(i) If volume is high this week, then next week it will be high with a probability of 0.9 and low with a probability of 0.1.
(ii) If volume is low this week then it will be high next week with a probability of 0.4. The manager estimates that the volume is five times as likely to be high as to be low this week.

Assume that state 1 is high volume and that state 2 is low volume.

(1) Find the transition matrix for this Markov process.(2) If the volume this week is high, what is the probability that the volume will be high two weeks from now?

Answers

Answer 1
Final answer:

A Markov chain is used to model this situation. The transition matrix based on the given probabilities will be [[0.9, 0.1],[0.4, 0.6]]. Also, to calculate the probability of being in a high-volume state two weeks from now given that it is in a high-volume state now, we square the matrix and look at the upper-left entry.

Explanation:

A Markov process, in particular, a Markov chain, is a stochastic process that undergoes transitions from one state to another on a state space following the Markov property, stating that future states depend only on the current state and not on events that occurred before it. The transition matrix in these cases provides the probabilities between state transitions.

Given the data:

The probability of switching from hia gh volume (state 1) to a high volume (state 1) is 0.9The probability of switching from high volume (state 1) to low volume (state 2) is 1-0.9 =0.1The probability of switching from low volume (state 2) to high volume (state 1) is 0.4The probability of switching from low volume (state 2) to low volume (state 2), therefore, is 1-0.4 = 0.6

Based on these probabilities the transition matrix will be of the form:

[[0.9, 0.1],[0.4, 0.6]].

To find the probability that the volume will be high two weeks from now, we will need to square the matrix as we are considering two steps ahead. The top left element of the resulting matrix will give the desired probability. In general, the i,j-th entry of the square of a transition matrix gives the 2-step transition probability from state i to state j.

Learn more about Markov Chain here:

https://brainly.com/question/30465344

#SPJ11


Related Questions

what is the difference between distrust and distake .

Answers

Answer:

The difference between mistrust and distrust comes down to nuances in meaning. Distrust is a withholding of trust based on evidence or informed opinion. Many people distrust salespeople working on commission, for instance, knowing that these salespeople personally benefit from their purchases.

Step-by-step explanation:

Bob ordered 17 yards of lumber to build a treehouse how many inches of lumber did he order

Answers

Answer:

six hunddered n twelve

Step-by-step explanation:

Find the value of x.

Answers

150°

Considering that it had six sides, the total angle degree should be 720, so when you add them all up and subtract it with 720, you would get 150°

Answer: 150

Step-by-step explanation: cause it has six side in total of 720 and subtract it and you have 150

A consumer research group is interested in testing an automobile manufacturer's claim that a new economy model will travel at least 27 miles per gallon of gasoline (H 0: 27). With a .02 level of significance and a sample of 40 cars, what is the rejection rule based on the value of for the test to determine whether the manufacturer's claim should be rejected (to 2 decimals)? Assume that is 6 miles per gallon.

Answers

Answer:

The alternative hypothesis H0, should be rejected, if sample mean, X' < 25.051

Step-by-step explanation:

Given:

Sample size, n = 40

Mean, μ = 27

Significance level = 0.02

Standard deviation = 6

For null hypothesis :

H0 : μ ≥ 27

For alternative hypothesis :

H1 : μ < 27

At significance level, α = 0.02, from Z table, Zα = 2.054

This is a left tailed test

Solving for X' we have:

[tex] X' = u - Za \frac{\sigma}{\sqrt{n}}[/tex]

[tex] X' = 27 - 2.054 \frac{6}{\sqrt{40}}= 25.051[/tex]

The alternative hypothesis H0, should be rejected, if sample mean, X' < 25.051

The rejection rule is based on the value of for the test to determine whether the manufacturer's claim should be rejected is [tex]\mu<27[/tex].

Given :

The sample size is 40..02 level of significance.The mean is 27.The standard deviation is 6.

The following steps can be used in order to determine the rejection rule based on the value of the test:

Step 1 - The Hypothesis test can be used in order to determine the rejection rule based on the value of the test.

The null hypothesis is given below:

[tex]H_0 : \mu\geq 27[/tex]

The alternate hypothesis is given below:

[tex]H_a : \mu<27[/tex]

Step 2 - Now, the formula of X' is given below:

[tex]X' = \mu-Z_\alpha \dfrac{\sigma}{\sqrt{n} }[/tex]

Step 3 - Now, substitute the values of the known terms in the above formula.

[tex]X' = 27-2.054 \dfrac{6}{\sqrt{40} }[/tex]

Step 4 - SImplify the above expression.

[tex]X' = 25.051[/tex]

From the above steps, it can be concluded that the null hypothesis is rejected.

For more information, refer to the link given below:

https://brainly.com/question/10758924

What is the area of 6cm and 7cm in square centimeters

Answers

Answer:

42cm²

Step-by-step explanation:

b×h

6×7=42

area-To find the area of a rectangle multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area.

Answer:

42 sq cm

Step-by-step explanation:

6 x 7=42

Circle P has a circumference of approximately 75
inches.
What is the approximate length of the radius, r? Use
3.14 for . Round to the nearest inch.
12 inches
24 inches
038 inches
46 inches

Answers

Answer:

12 inches

Step-by-step explanation:

c=2*pi*r

75 = 2*3.14*r

r=75/(2*314)=75/6.28=11.9, which is close to 12

Which matrix equation can be used to solve the systems of equations below?
3x - 2y = -3
6x - 5y = -9

Answers

Answer:

A.   x = [  5/3   -2/3  ] [  -3  ]

      y = [  2        -1   ]  [  -9  ]

Step-by-step explanation:

got it correct on the unit test review on edge 2020

Final answer:

The matrix equation to solve the system of equations 3x - 2y = -3 and 6x - 5y = -9 is AX = B, where A is the coefficient matrix[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\)[/tex], X is the variable matrix[tex]\(\begin{bmatrix}x \\ y\end{bmatrix}\)[/tex], and B is the constant matrix[tex]\(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex].

Explanation:

To solve the system of linear equations presented using matrices, we can set up a matrix equation of the form AX = B, where A is the coefficient matrix, X is the variable matrix, and B is the constant matrix.

The system of equations is:

3x - 2y = -36x - 5y = -9

From the system, we can identify the coefficient matrix A, the variable matrix X, and the constant matrix B as follows:

A =
[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\)[/tex]

X =
[tex]\(\begin{bmatrix}x \\ y\end{bmatrix}\)[/tex]

B =
[tex]\(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex]

The matrix equation that can be used to solve the system is:

[tex]\(\begin{bmatrix}3 & -2 \\ 6 & -5\end{bmatrix}\) \(\begin{bmatrix}x \\ y\end{bmatrix}\) = \(\begin{bmatrix}-3 \\ -9\end{bmatrix}\)[/tex]

What is this expression in simplified form? (-7√3)(11√10)

Answers

Answer:

[tex]-77\sqrt{30}[/tex]

Step-by-step explanation:

[tex](-7\sqrt{3})(11\sqrt{10})=-77\sqrt{30}[/tex]

Hope this helps!

The simplified form of the expression is  -77√33

Given the surd function (-7√3)(11√10)

Multiply the surd functions together. To do this, you multiply both the integers and the surd functions separately  as shown:

(-7*11)(√3*√11)= (-77) √33= -77√33

Hence the simplified form of the expression is  -77√33

Learn more on surd here: https://brainly.com/question/24372463

Gwen, a friend of Mary from the previous question, is also practicing free throws. However, she is trying to score 3 points in a single set. She will keep shooting sets until she has three successful shots in a single set. Gwen is more confident in her abilities, and believes that she can successfully make any single shot with a probability of 0.8.

Give your answer as a decimal to 4 decimal places.

a) Given the information above, how many sets does Gwen expect to make?

b)b) Given the information above, what is the variance for the number of sets Gwen will make?

c) Given the information above, how many shots does Gwen expect to make?

Answers

Answer:

a. Gwen expect to make 3.75 sets

b. The variance for the number of sets Gwen will make is 0.9375

c. Gwen expect to make 2 shots

Step-by-step explanation:

a. According to the given data we have the following:

Here this follows negative binomial distribution with parameter r =3 and p=0.8

To calculate how many sets does Gwen expect to make we have to calculate the following formula:

expected number of sets =r/p

expected number of sets =3/0.8=3.75

Gwen expect to make 3.75 sets.

b. In order to calculate the variance for the number of sets Gwen will make we have to use the following formula:

variance for the number of sets=σ∧2=r(1-p)/p∧2

variance for the number of sets=3*(1-0.8)/0.8^2

variance for the number of sets=0.9375

The variance for the number of sets Gwen will make is 0.9375

c. To calculate how many shots does Gwen expect to make, we have to calculate first the probability she shoots all the three in the set as follows:

probability she shoots all the three in the set=0.8∧3=0.512

if E(X)=1/p, therefore, 1/p=1/0.512=1.95

Gwen expect to make 2 shots

Dot Products of Vectors

Quiz

Active

Find a b if a = 10i + 4j and b = 3i + 4%.

a. (30,16)

c. 46

b. -14

d. (13,8)

Answers

Answer:

choice c. 46

Step-by-step explanation:

Find a b if a = 10i + 4j and b = 3i + 4%

a = <10, 4>

b = <3, 4>

a*b = <10, 4> * <3, 4> = 10*3 + 4*4 = 30 + 16 = 46

Answer:

C. 46

Step-by-step explanation:

Justin saves $8 every week. Which equation represents the amount of money Justin has, y, after x number of weeks? IF YOU PUT AN ABSURD ANSWER YOU WILL BE REPORTED, will choose brainliest.

Answers

Answer:

C

Step-by-step explanation:

C, because if x stands for the amount of weeks, and you save $8 per week, you would multiply the amount of weeks (x) by how much he saves each week ($8), which will equal y (amount of money Justin has)

What is the base area of the cone?
°15 m2
°25 m2
°45 m2
°125 m2
V=75 m3
h=5m​

Answers

Answer:

It is 45m2

Step-by-step explanation:

Just took did the question of the topic calculating the Base of Area of a Cone

Answer:

its 42 m^2

Step-by-step explanation: did it on edge

g A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights​ (in centimeters) of randomly selected presidents along with the heights of their main opponents. Complete parts​ (a) and​ (b) below. Height (cm )of President 191 180 180 182 197 180 Height (cm )of Main Opponent 166 179 168 183 194 186 a. Use the sample data with a 0.05 significance level to test the claim that for the population of heights for presidents and their main​ opponents, the differences have a mean greater than 0 cm. In this​ example, mu Subscript d is the mean value of the differences d for the population of all pairs of​ data, where each individual difference d is defined as the​ president's height minus their main​ opponent's height. What are the null and alternative hypotheses for the hypothesis​ test?

Answers

Answer:

Step-by-step explanation:

Corresponding heights of presidents and height of their main opponents form matched pairs.

The data for the test are the differences between the heights.

μd = the​ president's height minus their main​ opponent's height.

President's height. main opp diff

191. 166. 25

180. 179. 1

180. 168. 12

182. 183. - 1

197. 194. 3

180. 186. - 6

Sample mean, xd

= (25 + 1 + 12 - 1 + 3 + 6)/6 = 5.67

xd = 5.67

Standard deviation = √(summation(x - mean)²/n

n = 6

Summation(x - mean)² = (25 - 5.67)^2 + (1 - 5.67)^2 + (12 - 5.67)^2+ (- 1 - 5.67)^2 + (3 - 5.67)^2 + (- 6 - 5.67)^2 = 623.3334

Standard deviation = √(623.3334/6 sd = 10.19

For the null hypothesis

H0: μd ≥ 0

For the alternative hypothesis

H1: μd < 0

The distribution is a students t. Therefore, degree of freedom, df = n - 1 = 6 - 1 = 5

The formula for determining the test statistic is

t = (xd - μd)/(sd/√n)

t = (5.67 - 0)/(10.19/√6)

t = 1.36

We would determine the probability value by using the t test calculator.

p = 0.12

Since alpha, 0.05 < than the p value, 0.12, then we would fail to reject the null hypothesis.

Therefore, at 5% significance level, we can conclude that for the population of heights for presidents and their main​ opponents, the differences have a mean greater than 0 cm.

Final answer:

The null hypothesis in this case would be that there is no average height advantage for presidents over their main opponents (µd ≤ 0), while the alternative hypothesis is that presidents are taller on average (µd > 0). A paired t-test with a significance level of 0.05 is usually employed in testing these hypotheses using the p-value and t-score.

Explanation:

In hypothesis testing, the goal is to determine the validity of a claim made. In this case, the claim is that the mean difference in height, where the difference is calculated as the president's height minus their main opponent's height, is greater than 0 cm. This represents the theory that taller presidential candidates have an advantage.

For setting up a null hypothesis and an alternative hypothesis, we consider the following parameters:

Null Hypothesis (H₀): There is no height advantage for presidents (µd ≤ 0) Alternative Hypothesis (Ha): Presidents are taller on average (µd > 0)

To test these hypotheses, we would typically use a one-sample t-test for paired differences with a significance level (alpha) of 0.05. A p-value less than this would allow us to reject the null hypothesis in favor of the alternative hypothesis that presidents are on average taller than their main opponents. Use of p-value and t-score is essential in conducting such a test.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Blake simplified the expression (StartFraction x Superscript 12 Baseline Over x Superscript negative 3 Baseline EndFraction) Superscript 5 to StartFraction 1 Over x Superscript 20 Baseline EndFraction. What was Blake’s mistake?

Answers

Answer:

D.

Step-by-step explanation:

Answer:

D.He divided the exponents in the parentheses instead of subtracting.

Step-by-step explanation:

Edge 2022

Plz help will choose brainliest!

Answers

Answer:

D, E, F

Step-by-step explanation:

The first step I would do is distribute the original equation. After distributing, the equation is now 8x² + 16xy. The first answer I see that matches this is D.

Then, after already eliminating A, B, and C, I look at E. I distribute the x and find out it is also equal to 8x² + 16xy.

Then, I look at F. After distributing again, it is also equal to 8x² + 16xy.

What steps should be taken to calculate the volume of the right triangular prism? Select three options.

A triangular prism. The triangular base has a base of 8 meters and height of 14 meters. The height of the prism is 7 meters.
Use the formula A = one-half b h to find the area of the base.
Use the formula A = b h to find the area of the base.
The area of the base, A, is One-half (7) (8) = 28 meters squared.
The area of the base, A, is One-half (8) (14) = 56 meters squared.
The volume of the prism, V is (56) (7) = 392 meters cubed.

Answers

Answer:

A, D, and the choice that says the volume is ~261.33 metres cubed

Step-by-step explanation:

The volume of a triangular prism is denoted by: V = (1/3) * Bh, where B is the base area and h is the height.

Here, we know that the base is a triangle with base 8 and height 14, and the overall height is 7. The first step is to find the area of the base. The area of a triangle is denoted by:

A = (1/2) * b * h, where b is the base and h is the height, so A is correct.

Plug values in:

A = (1/2) * 8 * 14 = 56 metres squared, so the D is correct.

Then use this and the height of 14 to find the volume:

V = (1/3) * Bh

V = (1/3) * 56 * 14 = 784/3 metres cubed (I'm assuming you missed an answer choice when copying the problem on here, so the correct last option is the one that says the volume is 784/3 or ~261.33 metres cubed)

Answer:

Use the formula A = one-half b h to find the area of the base.

The area of the base, A, is One-half (8) (14) = 56 meters squared.

The volume of the prism, V is (56) (7) = 392 meters cubed.

Step-by-step explanation:

Volume of prism:

Base area × height

Base area:

½ × 8 × 14 = 56

Volume:

56 × 7 = 392


Expand to write an equivalent expression: -1/2(-2x + 4y)
Need help ASAP!​

Answers

Answer:x-2y

Step-by-step explanation:

-1/2(-2x+4y)

Open the brackets

2x/2 - 4y/2

x - 2y

Note: picture not drawn to scale The circle above has a radius of 12 cm. What is the area of the circle? Use = 3.14. A. 75.36 cm2 B. 37.68 cm2 C. 904.32 cm2 D. 452.16 cm2

Answers

Answer:

452.16

Step-by-step explanation:

Area of a circle = pi*radius squared

A= 3.14(12)^2

=3.14*144

=452.16

Final answer:

The area of a circle with a radius of 12 cm can be calculated using the formula A = \u03C0r^2. By applying the radius to this formula with pi approximated to 3.14, we obtain an area of 452.16 cm^2, which corresponds to option D.

Explanation:

To calculate the area of the circle with a radius of 12 cm, we use the formula: A = \\u03C0r^2\

Where (pi) is approximately 3.14 and r is the radius of the circle.

Plugging the radius into the formula:

A = 3.14 * (12 cm)^2

A = 3.14 * 144 cm^2

A = 452.16 cm^2

Thus, the correct answer is D. 452.16 cm^2.

T(t)T, models the daily high temperature (in Celsius) in Santiago, Chile, t days after the hottest day of the year. Here, t is entered in radians.

T(t)=7.5cos(2π/365t)+21.5


What is the second time after the hottest day of the year that the daily high temperature is 20 degrees celsius?


Round your final answer to the nearest whole day.

Answers

Answer:

the answer is 262 days

Step-by-step explanation:

Final answer:

To find the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius, you need to solve the equation T(t) = 20. This involves finding the inverse cosine of a specific value, setting up an equation, and adding one year to the solution. After performing these steps, you can find the value of t that corresponds to the second time.

Explanation:

To find the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius, we need to solve the equation T(t) = 20. We can rewrite this equation as 7.5cos(2π/365t) + 21.5 = 20. Subtracting 21.5 from both sides gives us 7.5cos(2π/365t) = -1.5. Dividing both sides by 7.5 and simplifying further, we have cos(2π/365t) = -0.2. To find the second time, we need to find the value of t that satisfies this equation.

To find the value of t, we need to use the inverse cosine function (also known as arccosine). The inverse cosine function (cos^(-1)) gives us the angle whose cosine is a specific value. In this case, we want to find t such that cos(2π/365t) = -0.2. We can use a calculator or math software to find the inverse cosine of -0.2. Let's assume the inverse cosine of -0.2 is x.

Now we can set up an equation: 2π/365t = x. Solving for t, we get t = (365x)/(2π). However, we need to find the second time after the hottest day, so we need to find the value of t that satisfies the equation after adding one year (365 days) to the original value. Therefore, the second time after the hottest day of the year that the daily high temperature is 20 degrees Celsius is t = (365x)/(2π) + 365.

Heights​ (cm) and weights​ (kg) are measured for 100 randomly selected adult​ males, and range from heights of 138 to 190 cm and weights of 39 to 150 kg. Let the predictor variable x be the first variable given. The 100 paired measurements yield x overbarequals167.46 ​cm, y overbarequals81.44 ​kg, requals0.108​, ​P-valueequals0.285​, and ModifyingAbove y with caretequalsnegative 105plus1.08x. Find the best predicted value of ModifyingAbove y with caret ​(weight) given an adult male who is 177 cm tall. Use a 0.05 significance level.

Answers

Answer:

Best predicted value of y' = 86.16 kg

Step-by-step explanation:

Given,

n = 100

Range of heights = 138 - 190cm

Range of weight = 39 to 150 kg

x' =167.46 cm

y' = 81.44 kg

r = 0.108

p value = 0.285

y = - 105 + 1.08x

Significance level = 0.05

We reject H0 since pvalue, 0.285 is less than significance level of 0.05.

Therefore,

Given height of adult male, x = 177 cm

y = - 105 + 1.08x

The best predicted value of y' =

y' = - 105 + 1.08(177)

y' = 86.16 kg

The best predicted value of y' is 86.16kg

In a completely randomized experimental design, three brands of paper towels were tested for their ability to absorb water. Equal-size towels were used, with four sections of towels tested per brand. The absorbency rating data follow. At a level of significance, does there appear to be a difference in the ability of the brands to absorb water?

Answers

Answer:

Yes. At this significance level, there is evidence to support the claim that there is a difference in the ability of the brands to absorb water.

Step-by-step explanation:

The question is incomplete:

The significance level is 0.05.

The data is:

Brand X: 91, 100, 88, 89

Brand Y: 99, 96, 94, 99

Brand Z: 83, 88, 89, 76

We have to check if there is a significant difference between the absorbency rating of each brand.

Null hypothesis: all means are equal

[tex]H_0:\mu_x=\mu_y=\mu_z[/tex]

Alternative hypothesis: the means are not equal

[tex]H_a: \mu_x\neq\mu_y\neq\mu_z[/tex]

We have to apply a one-way ANOVA

We start by calculating the standard deviation for each brand:

[tex]s_x^2=30,\,\,s_y^2=6,\,\,s_z^2=35.33[/tex]

Then, we calculate the mean standard error (MSE):

[tex]MSE=(\sum s_i^2)/a=(30+6+35.33)/3=71.33/3=23.78[/tex]

Now, we calculate the mean square between (MSB), but we previously have to know the sample means and the mean of the sample means:

[tex]M_x=92,\,\,M_y=97,\,\,M_z=84\\\\M=(92+97+84)/3=91[/tex]

The MSB is then:

[tex]s^2=\dfrac{\sum(M_i-M)^2}{N-1}\\\\\\s^2=\dfrac{(92-91)^2+(97-91)^2+(84-91)^2}{3-1}\\\\\\s^2=\dfrac{1+36+49}{2}=\dfrac{86}{2}=43\\\\\\\\MSB=ns^2=4*43=172[/tex]

Now we calculate the F statistic as:

[tex]F=MSB/MSE=172/23.78=7.23[/tex]

The degrees of freedom of the numerator are:

[tex]dfn=a-1=3-1=2[/tex]

The degrees of freedom of the denominator are:

[tex]dfd=N-a=3*4-3=12-3=9[/tex]

The P-value of F=7.23, dfn=2 and dfd=9 is:

[tex]P-value=P(F>7.23)=0.01342[/tex]

As the P-value (0.013) is smaller than the significance level (0.05), the null hypothesis is rejected.

There is evidence to support the claim that there is a difference in the ability of the brands to absorb water.

There are four entrances to the Government Center Building in downtown Philadelphia. The building maintenance supervisor would like to know if the entrances are equally utilized. To investigate, 401 people were observed entering the building. The number using each entrance is reported below. At the 0.01 significance level, is there a difference in the use of the four entrances? Entrance Frequency Main Street 81

Answers

Answer:

Yes. We have evidence to support the claim that there is a difference in the use of the four entrances.

Step-by-step explanation:

The question is incomplete:

Entrance Frequency

Main Street 81

Broad Street 129

Cherry Street 72

Walnut Street 119

Total: 401

The building maintenance supervisor wants to know if the entrances are equally utilized.

This problem can be solved using the Chi-square goodess of fit test.

The expected value for each door is

[tex]E=401/4=100.25[/tex]

The degrees of freedom are equal to the number of categories (4 doors) minus one:

[tex]df=n-1=4-1=3[/tex]

Then, the value of the chi-square statistic can be calculated as:

[tex]\chi^2=\sum \dfrac{(O_i-E)^2}{E}\\\\\\\chi^2=\dfrac{(81-100.25)^2}{100.25}+\dfrac{(129-100.25)^2}{100.25}+\dfrac{(72-100.25)^2}{100.25}+\dfrac{(119-100.25)^2}{100.25}\\\\\\\chi^2=\dfrac{370.5625+826.5625+798.0625+351.5625}{100.25}=\dfrac{2346.75}{100.25}=23.41[/tex]

The P-value for this test statistic χ^2=23.41 and df=3 is:

[tex]P-value=P(\chi^2_3>23.41)=0.00003[/tex]

This P-value is much smaller than the significance level (0.01), so the effect is significant.

We have evidence to support the claim that there is a difference in the use of the four entrances.

The data in the table represents the value of a savings
account at the end of each year for 6 years. The
relationship between the increasing years and the
increasing value of the account is exponential.
There is [ ]
rate of change in an
exponential relationship
After each year, the value of the account is[. ]times as
large as the previous year

First missing either a constant additive, or a constant multiplicative, or no constant


Second missing word either 0.5 or 1.05 or 1.5 or 2

Answers

Answer:

The answer is constant multiplicative and it is 1.05 times larger.

There is constant rate of change in an exponential relationship.

The value of the account is 1.05 times.

In the given statement, it states that there is a [ ] rate of change in an exponential relationship. The missing word in this case would be "constant."

In an exponential relationship, the rate of change between consecutive terms is constant.

Now, after each year, the value of the account is [. ] times as large as the previous year. The missing value in this case would be "1.05."

This indicates that the value of the account increases by a factor of 1.05 each year, which corresponds to a 5% annual growth rate.

Learn more about Exponential Relation here:

https://brainly.com/question/29160729

#SPJ2

Please help me and Katie don’t delete it

Answers

Answer:

A.

I say this is the answer because if she has gotten into a habait of buying and breaking glasses,shes just very careless

Answer:

hope she won

t

Step-by-step explanation:

Layana’s house is located at (2 and two-thirds, 7 and one-third) on a map. The store where she works is located at (–1 and one-third, 7 and one-third). What is the distance from Layana’s home to the store?


4 units

8 and two-thirds units

10 units

14 and two-thirds units

Answers

We have been given that Layana’s house is located at [tex](2\frac{2}{3}, 7\frac{1}{3})[/tex] on a map. The store where she works is located at [tex](-1\frac{1}{3}, 7\frac{1}{3})[/tex].

We are asked to find the distance from Layana’s home to the store

We will use distance formula to solve our given problem.

Let us convert our given coordinates in improper fractions.

[tex]2\frac{2}{3}\Rightarrow \frac{8}{3}[/tex]

[tex]7\frac{1}{3}\Rightarrow \frac{22}{3}[/tex]

[tex]-1\frac{1}{3}\Rightarrow -\frac{4}{3}[/tex]

Now we will use distance formula to solve our given problem.

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Upon substituting coordinates of our given point in above formula, we will get:

[tex]D=\sqrt{(\frac{22}{3}-\frac{22}{3})^2+(\frac{8}{3}-(-\frac{4}{3}))^2}[/tex]

[tex]D=\sqrt{(0)^2+(\frac{8}{3}+\frac{4}{3})^2}[/tex]

[tex]D=\sqrt{0+(\frac{8+4}{3})^2}[/tex]

[tex]D=\sqrt{(\frac{12}{3})^2}[/tex]

[tex]D=\sqrt{(4)^2}[/tex]

[tex]D=4[/tex]

Therefore, the distance from Layana's home to the store is 4 units and option A is the correct choice.

Answer:

its A ^3^

Step-by-step explanation:

Examine the following expression. p squared minus 3 + 3 p minus 8 + p + p cubed Which statements about the expression are true? Check all that apply. The constants, –3 and –8, are like terms. The terms 3 p and p are like terms. The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed. The terms p squared, 3 p, p, and p cubed have variables, so they are like terms. The expression contains six terms. The terms p squared and p cubed are like terms. Like terms have the same variables raised to the same powers. The expression contains seven terms.

Answers

Answer:

  see the bullet list below

Step-by-step explanation:

Given the expression: p² -3 +3p -8 +p +p³

The following statements are true:

The constants, –3 and –8, are like terms. The terms 3 p and p are like terms. The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed. The expression contains six terms. Like terms have the same variables raised to the same powers.

_____

Terms are generally separated by + or - signs. (The sign is considered to be part of the term.) In the context of a polynomial, terms may be constants, or may be a product with factors that are constants or variables.

_____

Further comments on "term"

In other contexts, the word "term" is used for various purposes. It can designate a member of a sequence, the left or right side of an equation, the numerator or denominator of a rational expression, or just about any identifiable expression that can be considered as a unit. Whereas "coefficient" or "factor" may apply to just about any subset of the (prime) factors of a product, the word "term" is generally restricted to consideration of the product as a whole.

Final answer:

In the given expression, -3 and -8 are like terms, while 3p and p are also like terms. The expression contains six terms and like terms have the same variables raised to the same powers. However, not all terms with variables are like terms in this instance.

Explanation:

The expression given is p squared minus 3 + 3p minus 8 + p + p cubed. When we look into it, we can see a couple of true statements.

The constants, -3 and -8, are indeed considered 'like terms' because both of them are constants without a variable part.The terms 3p and p are like terms because they both have the same variable component 'p' with the power of 1.The expression consists of six different terms.Like terms do have the same variables which are raised to the same powers.

However, the terms p squared, 3p, p, and p cubed are not like terms since the powers of p in each term are different. Similarly, the terms p squared and p cubed are not like terms since the powers of p are 2 and 3, which are not the same.

Learn more about Like Terms here:

https://brainly.com/question/33652886

#SPJ3

g Assume that the distribution of time spent on leisure activities by adults living in household with no young children is normally distributed with a mean of 4.5 hours per day and a standard deviation of 1.3 hours per day. Find the probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day. Round your answer to four decimal places. (make sure to put a 0 in front of the decimal ie 0.1 vs .1)

Answers

Answer:

"The probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day" is about 0.8749.

Step-by-step explanation:

We have here a random variable that is normally distributed, namely, the time spent on leisure activities by adults living in a household with no young children.

The normal distribution is determined by two parameters: the population mean, [tex] \\ \mu[/tex], and the population standard deviation, [tex] \\ \sigma[/tex]. In this case, the variable follows a normal distribution with parameters [tex] \\ \mu = 4.5[/tex] hours per day and [tex] \\ \sigma = 1.3[/tex] hours per day.

We can solve this question following the next strategy:

Use the cumulative standard normal distribution to find the probability.Find the z-score for the raw score given in the question, that is, x = 6 hours per day.With the z-score at hand, we can find this probability using a table with the values for the cumulative standard normal distribution. This table is called the standard normal table, and it is available on the Internet or in any Statistics books. Of course, we can also find these probabilities using statistics software or spreadsheets.

We use the standard normal distribution because we can "transform" any raw score into standardized values, which represent distances from the population mean in standard deviations units, where a positive value indicates that the value is above the mean and a negative value that the value is below it. A standard normal distribution has [tex] \\ \mu = 0[/tex] and [tex] \\ \sigma = 1[/tex].

The formula for the z-scores is as follows

[tex] \\ z = \frac{x - \mu}{\sigma}[/tex] [1]

Solving the question

Using all the previous information and using formula [1], we have

x = 6 hours per day (the raw score).

[tex] \\ \mu = 4.5[/tex] hours per day.

[tex] \\ \sigma = 1.3[/tex] hours per day.

Then (without using units)

[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]

[tex] \\ z = \frac{6 - 4.5}{1.3}[/tex]

[tex] \\ z = \frac{1.5}{1.3}[/tex]

[tex] \\ z = 1.15384 \approx 1.15[/tex]

We round the value of z to two decimals since most standard normal tables only have two decimals for z.

We can observe that z = 1.15, and it tells us that the value is 1.15 standard deviations units above the mean.

With this value for z, we can consult the cumulative standard normal table, and for this z = 1.15, we have a cumulative probability of 0.8749. That is, this table gives us P(z<1.15).  

We can describe the procedure of finding this probability in the next way: At the left of the table, we have z = 1.1; we can follow the first line on the table until we find 0.05. With these two values, we can determine the probability obtained above, P(z<1.15) = 0.8749.

Notice that the probability for the z-score, P(z<1.15), of the raw score, P(x<6) are practically the same,  [tex] \\ P(z<1.15) \approx P(x<6)[/tex]. For an exact probability, we have to use a z-score = 1.15384 (without rounding), that is, [tex] \\ P(z<1.15384) = P(x<6) = 0.8757[/tex]. However, the probability is approximated since we have to round z = 1.15384 to z = 1.15 because of the use of the table.

Therefore, "the probability that the amount of time spent on leisure activities per day for a randomly selected adult from the population of interest is less than 6 hours per day" is about 0.8749.

We can see this result in the graphs below. First, for P(x<6) in [tex] \\ N(4.5, 1.3)[/tex] (red area), and second, using the standard normal distribution ([tex] \\ N(0, 1)[/tex]), for P(z<1.15), which corresponds with the blue shaded area.

Final answer:

The question seeks to find the probability that an adult spends less than 6 hours per day on leisure activities, using the given mean and standard deviation for a normal distribution. The z-score is calculated and then used to determine the probability using the cumulative normal distribution function.

Explanation:

The student's question asks to find the probability that a randomly selected adult from a certain population spends less than 6 hours per day on leisure activities, given that the distribution of time spent is normally distributed with a mean of 4.5 hours and a standard deviation of 1.3 hours.

To solve this, you can use the z-score formula:

z = (X - μ) / σ

where X is the value of interest (6 hours), μ is the mean (4.5 hours), and σ is the standard deviation (1.3 hours).

Using this, we calculate:

z = (6 - 4.5) / 1.3

= 1.15 / 1.3

= 0.8846

Now, we look up this z-score in a standard normal distribution table or use a calculator with the normal distribution function to find the corresponding probability.

Assuming normal CDF is the function for cumulative normal distribution:

probability = CDF(-∞, 0.8846, 0, 1)

This will give us the probability that the adult spends less than 6 hours per day on leisure activities. Remember, the cumulative distribution function gives the area to the left of the z-score, which corresponds to the probability of obtaining a value less than the one of interest.

What is the perimeter of s triangle with side lengths of 5 cm, 8 cm, and 9 cm?

Answers

The perimeter is 22
This is the answer because perimeter is the sum of all the sides added up. If you add up all the sides you get 22

Answer:

22 cm

Step-by-step explanation:

The perimeter is the distance all the way around a shape. To find the perimeter, add up all the sides

The side lengths are 5, 8 and 9

5+8+9=22

So, the perimeter is 22 centimeters.

If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 82

Answers

Answer:

y = 41/6

Step-by-step explanation:

This means that  y = kx.    k is a constant.

6 = k*72

and.

y = k*82 ...

k = 6/72 = 1/12

y = 82/12

y = 41/6

The National Center for Education Statistics surveyed a random sample of 4400 college graduates about the lengths of time required to earn their bachelor’s degrees. The mean was 5.15 years and the standard deviation was 1.68 years respectively. Construct a 95% confidence interval for the mean time required to earn a bachelor’s degree by all college students. *

Answers

Answer:

95​% confidence interval for the mean time required to earn a bachelor’s degree by all college students is [5.10 years , 5.20 years].

Step-by-step explanation:

We are given that the National Center for Education Statistics surveyed a random sample of 4400 college graduates about the lengths of time required to earn their bachelor’s degrees. The mean was 5.15 years and the standard deviation was 1.68 years respectively.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

                              P.Q. =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample mean time = 5.15 years

            [tex]\sigma[/tex] = sample standard deviation = 1.68 years

            n = sample of college graduates = 4400

            [tex]\mu[/tex] = population mean time

Here for constructing 95% confidence interval we have used One-sample z test statistics although we are given sample standard deviation because the sample size is very large so at large sample values t distribution also follows normal.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5%

                                               level of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                              = [ [tex]5.15-1.96 \times {\frac{1.68}{\sqrt{4400} } }[/tex] , [tex]5.15+1.96 \times {\frac{1.68}{\sqrt{4400} } }[/tex] ]

                                             = [5.10 , 5.20]

Therefore, 95​% confidence interval for the mean time required to earn a bachelor’s degree by all college students is [5.10 years , 5.20 years].

Other Questions
The company's annual profit (in millions of dollars) as a function of the app's price (in dollars) is modeled byP(x) = -2(2-3)(x - 11)What would be the company's profit if the app price is 0 dollars? health science question down below Can someone please find the volume of this shape? A) 1224 m^3B) 2160 m^3C) 6480 m^3D) 2851 m^3 A major effect of the industrialization of Texas was urbanization.Please select the best answer from the choices providedA. TB. F Leah is now in the Backstage view. Which option should she use to access a blank presentation? Info New Open Options Question 12 (3.333333333 points)3In one study, small businesses starting out spent what percentage of sales onmarketing?65 to 10%8 to 15%915 to 19%25 to 32%12 I NEED THIS ASAPWILL MARK BRAINLIEST PLZ HELP!!Which decision must all societies make after producing goods and services?A.what natural resources will be developedB.why the goods and services were madeC.who will get the goods and servicesD. when the goods and services will be available Carlos stomps a soda con flat and throw it away. Which of the following statements BEST describes the change made in the soda can?The soda can kept the same mass as it changed in shape onlyThe soda can lost mass as it was changed into a smaller sizeThe soda con gained more moss because its shape changedThe soda can lost mass as it was crumpled and changed form blank is the gradual change in the types of species that live in a community. This can include primary and secondary situations. How are chloroplasts and mitochondria similar in their function for plant and animal cells? What important processes occur in each cell organelle? Why are these processes important? PLEASE HELP!!! (will give brainliest for best answer)a) If side a measures 90 feet and side b measures 120 feet, how many feet of flowers will be planted along side c, the hypotenuse of the triangle? Show your work and explain your reasoning. (image below) Paint can shaker mechanisms are common in paint and hardware stores. While they do a good job of mixing the paint, they are also noisy and transmit their vibrations to the shelves and counters. A better design of the paint can shaker is possible using a balanced fourbar linkage. Design such a portable device to sit on the floor (not bolted down) and minimize the shaking forces and vibrations while still effectively mixing the paint. What was used by Federalists to help ratify the Constitution?Question 6 options:A) Speech by Washington that the House of Representatives was too smallB) Pamphlets by Thomas PaineC) Newspaper articles supporting the Bill of RightsD) The Federalist Papers A water tank holds 621 gallons but is leaking at a rate of 4 gallons per week. A second water tank holds 828 gallons but is leaking at a rate of 7 gallons per week. After how many weeks will the amount of water in the two tanks be the same? What lobe is found in the area designated by label 1?A) occipitalB) frontal Find the equation of the line described below. Write the equation in slope-intercept form, if possible, and graph the line. Contains (1,2) slope=3 Simplify the expression. 5x + 8y + 2x 3y The themes in a text are the ideas or messages that relate to: _____. What did the man do LAST A He cried with his family because of his situation He tried to grasp one of the seals by the sea. He told the story of the seals to his family. DHe walked down by the sea to find food. Suppose seafood price and quantity data for the years 2000 and 2009 follow. Use 2000 as the base period. Seafood 2000 Qty. (lb) 2000 Price ($/lb) 2009 Price ($/lb) Halibut 75,190 2.01 2.33 Lobster 83,080 3.62 3.09 Tuna 50,779 1.87 1.97 (a) Compute a price relative for each type of seafood. (Round your answers to one decimal place.) Seafood Price Relative Halibut Lobster Tuna (b) Compute a weighted aggregate price index for the seafood catch. (Round your answer to one decimal place.) Steam Workshop Downloader