Im stuck on this question plz help

Im Stuck On This Question Plz Help

Answers

Answer 1

Answer:

C) x = 20.8

Step-by-step explanation:

Since the line with the length equal to 6 forms a right angle on line x then we know it is perpendicular and bisects it.

Plug in the values: a^2 + b^2 = c^2

a^2 + 6^2 = 12^2

a^2 + 36 = 144

a^2 + 36 - 36 = 144 - 36

a^2 = 108

√a^2 = √108

a = √108

a = 10.3923048454

a = 1/2 x

2a = x

2(10.3923048454) = x

x = 20.7846096908

x = 20.8

Answer 2

[tex]6^2+\left(\dfrac{x}{2} \right)^2=12^2\\36+\dfrac{x^2}{4}=144\\144+x^2=576\\x^2=432\\x=\sqrt{432}=12\sqrt3\approx20.8[/tex]


Related Questions

Please Help!

Rewrite each expression in terms of sinθ, and simplify.

6. [tex]\frac{tan(x)}{cot(x)}[/tex]

7. [tex]cos(x)cot(x)+sin(x)[/tex]

Also, please show your work if you can!

Thanks in advance.

Answers

Step-by-step explanation:

[tex]6.\\\\\dfrac{\tan x}{\cot x}\qquad\text{use}\ \cot x=\dfrac{1}{\tan x}\\\\=\dfrac{\tan x}{\frac{1}{\tan x}}=\tan x\cdot\dfrac{\tan x}{1}=\tan x\cdot\tan x=\left(\tan x\right)^2\qquad\text{use}\ \tan x=\dfrac{\sin x}{\cos x}\\\\=\left(\dfrac{\sin x}{\cos x}\right)^2\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\\\\=\dfrac{\sin^2x}{\cos^2x}\qquad\text{use}\ \sin^2x+\cos^2x=1\to\cos^2x=1-\sin^2x\\\\=\dfrac{\sin^2x}{1-\sin^2x}[/tex]

[tex]7.\\\\\cos x\cdot\cot x+\sin x\qquad\text{use}\ \cot x=\dfrac{\cos x}{\sin x}\\\\=\cos x\cdot\dfrac{\cos x}{\sin x}+\sin x=\dfrac{\cos^2x}{\sin x}+\dfrac{\sin^2x}{\sin x}=\dfrac{\cos^2x+\sin^2x}{\sin x}=\dfrac{1}{\sin x}[/tex]

Need help on these, thank you!

Answers

Answer:

[tex]5x+2 , 2x^2+5x-2,\frac{x^2+5x}{2-x^2}[/tex]

Step-by-step explanation:

We are given f(x) and g(x)

1. (f+g)(x)

(f+g)(x) = f(x) + g(x)

           = [tex]x^2+5x+2-x^2[/tex]

           = [tex]5x+2[/tex]

Domain : All real numbers as it there exists a value of (f+g)(x) f every x .

2. (f-g)(x)

(f-g)(x) = f(x)-g(x)

          = [tex]x^2+5x-2+x^2[/tex]

          =[tex]2x^2+5x-2[/tex]

Domain : All real numbers as it there exists a value of (f-g)(x) f every x .

Part 3 .

[tex](\frac{f}{g})(x)\\(\frac{f}{g})(x) = \frac{f(x)}{g(x)}\\=\frac{x^2+5x}{2-x^2}[/tex]

Domain : In this case we see that the function is not defined for values of x for which the denominator becomes 0 or less than zero . Hence only those values of x are defined for which

[tex]2-x^2>0[/tex]

or [tex]2>x^2[/tex]

   Hence taking square roots on both sides and solving inequality we get.

[tex]-\sqrt{2} <x<\sqrt{2}[/tex]

Find the union C1 ∪ C2 and the intersection C1 ∩ C2 of the two sets C1 and C2, where (a) C1 = {0, 1, 2, }, C2 = {2, 3, 4}. (b) C1 = {x : 0

Answers

Answer:

See below.

Step-by-step explanation:

C1  = {0, 1, 2} and C2 = {2, 3, 4}.

C1 ∪ C2 = {0, 1, 2, 3, 4}       (Note: the 2 is not repeated in the result}.

C1 ∩ C2 = {2}.


From a point on a straight road, Pablo and Elena ride bicycles in the same direction. Pablo rides at 9 mph and Elena rides at 13 mph. In how many hours will they be 38 mi apart?

Pablo and Elena will be 38 miles apart in ____ hrs.
(Type an integer or a simplified fraction.)

Answers

Answer:

  Pablo and Elena will be 38 miles apart in 19/2 hrs.

Step-by-step explanation:

Their separation speed is 13 mph - 9 mph = 4 mph. Using the relation ...

  time = distance/speed

we can find the time from ...

  time = (38 mi)/(4 mi/h) = 38/4 h = 19/2 h

Raise the quality in parentheses to the indicated exponent, and simplify the resulting expression with positive exponents.

Answers

For this case we have the following expression:

[tex](\frac {-27x ^ 0 * y ^ {- 2}} {54x ^ {- 5} * y ^ {- 4}}) ^ {- 2} =[/tex]

By definition we have to:

[tex]a^0 = 1[/tex]

So:

[tex](\frac {-27y ^ {- 2}} {54x ^ {- 5} * y ^ {- 4}}) ^ {- 2} =[/tex]

Simplifying:

[tex](\frac {-y ^ {- 2}} {2x ^ {- 5} * y ^ {- 4}}) ^ {- 2} =[/tex]

By definition of power properties we have to:

[tex](a ^ n) ^ m = a ^ {n * m}[/tex]

So, rewriting the expression we have:

[tex](-1)^{-2}\frac{-y^{-2*-2}}{2^{-2}*x^{-5*-2}*y^{-4*-2}}=\\\frac{1}{(-1)^2}*\frac{-y^{4}}{2^{-2}x^{10}*y^{8}}=[/tex]

SImplifying:

[tex]+1*\frac{y^{4-8}}{2^{-2}x^{10}}=\\\frac{y^{-4}}{2^{-2}x^{10}}=\\\frac{2^2}{x^{10}y^{4}}[/tex]

Answer:

[tex]\frac{4}{x^{10}y^{4}}[/tex]

A conical tank has height 3 m and radius 2 m at the top. Water level is rising at a rate of 1.8 m/min when it is 1.5 m from the bottom of the tank. At what rate is water flowing in? (Round your answer to three decimal places.)

Answers

Answer:

  5.655 m³/min

Step-by-step explanation:

Halfway from the bottom of the tank, the radius is half that at the top, so is 1 m. That means the surface area of the water at that point is ...

  A = πr² = π(1 m)² = π m²

The rate of flow of water into the tank is the product of this area and the rate of change of depth:

  flow rate = area × (depth rate of change)

  = (π m²) × (1.8 m/min) = 1.8π m³/min

  flow rate ≈ 5.655 m³/min

Expressing the radius in terms of the height allows for finding the relationship between the changing volume and the rising water level.

We must use the concept of related rates, which involves finding the relationship between different rates of change within a geometrical context, particularly using the volume formula for a cone V = (1/3)\pi r^2 h and the fact that dv/dt represents the rate of change of volume with respect to time, which is equivalent to the water flow rate we are looking for.

Given the dimensions of the conical tank (height 3 m and radius 2 m), and the current water level at 1.5 m from the bottom, we know that the water level is rising at 1.8 m/min. By expressing the tank's radius as a function of its height, we can relate the changing volume to the changing height of the water level using the chain rule, eventually finding the rate at which water is flowing into the tank in m³/min, which is the same as the rate at which volume is increasing.

Find the vector equation of the line through ​(00​,00​,00​) and ​(11​,55​,44​) where tequals=0 corresponds to the first given point and where tequals=1 corresponds to the second given point.

Answers

Answer:

  (x, y, z) = (0, 0, 0) +t(1, 5, 4)

Step-by-step explanation:

Such a parametric equation can be written in the form ...

  (first point) + t×(change in point values)

where the change in point values is the difference between the point coordinates.

Since the first point is (0, 0, 0), the change is easy to find. It is exactly equal to the second point's coordinates. Hence our equation is ...

  (x, y, z) = (0, 0, 0) +t(1, 5, 4)

The sum can be "simplified" to ...

  (x, y, z) = (t, 5t, 4t)

_____

Comment on answer forms

I like the first form for many uses, but the second form can preferred in some circumstances. Use the one consistent with your reference material (textbook or teacher preference).

Suppose that the commuting time on a particular train is uniformly distributed between 42 and 52 minutes. Bold a. What is the probability that the commuting time will be less than 44 ​minutes

Answers

Answer: 0.2

Step-by-step explanation:

Given: The commuting time on a particular train is uniformly distributed over the interval (42,52).

∴ The probability density function of X will be :-

[tex]f(x)=\dfrac{1}{b-a}\\\\=\dfrac{1}{52-42}=\dfrac{1}{10}, 42<x<52[/tex]

Thus, the required probability :-

[tex]P(X<44)=\int^{44}_{42}f(x)\ dx\\\\=\int^{44}_{42}\dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}[x]^{44}_{42}=\dfrac{1}{10}(44-42)=\dfrac{1}{5}=0.2[/tex]

Hence, the  probability that the commuting time will be less than 44 ​minutes= 0.2

the probability that the commuting time will be less than 44 minutes is 0.2 or 20%.

To calculate the probability that the commuting time will be less than 44 minutes, given that it is uniformly distributed between 42 and 52 minutes, we use the formula for the probability of a continuous uniform distribution:

P(a < X < b) = (b - a) / (max - min)

Here, min is 42, max is 52, a is 42 (since that's the minimum time), and b is 44 (the time we are interested in). So the probability that the commuting time is less than 44 minutes will be:

P(42 < X < 44) = (44 - 42) / (52 - 42) = 2 / 10

This simplifies to 1/5 or 0.2.

Therefore, the probability that the commuting time will be less than 44 minutes is 0.2 or 20%.

eight times the sum of 5 and some number is 104. What is the number

Answers

Answer:

8 is the number.

Step-by-step explanation:

We are given the following expression in words which we are to translate into mathematical expression and tell the number:

'eight times the sum of 5 and some number is 104'

Assuming the number to be [tex]x[/tex], we can write it as:

[tex] 8 ( 5 + x ) = 1 0 4 [/tex]

[tex] 5 + x = \frac { 1 0 4 } { 8 } [/tex]

[tex] 5 + x = 1 3 [/tex]

[tex]x=13-5[/tex]

x = 8

ANSWER

[tex]8[/tex]

EXPLANATION

Let the number be y.

Eight times the sum of the number and 5 is written as:

[tex]8(5 + y)[/tex]

From the question, this expression must give us 104.

This implies that:

[tex]8(5 + y) = 104[/tex]

Expand the parenthesis to get;

[tex]40 + 8y = 104[/tex]

Group similar terms to get:

[tex]8y = 104 - 40[/tex]

Simplify:

[tex]8y = 64[/tex]

[tex]y = \frac{64}{8} [/tex]

This finally evaluates to

[tex]y=8[/tex]

Hence the number is 8

Identify the y-intercept of the function, f(x) = 3x2 -5x + 2.
O (0,-2)
O (0,2)
O(-2,0)
O (2,0)

Answers

f(x) = 3x^2 - 5x +2

Let me show you the picture below and the answer is (0 , 2)

Answer:

(0,2)

Step-by-step explanation:

the y-intercept of the function, f(x) = 3x² -5x + 2 when : x = 0

f(0) = 3(0)² - 5(0)+2 = 2

need help on this math question !!!
17. Which relation is not a function?

A. {(–7,2), (3,11), (0,11), (13,11)}

B. {(7, 11), (11, 13), (–7, 13), (13, 11)}

C. {(7,7), (11, 11), (13, 13), (0,0)}

D. {(7, 11), (0,5), (11, 7), (7,13)}

Answers

Answer:

D. {(7, 11), (0,5), (11, 7), (7,13)}

Step-by-step explanation:

Because the relations (7, 11), (7,13) are false.

f(7) = 11

f(7) = 13

=> 11 = 13 (F)

Answer:

The correct answer option is: D. {(7, 11), (0,5), (11, 7), (7,13)}.

Step-by-step explanation:

We are given some paired values of inputs and outputs (x and y) for a function and we are to determine whether which of them is not a function.

For a relation to be function, no value of x should be repeated. It means that for each value of y, there should be a unique value of x (input).

In option D, two of the pairs have same value of x. Therefore, it is not a function.

{(7, 11), (0,5), (11, 7), (7,13)}

factor this trinomial x^2+x-2

Answers

Answer:

(x+2) (x-1)

Step-by-step explanation:

x^2+x-2

What 2 numbers multiply together to give -2 and add together to give 1

2 * -1 = -2

2 + -1 = 1

(x+2) (x-1)

Answer:

(x+2) (x-1)

Step-by-step explanation:

If cosine theta equals one over six, what are the values of sin θ and tan θ?

A) sine theta equals plus or minus seven times square root of five over six, tangent theta equals plus or minus seven times square root of five

B) sine theta equals plus or minus square root of thirty-five over six, tangent theta equals negative seven times square root of five

C) sine theta equals plus or minus seven times square root of five over six, tangent theta equals negative square root of thirty five

D) sine theta equals plus or minus square root of thirty-five over six, tangent theta equals plus or minus square root of thirty five

Answers

Answer:

Option D.  sine theta equals plus or minus square root of thirty-five over six, tangent theta equals plus or minus square root of thirty five

Step-by-step explanation:

we have that

[tex]cos(\theta)=\frac{1}{6}[/tex]

If the cosine is positive, then the angle theta lie on the first or fourth Quadrant

therefore

The sine of angle theta could be positive (I Quadrant) or negative (IV Quadrant) and the tangent of angle theta could be positive (I Quadrant) or negative (IV Quadrant)

step 1

Find [tex]sin(\theta)[/tex]

Remember that

[tex]sin^{2} (\theta)+cos^{2} (\theta)=1[/tex]

we have

[tex]cos(\theta)=\frac{1}{6}[/tex]

substitute

[tex]sin^{2} (\theta)+(\frac{1}{6})^{2}=1[/tex]

[tex]sin^{2} (\theta)+\frac{1}{36}=1[/tex]

[tex]sin^{2} (\theta)=1-\frac{1}{36}[/tex]

[tex]sin^{2} (\theta)=\frac{35}{36}[/tex]

[tex]sin(\theta)=(+/-)\frac{\sqrt{35}}{6}[/tex]

so

sine theta equals plus or minus square root of thirty-five over six

step 2

Find [tex]tan(\theta)[/tex]

Remember that

[tex]tan(\theta)=\frac{sin(\theta)}{cos(\theta)}[/tex]

we have

[tex]sin(\theta)=(+/-)\frac{\sqrt{35}}{6}[/tex]

[tex]cos(\theta)=\frac{1}{6}[/tex]

substitute

[tex]tan(\theta)=(+/-)\sqrt{35}[/tex]

tangent theta equals plus or minus square root of thirty five

If $450 is invested at 6% compounded A (annually), B (quarterly), C (monthly), what is the amount after 7 years? How much interest is earned?

Answers

Answer:

Step-by-step explanation:

Here's the gameplan for this.  First of all we need a general formula, then we will define the variables for each.

The general formula for all of these is the same:

[tex]A(t)=P(1+\frac{r}{n})^{nt}[/tex]

where A(t) is the amount after the compounding, P is the initial investment, n is the number of compoundings per year, r is the interest rate in decimal form, and t is time in years.  

Then after we find the amount after the compounding, we will subtract the initial amount from that, because the amount at the end of the compounding is greater than the initial amount.  It's greater because it represents the initial amount PLUS the interest earned.  The difference between the initial amount and the amount at the end is the interest earned.

For A:

A(t) = ?

P = 450

n = 1

r = .06

t = 7

[tex]A(t)=450(1+\frac{.06}{1})^{(1)(7)}[/tex]

Simplifying gives us

[tex]A(t)=450(1.06)^7[/tex]

Raise 1.06 to the 7th power and then multiply in the 450 to get that

A(t) = 676.63 and

I = 676.63 - 450

I = 226.63

For B:

A(t) = ?

P = 450

n = 4 (there are 4 quarters in a year)

r = .06

t = 7

[tex]A(t)=450(1+\frac{.06}{4})^{(4)(7)}[/tex]

Simplifying inside the parenthesis and multiplying the exponents together gives us

[tex]A(t)=450(1.015)^{28}[/tex]

Raising 1.015 to the 28th power and then multiplying in the 450 gives us that

A(t) = 682.45

I = 682.45 - 450

I = 232.75

For C:

A(t) = ?

P = 450

n = 12 (there are 12 months in a year)

r = .06

t = 7

[tex]A(t)=450(1+\frac{.06}{12})^{(12)(7)}[/tex]

Simplifying the parenthesis and the exponents:

[tex]A(t)=450(1+.005)^{84}[/tex]

Adding inside the parenthesis and raising to the 84th power and multiplying in 450 gives you that

A(t) = 684.17

I = 684.17 - 450

I = 234.17

In a Power Ball​ lottery, 5 numbers between 1 and 12 inclusive are drawn. These are the winning numbers. How many different selections are​ possible? Assume that the order in which the numbers are drawn is not important.

Answers

Answer:

792

Step-by-step explanation:

₁₂C₅ = (12!) / (5! (12-5)!)

₁₂C₅ = (12!) / (5! 7!)

₁₂C₅ = 792

There are 792 different selections are​ possible.

What is the combination?

Each of the different groups or selections can be formed by taking some or all of a number of objects, irrespective of their arrangments is called a combination.

We are given that in a Power Balllottery, 5 numbers between 1 and 12 inclusive are drawn. These are the winning numbers.

Therefore, the selections are​ possible as;

₁₂C₅ = (12!) / (5! (12-5)!)

₁₂C₅ = (12!) / (5! 7!)

₁₂C₅ = 792

Hence, there are 792 different selections are​ possible.

Learn more about combinations and permutations here:

https://brainly.com/question/16107928

#SPJ2

In triangle ABC, an altitude is drawn from vertex C to the line containing AB. The length of this altitude is h and h=AB. Which of the following is true?
I. Triangle ABC could be a right triangle.
II. Angle C cannot be a right angle.
III. Angle C could be less than 45 degrees.

Answers

Answer:

II. Angle C cannot be a right angle.

III. Angle C could be less than 45 degrees.

The given altitude of triangle ABC is h, is located inside the triangle and

extends from side AB to the vertex C.

The true statements are;

I. Triangle ABC could be a right triangle

II. Angle C cannot be a right angle

Reasons:

I. Triangle ABC could be a right triangle

The altitude drawn from the vertex C to the line AB = h

The length of h = AB

Where, triangle ABC is a right triangle, we have;

The legs of the right triangle are; h and AB

The triangle ABC formed is an isosceles right triangle

Therefore, triangle ABC could be an isosceles right triangle; True

II. Angle C cannot be a right angle: True

If angle ∠C is a right angle, we have;

AB = The hypotenuse (longest side) of ΔABC

Line h = AB is an altitude, therefore, one of the sides of ΔABC is hypotenuse to h, and therefore, longer than h and AB, which is false

Therefore, ∠C cannot be a right angle

III. Angle C could be less than 45 degrees; False

The minimum value of angle C is given by when triangle ABC is an isosceles right triangle. As the position of h shifts between AB, the lengths of one of the sides of ΔABC increases, and therefore, ∠C, increases

Therefore, ∠C cannot be less than 45°

The true statements are I and II

Learn more here:

https://brainly.com/question/12123791

Find the length of AC express your answer in terms of pie

Answers

Answer:

The length of arc AC is [tex]15\pi\ cm[/tex]

Step-by-step explanation:

step 1

Find the circumference of the circle

The circumference is equal to

[tex]C=\pi D[/tex]

we have

[tex]D=36\ cm[/tex]

substitute

[tex]C=\pi (36)[/tex]

[tex]C=36\pi\ cm[/tex]

step 2

Find the length of arc AC

Remember that the circumference subtends a central angle of 360 degrees

The measure of arc AC is equal to

arc AC+30°=180° ----> because the diameter divide the circle into two equal parts

arc AC=180°-30°=150°

using proportion

[tex]\frac{36\pi}{360}=\frac{x}{150}\\ \\x=36\pi*150/360\\ \\x=15\pi\ cm[/tex]

Select all the correct locations on the image. Select all the expressions that result in a product that is a rational number. MULITIPLE CHOICE



4/3 x 12/3

32/4 x 15/4

[tex]\sqrt{\frac{3}{2} }[/tex] x 22/7

[tex]\sqrt{11}[/tex] x 2/3


Answers

Answer:

The 1st & 2nd option

Step-by-step explanation:

Ans1: 16/3

Ans2: 30

Ans3: 11/7×surd6

Ans4: 2/3×surd11

Rational number is a number that can be expressed in ratio (quotient)

It can be expressed in the form of repeating or terminating decimal

Example:

16/3 is equal to

5.3333333333....(repeating decimal)

thus it is a rational number

1/4 is equal to

0.25 (terminating decimal)

thus it is a rational number

In a large school, it was found that 71% of students are taking a math class, 77% of student are taking an English class, and 58% of students are taking both. Find the probability that a randomly selected student is taking a math class or an English class. Write your answer as a decimal, and round to 2 decimal places if necessary.

Answers

Answer:

P (Math or English) = 0.90

Step-by-step explanation:

* Lets study the meaning of or , and on probability

- The use of the word or means that you are calculating the probability

  that either event A or event B happened

- Both events do not have to happen

- The use of the word and, means that both event A and B have to

  happened

* The addition rules are:

# P(A or B) = P(A) + P(B) ⇒ mutually exclusive (events cannot happen

  at the same time)

# P(A or B) = P(A) + P(B) - P(A and B) ⇒ non-mutually exclusive (if they  

   have at least one outcome in common)

- The union is written as A ∪ B or “A or B”.  

- The Both is written as A ∩ B or “A and B”

* Lets solve the question

- The probability of taking Math class 71%

- The probability of taking English class 77%

- The probability of taking both classes is 58%

∵ P(Math) = 71% = 0.71

∵ P(English) = 77% = 0.77

∵ P(Math and English) = 58% = 0.58

- To find P(Math or English) use the rule of non-mutually exclusive

∵ P(A or B) = P(A) + P(B) - P(A and B)

P(Math or English) = P(Math) + P(English) - P(Math and English)

- Lets substitute the values of P(Math) , P(English) , P(Math and English)

 in the rule

∵ P(Math or English) = 0.71 + 0.77 - 0.58 ⇒ simplify

∴ P(Math or English) =  0.90

* P(Math or English) = 0.90

Final answer:

To find the probability that a randomly selected student is taking a math class or an English class, use the principle of inclusion-exclusion. The probability is 90%.

Explanation:

To find the probability that a randomly selected student is taking a math class or an English class, we can use the principle of inclusion-exclusion. We know that 71% of students are taking a math class, 77% are taking an English class, and 58% are taking both.

To find the probability of taking either math or English, we add the probabilities of taking math and English, and then subtract the probability of taking both:

P(Math or English) = P(Math) + P(English) - P(Math and English)

= 71% + 77% - 58%

= 90%

Therefore, the probability that a randomly selected student is taking a math class or an English class is 90%.

The spread of a virus can be modeled by exponential growth, but its growth is limited by the number of individuals that can be infected. For such situations, the function P(t) = ((Kpe)^rt)/K+p(e^rt - 1) can be used, where P(t) is the infected population t days after the first infection, p is the initial infected population, K is the total population that can be infected, and r is the rate the virus spreads, written as a decimal.

a. A town of 10,000 people starts with 2 infected people and a virus growth rate of 20%. When will the growth of the infected population start to level off, and how many people will be infected at that point? Explain your reasoning, and include any graphs you draw, with or without technology.

b. When will the infected population equal to the uninfected population?

Answers

Answer:

  a) growth will reach a peak and begin declining after about 42.6 days. 5000 people will be infected at that point

  b) the infected an uninfected populations will be the same after about 42.6 days

Step-by-step explanation:

We have assumed you intend the function to match the form of a logistic function:

[tex]P(t)=\dfrac{Kpe^{rt}}{K+p(e^{rt}-1}[/tex]

This function is symmetrical about its point of inflection, when half the population is infected. That is, up to that point, it is concave upward, increasing at an increasing rate. After that point, it is concave downward, decreasing at a decreasing rate.

a) The growth rate starts to decline at the point of inflection, when half the population is infected. That time is about 42.6 days after the start of the infection. 5000 people will be infected at that point

b) The infected and uninfected populations will be equal about 42.6 days after the start of the infection.

Consider the differential equation x^2 y''-xy'-3y=0. If y1=x3 is one solution use redution of order formula to find a second linearly independent solution

Answers

Suppose [tex]y_2(x)=y_1(x)v(x)[/tex] is another solution. Then

[tex]\begin{cases}y_2=vx^3\\{y_2}'=v'x^3+3vx^2//{y_2}''=v''x^3+6v'x^2+6vx\end{cases}[/tex]

Substituting these derivatives into the ODE gives

[tex]x^2(v''x^3+6v'x^2+6vx)-x(v'x^3+3vx^2)-3vx^3=0[/tex]

[tex]x^5v''+5x^4v'=0[/tex]

Let [tex]u(x)=v'(x)[/tex], so that

[tex]\begin{cases}u=v'\\u'=v''\end{cases}[/tex]

Then the ODE becomes

[tex]x^5u'+5x^4u=0[/tex]

and we can condense the left hand side as a derivative of a product,

[tex]\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0[/tex]

Integrate both sides with respect to [tex]x[/tex]:

[tex]\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C[/tex]

[tex]x^5u=C\implies u=Cx^{-5}[/tex]

Solve for [tex]v[/tex]:

[tex]v'=Cx^{-5}\implies v=-\dfrac{C_1}4x^{-4}+C_2[/tex]

Solve for [tex]y_2[/tex]:

[tex]\dfrac{y_2}{x^3}=-\dfrac{C_1}4x^{-4}+C_2\implies y_2=C_2x^3-\dfrac{C_1}{4x}[/tex]

So another linearly independent solution is [tex]y_2=\dfrac1x[/tex].

According to a recent​ study, 9.2​% of high school dropouts are​ 16- to​ 17-year-olds. In​ addition, 6.2​% of high school dropouts are white​ 16- to​ 17-year-olds. What is the probability that a randomly selected dropout is​ white, given that he or she is 16 to 17 years​ old?

Answers

Final answer:

The probability that a randomly selected dropout aged 16 to 17 is white, given the provided statistics, is 67.39%.

Explanation:

The student is asking a question related to conditional probability in the field of Mathematics. The question prompts us to find out the probability that a randomly selected high school dropout in the age range of 16 to 17 is white. To find the answer, we use the following formula:

P(A|B) = P(A ∩ B) / P(B)

Where:
P(A|B) is the probability of event A happening given that event B has occurred.
P(A ∩ B) is the probability of both event A and event B happening together.
P(B) is the probability of event B happening.

From the problem statement, we know that P(B), the percentage of dropouts who are 16-17 years old, is 9.2%. Also, P(A ∩ B), the percent of dropouts who are both white and 16-17 years old, is given as 6.2%. We are supposed to find P(A|B), the probability that a dropout is white given that they are 16-17 years old.

Therefore, by substituting these values into the formula, we get:

P(A|B) = 6.2% / 9.2% = 67.39%

Rounded to two decimal places, the answer is 67.39%. So, there is approximately a 67.39% chance that a random high school dropout aged 16-17 is white.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ2

Determine where, if anywhere, the tangent line to f(x)=x^3−5x^2+x is parallel to the line y=4x+23

Answers

Answer:

  (1/3(5-√34), 1/27(-205+32√34)) and (1/3(5+√34), 1/27(-205-32√34))

Step-by-step explanation:

The slope of the given line is the x-coefficient, 4. Then you're looking for points on the f(x) curve where f'(x) = 4.

  f'(x) = 3x^2 -10x +1 = 4

  3x^2 -10x -3 = 0

  x = (5 ±√34)/3 . . . . . x-coordinates of tangent points

Substituting these values into f(x), we can find the y-coordinates of the tangent points. The desired tangent points are ...

  (1/3(5-√34), 1/27(-205+32√34)) and (1/3(5+√34), 1/27(-205-32√34))

_____

The graph shows the tangent points and approximate tangent lines.

Final answer:

To find where the tangent line to the function f(x)=[tex]x^3-5x^2+x[/tex] is parallel to the line y=4x+23, we need to find where the derivative of the function is equal to the slope of the given line.

Explanation:

In the field of mathematics, the problem asks us to find at which points the tangent line to function f(x)=[tex]x^3-5x^2+x[/tex] is parallel to the line y=4x+23. A line is tangent to a function at a point where the derivative of that function equals the slope of the line. The first step in solving this problem is to calculate the derivative of function f(x).

The derivative of the function f(x) is f'(x) =[tex]3x^2 - 10x +1[/tex]. Next, we set this equal to the slope of the given line, which is 4. Solving this quadratic equation will give us the x-values where the tangent line is parallel to y=4x+23.

Learn more about Parallel Tangent Lines here:

https://brainly.com/question/31550766

#SPJ3

Find the probability. One digit from the number 3,151,221 is written on each of seven cards. What is the probability of drawing a card that shows 3, 1, or 5?

a. 2/7
b. 5/7
c. 3/7
d. 4/7

Answers

Answer is B
5 out of the 7 cards would have a 1,3, or 5
Therefore 5/7 probability of pulling one of those cards

What type of error, if any, occurs in the following deduction? All people who work do so in an office, at a computer. Bill works, so he works in an office, at a computer A. B. C. D. a false generalization an invalid counterexample an error in deductive reasoning There is no error in the deduction.

Answers

Answer:

A. a false generalization

Step-by-step explanation:

All people who work do so in an office, at a computer. Bill works, so he works in an office, at a computer.

This is false generalization.

A false generalization is a mistake that we do when we generalize something without considering all the points or variables.

Like here, if people work, that does not generally means they always work in offices and work in front of computers.

There are many professions like various sports, civil engineering, police patrolling etc that cannot be done while sitting in an office and in front of a computer.

Hence, option A is the answer.

The tread life of a particular brand of tire is a random variable best described by a normal distribution with a mean of 60,000 miles and a standard deviation of 1000 miles. What warranty should the company use if they want 96% of the tires to outlast the warranty? 59,000 miles 58,250 miles 61,000 miles 61,750 miles

Answers

Answer: 61,750 miles

Step-by-step explanation:

Given : The p-value of the tires to outlast the warranty = 0.96

The probability that corresponds to 0.96 from a Normal distribution table is 1.75.

Mean : [tex]\mu=60,000\text{ miles}[/tex]

Standard deviation : [tex]\sigma=1000\text{ miles}[/tex]

The formula for z-score is given by  : -

[tex]z=\dfrac{x-\mu}{\sigma}\\\\\Rightarrow\ 1.75=\dfrac{x-60000}{1000}\\\\\Rightarrow\ x-60000=1750\\\\\Rightarrow\ x=61750[/tex]

Hence, the tread life of tire should be 61,750 miles if they want 96% of the tires to outlast the warranty.

Final answer:

The company looking to ensure 96% of the tires outlast the warranty should use a mileage warranty of 58,250. This ensures a failure rate of only 4%, as calculated using statistics and the concept of normal distribution.

Explanation:

The question deals with the concept of normal distribution in statistics, specifically, with an application to a real-life situation - to decide the warranty for a product (in this case, a type of tire). The mean and standard deviation given represent the average life and variation in life of the tires respectively. If the company wants 96% of the tires to outlast the warranty, then they are looking to find the lifespan beyond which only 4% of the tires would fail.

The Z-score corresponding to the 96th percentile in a standard normal distribution table is roughly 1.75. Since standard deviation is 1,000 miles, that implies that 1.75 standard deviations below the average is acceptable for the warranty. Therefore, we calculate the warranty as Mean - 1.75*Standard Deviation, which results in 60,000 - 1.75*1000 = 58,250 miles. Thus, the company should use a warranty of 58,250 miles.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

Suppose a batch of steel rods produced at a steel plant have a mean length of 150 millimeters, and a standard deviation of 12. If 100 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would differ from the population mean by less than 0.5 millimeters?

Answers

Answer:

whatever

Step-by-step explanation:

-789237

Apples are on sale for \$3.12$3.12dollar sign, 3, point, 12 per kilogram. Is the total cost of the apples proportional to the total mass?

Answers

Answer:

Since every kilo of apples cost $3.12, it is directly proportional to the total weight (which is not exactly the same as mass).

Step-by-step explanation:

Answer:

:p

Step-by-step explanation:

If f(x) = √2x + 3 and g(x) = x^2, for what value(s) of x does f(g(x)) = g(f(x))? (approximate when needed). Please give an explanation with your answer!​

Answers

Answer:

[tex]\large\boxed{x=\sqrt6-3}[/tex]

Step-by-step explanation:

[tex]Domain:\\2x+3\geq0\to x\geq-1.5[/tex]

[tex]f(x)=\sqrt{2x+3},\ g(x)=x^2\\\\f(g(x))-\text{substitute x = g(x) in}\ f(x):\\\\f(g(x))=f(x^2)=\sqrt{2x^2+3}\\\\g(f(x))-\text{substitute x = f(x) in}\ g(x):\\\\g(f(x))=g(\sqrt{2x+3})=(\sqrt{2x+3})^2=2x+3\\\\f(g(x))=g(f(x))\iff\sqrt{2x^2+3}=2x+3\qquad\text{square of both sides}\\\\(\sqrt{2x^2+3})^2=(2x+3)^2}\qquad\text{use}\ (\sqrt{a})^2=a\ \text{and}\ (a+b)^2=a^2+2ab+b^2\\\\2x^2+3=(2x)^2+2(2x)(3)+3^2\\\\2x^2+3=4x^2+12x+9\qquad\text{subtract}\ 2x^2\ \text{and 3 from both sides}[/tex]

[tex]0=2x^2+12x+6\qquad\text{divide both sides by 2}\\\\x^2+6x+3=0\qquad\text{add 6 to both sides}\\\\x^2+6x+9=6\\\\x^2+2(x)(3)+3^2=6\qquad\text{use}\ (a+b)^2=a^2+2ab+b^2\\\\(x+3)^2=6\iff x+3=\pm\sqrt6\qquad\text{subtract 3 from both sides}\\\\x=-3-\sqrt6\notin D\ \vee\ x=-3+\sqrt6\in D[/tex]

PATH INDEPENDENCE? 13-19 from Check, and if independent, integrate from (0, 0, 0) to (a, b, c) 13. 2e (x cos 2y dx - sin 2y dy)

Answers

The integral is path-independent if there is a scalar function [tex]f[/tex] whose gradient is

[tex]\nabla f=(2e^x\cos2y,-\sin2y)[/tex]

(at least, that's what it looks like the given integrand is)

Then

[tex]\dfrac{\partial f}{\partial x}=2e^x\cos 2y\implies f(x,y)=2e^x\cos2y+g(y)[/tex]

Differentiating both sides with respect to [tex]y[/tex] gives

[tex]\dfrac{\partial f}{\partial y}=-4e^x\sin 2y\neq-\sin2y[/tex]

so the line integral *is* dependent on the path. (again, assuming what I've written above actually reflects what the question is asking)

The question asks about path independence in vector calculus, which indicates a property of a vector field where the value of the line integral is the same regardless of the path taken, as long as the vector field is conservative.

The student's question is focused on the concept of path independence in the context of line integrals in vector calculus. The subject matter implies they are dealing with a conservative vector field, where the integral of a function along any path depends only on the endpoints of that path, not the specific route taken. The goal is to check if a given vector field is path independent and, if so, to perform the integration from a starting point (0, 0, 0) to an endpoint (a, b, c). To establish path independence, one common method is to verify if the curl of the vector field is zero throughout the domain of interest. If it is, the field is conservative, and the path independence principle applies.

A vector field is path independent if the line integral between two points is the same regardless of the path taken between those points. Path independence typically occurs in conservative fields, where there exists a potential function such that the original vector field is its gradient.

If a field is conservative and path independent, the integral of the field over any path from point P1 to point P2 will yield the same result as the integral over any other path from P1 to P2 in the field's domain.

Other Questions
An automobile tire has a radius of 0.315 m, and its center moves forward with a linear speed of v = 19.3 m/s. (a) Determine the angular speed of the wheel. (b) Relative to the axle, what is the tangential speed of a point located 0.193 m from the axle? Please answer this correctly Which development would best serve as a turning point between two historical periods? What english word has three consecutive double letters? Which system of equations has a solution of approximately (-0.4,1.1)? A. x+3y=3 and 2x-y=-2 B.x-3y=-3 And 2x+y=2C. x-3y=-3 and 2x-y=-2 D. x+3y=3 and 2x+y=2 If a ball is thrown vertically upward with a velocity of 144 ft/s, then its height after t seconds is s = 144t 16t2. (a) What is the maximum height reached by the ball? ft (b) What is the velocity of the ball when it is 320 ft above the ground on its way up? (Consider up to be the positive direction.) ft/s What is the velocity of the ball when it is 320 ft above the ground on its way down? ft/s What are the primary advantages to owning a franchise? Select all that apply.a) The franchisor provides brand-name recognition and marketing plans.b) Franchises are inexpensive to start up and run.c) The franchisor assumes all the risk in the business.d) The franchisor provides training, management assistance, supplies, and a product.e) Franchisees keep all their profits for themselves. a.solve [tex]\frac{1}{n} \pi = \theta - \frac{1}{2}sin(2 \theta)[/tex] for [tex] \theta[/tex] in terms of "n"(derivation of equation below)b. Based on your answer inpart a, if [tex] \theta = arccos(1 - \frac{a}{r} ) = {cos}^{ - 1} (1 - \frac{a}{r} )[/tex] or [tex] a = r-2cos( \theta)[/tex]find "a" as a function ofr & n. (find f(r,n)=a).alternately, if a+b=r, we can write [tex] \theta = arccos( \frac{b}{r} ) = {cos}^{ - 1} (\frac{b}{r} )[/tex] then solve for "a" in terms of r and nshow all work and reasoning.Solve analytically if possible What is the surface area of the regular pyramid below If a reactant was removed, did the new equilibrium system shift to make more reactants or more products? Given the following statements, which is the best definition... The ability of an organism to ______ (assimilate or adapt) to it's environment is due to potential variation. what is 50 times 50i realy need help on this and plz help me on this What is the simplified form of 2160x8/60x2? Assume 36x3 36x2 6x3 6x2*see image Which of the following will form the composite function? Each student must have a right to pick only those disciplines he is interested in Determine the equivalent system for the given system of equations: 5x 3y = 6 x + y = 2 what is the definition of a term? determine whether y varies directly with x. if so, find the constant of variation and write the equation. A bouncing you reaches a height of 64 inches at its first peak, 48 inches at its second peak, and 36 inches at its third peak. Which explicit function represents the geometric sequence of the heights of the toy? Steam Workshop Downloader