675
Therefore, the minimum IQ score for the top 5% of the population is approximately 124.7 (since IQ scores are usually reported to the nearest whole number).
The tip of a 12-inch wiper blade wipes a path that is 30 inches long. What is the angle of rotation of the blade in radians to the nearest tenth? 0.4 radians 1.3 radians 2.5 radians 5.0 radians
Answer:
c 2.5 radians
Step-by-step explanation:
Please help me,I need help understand so I can do my own! Worth 20 points!!
Two endpoints of the diagonal of a parallelogram are k(0,3) and l(4,1). what is the length of the diagonal
Final answer:
The length of the diagonal between points K(0,3) and L(4,1) in a parallelogram is calculated using the distance formula, which is 2√5 units.
Explanation:
To find the length of the diagonal between the points K(0,3) and L(4,1), we can use the distance formula, which is derived from the Pythagorean theorem. The distance d between two points (x1, y1) and (x2, y2) in a coordinate plane is calculated by the formula:
d = √((x2 - x1)² + (y2 - y1)²)
For points K(0,3) and L(4,1), this becomes:
d = √((4 - 0)² + (1 - 3)²)
d = √(16 + 4)
d = √20
d = 2√5
The diagonal's length is 2√5 units.
Graph y < 1/3x + 1/2
The larger of two numbers is 15 less than twice the smaller number. the sum of the two numbers is 39. find the two numbers.
Why is triangle triangle MNL= triangle KNL explain
Answer:
A
Step-by-step explanation:
1) LN=LN reflexive property of congruence
2) KN=MN, given
3) <MLN=<KLN, bisected angles are congruent
4) Triangle MNL=Triangle KNL by the HL theorem
the old price for school lunches is $5. The new price is $5.25. What is the percent increase in the cost if school lunches? Write answer as percent. The formula is p=b-a/a. b =new price for lunch. a=old price for lunch. P=percent increase
p=(5.25-5.00)/5.00
p=0.25/5.00
p=0.05
p = 5% increase
solve for the equation for the interval [0, 2pi). sec x/2 = cos x/2
To solve sec x/2 = cos x/2, we use the identity sec(θ) = 1/cos(θ). After rearranging, we identify the solution as x = 0 and x = 2π, fitting the interval [0, 2π).
Explanation:To solve the equation sec x/2 = cos x/2 for the interval [0, 2π), we first need to understand the relationship between secant and cosine functions. Recall that sec(θ) is the reciprocal of cos(θ), thus sec(θ) = 1/cos(θ). Given the equation sec x/2 = cos x/2, we can substitute sec x/2 with 1/cos x/2 to get 1/cos x/2 = cos x/2.
Next, to solve for x, we multiply both sides by cos x/2 to get rid of the fraction: 1 = cos^2(x/2). We know that the square of the cosine function can also be related to the identity cos^2(x) = (1 + cos(2x))/2. Applying this identity, we have 1 = (1 + cos x)/2. Solving for cos x, we get cos x = 1, which occurs at x = 0, 2π in the interval [0, 2π). Therefore, the solution to the equation is x = 0 and x = 2π.
The equation sec x/2 = cos x/2 is solved by finding angles where the cosine of half the angle is either 1 or -1. This leads to solutions x = 0 and x = 2pi within the interval [0, 2pi).
Explanation:To solve the equation sec x/2 = cos x/2 for the interval [0, 2pi), we can make use of trigonometric identities to simplify and solve for x. The secant function is the reciprocal of the cosine function, so sec(x/2) = 1/cos(x/2). This leads to the equation 1/cos(x/2) = cos(x/2). Solving for cos(x/2), we get cos^2(x/2) = 1, which implies that cos(x/2) = ±1. Therefore, we're looking for angles where the cosine of half the angle is either 1 or -1. This corresponds to angles of 0, pi, and 2pi for cos(x/2) = 1, and pi for cos(x/2) = -1, remembering that we are considering x/2 and need to multiply these results by 2 to solve for x. Accordingly, the solution to the equation within the given interval is x = 0, 2pi, and 4pi (which is equivalent to 0 within one full rotation of the circle), but since we're restricting x to be within [0, 2pi), the accepted solutions are x = 0 and x = 2pi.
Find the length of an arc that subtends a central angle of 135° in a circle of radius 2 mi