In a group of mherchants, 80% of them purchase goods from Asia, and 25% of them purchase goods from Europe. Which of following statement is individually sufficient to calculate what percent of the merchants in the group purchase goods from Europe but not form Asia? 7. 25% of the merchants who purchase goods from Asia also purchase from Europe. 15% of all merchants purchase goods from neither Asia nor Europe 0% of all merchants purchase good from both Asia and Europe

Answers

Answer 1

Answer:

7. 25% of the merchants who purchase goods from Asia also purchase from Europe.

Step-by-step explanation:

I am going to say that:

A is the percentage of merchants who purchase goods from Asia.

B is the percentage of merchants who purchase goods from Europe.

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a is the probability that a merchant purchases goods from Asia but not from Europe and [tex]A \cap B[/tex] is the probability that a merchant purchases goods from both Asia and Europe.

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

Which of following statement is individually sufficient to calculate what percent of the merchants in the group purchase goods from Europe but not form Asia?

We already have B.

Knowing [tex]A \cap B[/tex], that is, the percentage of those who purchase from both Asia and Europe, we can find b.

So the correct answer is:

7. 25% of the merchants who purchase goods from Asia also purchase from Europe.


Related Questions

Resistors are labeled 100 Ω. In fact, the actual resistances are uniformly distributed on the interval (95, 103). Find the mean resistance. Find the standard deviation of the resistances. Find the probability that the resistance is between 98 and 102 Ω. Suppose that resistances of different resistors are independent. What is the probability that three out of six resistors have resistances greater than 100 Ω?

Answers

Answer:

[tex]E[R][/tex] = 99 Ω

[tex]\sigma_R[/tex] = 2.3094 Ω

P(98<R<102) = 0.5696

Step-by-step explanation:

The mean resistance is the average of edge values of interval.

Hence,

The mean resistance, [tex]E[R] = \frac{a+b}{2}  = \frac{95+103}{2} = \frac{198}{2}[/tex] = 99 Ω

To find the standard deviation of resistance, we need to find variance first.

[tex]V(R) = \frac{(b-a)^2}{12} =\frac{(103-95)^2}{12} = 5.333[/tex]

Hence,

The standard deviation of resistance, [tex]\sigma_R = \sqrt{V(R)} = \sqrt5.333[/tex] = 2.3094 Ω

To calculate the probability that resistance is between 98 Ω and 102 Ω, we need to find Normal Distributions.

[tex]z_1 = \frac{102-99}{2.3094} = 1.299[/tex]

[tex]z_2 = \frac{98-99}{2.3094} = -0.433[/tex]

From the Z-table, P(98<R<102) = 0.9032 - 0.3336 = 0.5696

A farmer uses a lot of fertilizer to grow his crops. The farmer’s manager thinks fertilizer products from distributor A contain more of the nitrogen that his plants need than distributor B’s fertilizer does. He takes two independent samples of four batches of fertilizer from each distributor and measures the amount of nitrogen in each batch. Fertilizer from distributor A contained 23 pounds per batch and fertilizer from distributor B contained 18 pounds per batch. Suppose the population standard deviation for distributor A and distributor B is four pounds per batch and five pounds per batch, respectively. Assume the distribution of nitrogen in fertilizer is normally distributed. Let µ1and µ2 represent the average amount of nitrogen per batch for fertilizer’s A and B, respectively. Which of the following is the appropriate conclusion at the 5% significance level? The test statistic calculated in Excel with these data is 1.5617.

Answers

Answer:

[tex]z=\frac{(23-18)-0}{\sqrt{\frac{4^2}{4}+\frac{5^2}{4}}}}=1.5617[/tex]  

[tex]p_v =P(Z>1.5617)=0.059[/tex]

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and the difference between the true mean of group A and B is not significantly higher than 0 at 5% of significance.

Step-by-step explanation:

Data given and notation

[tex]\bar X_{A}=23[/tex] represent the mean for the sample A

[tex]\bar X_{B}=18[/tex] represent the mean for the sample B

[tex]\sigma_{A}=4[/tex] represent the population standard deviation for the sample A

[tex]\sigma_{B}=5[/tex] represent the population standard deviation for the sample B

[tex]n_{A}=4[/tex] sample size selected A

[tex]n_{B}=4[/tex] sample size selected B

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value for the test (variable of interest)

State the null and alternative hypotheses.

We need to conduct a hypothesis in order to check if the mean for A is higher than the mean for B, the system of hypothesis would be:

Null hypothesis:[tex]\mu_{A}-\mu_{B}\leq 0[/tex]

Alternative hypothesis:[tex]\mu_{A}-\mu_{B}>0[/tex]

We know the population deviations, so for this case is better apply a z test to compare means, and the statistic is given by:

[tex]z=\frac{(\bar X_{A}-\bar X_{B})-0}{\sqrt{\frac{\sigma^2_{A}}{n_{A}}+\frac{\sigma^2_{B}}{n_{B}}}}[/tex] (1)

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine whether the means of two groups are equal to each other".

Calculate the statistic

We can replace in formula (1) the info given like this:

[tex]z=\frac{(23-18)-0}{\sqrt{\frac{4^2}{4}+\frac{5^2}{4}}}}=1.5617[/tex]  

P-value

Since is a one right tailed test the p value would be:

[tex]p_v =P(Z>1.5617)=0.059[/tex]

Conclusion

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and the difference between the true mean of group A and B is not significantly higher than 0 at 5% of significance.

Final answer:

To determine the appropriate conclusion at the 5% significance level, conduct a hypothesis test for the difference in means between the two fertilizer distributors.

Explanation:

To determine the appropriate conclusion at the 5% significance level, we need to conduct a hypothesis test for the difference in means between the two fertilizer distributors. The test statistic calculated in Excel is 1.5617. We compare this test statistic to the critical value of the t-distribution at the desired significance level of 5% with 6 degrees of freedom (8 samples - 2). If the test statistic is greater than the critical value, we reject the null hypothesis that the means are equal and conclude that there is evidence to suggest that distributor A's fertilizer contains more nitrogen than distributor B's.

Learn more about Hypothesis testing here:

https://brainly.com/question/34171008

#SPJ11

Lucy Baker is analyzing demographic characteristics of two television programs, American Idol (population 1) and 60 Minutes (population 2). Previous studies indicate no difference in the ages of the two audiences. (The mean age of each audience is the same.) Lucy plans to test this hypothesis using a random sample of 100 from each audience. Her alternate hypothesis is ____________.

Answers

Answer:

Alternative hypothesis:[tex]\mu_1 -\mu_2 \neq 0[/tex]

Or in the alternative way would be:

 Alternative hypothesis:[tex]\mu_1 \neq \mu_2 [/tex]

Step-by-step explanation:

A hypothesis is defined as "a speculation or theory based on insufficient evidence that lends itself to further testing and experimentation. With further testing, a hypothesis can usually be proven true or false".  

The null hypothesis is defined as "a hypothesis that says there is no statistical significance between the two variables in the hypothesis. It is the hypothesis that the researcher is trying to disprove".

The alternative hypothesis is "just the inverse, or opposite, of the null hypothesis. It is the hypothesis that researcher is trying to prove".

On this case the claim that they want to test is: "The means for the two groups (American Idol and 60 Minutes) is the same". So we want to check if we have significant differences between the two means, so this needs to be on the alternative hypothesis and on the null hypothesis we need to have the complement of the alternative hypothesis.

Null hypothesis:[tex]\mu_1 -\mu_2 = 0[/tex]

This null hypothesis can be expressed like this:

Null hypothesis:[tex]\mu_1 = \mu_2 [/tex]

Alternative hypothesis:[tex]\mu_1 -\mu_2 \neq 0[/tex]

Or in the alternative way would be:

Alternative hypothesis:[tex]\mu_1 \neq \mu_2 [/tex]

Final answer:

Lucy Baker's alternate hypothesis for her demographic analysis of American Idol and 60 Minutes would suggest a difference in the mean ages of the two audiences, represented as either (Ha: µ₁ ≠ µ₂), (Ha: µ₁ < µ₂), or (Ha: µ₁ > µ₂), depending on the direction of the difference she anticipates.

Explanation:

Lucy Baker's hypothesis test within her demographic analysis involves comparing the mean ages of audiences of two television programs: American Idol and 60 Minutes. This is a hypothesis test for two independent sample means, assuming that population standard deviations are unknown and that the samples are random.

Given that the null hypothesis (
H) posits no difference in the mean ages of the two audiences (
µ₁ = µ₂), the alternate hypothesis (
Ha) Lucy should consider would suggest that there is a difference. Her alternate hypothesis could be that the mean age of one audience is either higher or lower than the other, which can be denoted as either (
Ha: µ₁ ≠ µ₂). However, if she has a specific direction in mind (e.g., assuming one program's audience is younger than the other), she might opt for (
Ha: µ₁ < µ₂) or (
Ha: µ₁ > µ₂), accordingly.

It's crucial to select an appropriate alternate hypothesis as it signifies the anticipated outcome that stands opposed to the assumption of the null hypothesis. In this case, given that the previous study indicates no difference, Lucy's alternative hypothesis should represent the possibility that a difference indeed exists.

Tanya enters a raffle at the local fair, and is wondering what her chances of winning are.


If her probability of winning can be modeled by a beta distribution with α = 5 and β = 2, what is the probability that she has at most a 10% chance of winning?

Answers

Answer:

[tex]P(X<0.1)= 5.5x10^{-5}[/tex]

Step-by-step explanation:

Previous concepts

Beta distribution is defined as "a continuous density function defined on the interval [0, 1] and present two parameters positive, denoted by α and β, both parameters control the shape. "

The probability function for the beta distribution is given by:

[tex] P(X)= \frac{x^{\alpha-1} (1-x)^{\beta -1}}{B(\alpha,\beta)}[/tex]

Where B represent the beta function defined as:

[tex]B(\alpha,\beta)= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}[/tex]

Solution to the problem

For our case our random variable is given by:

[tex] X \sim \beta (\alpha=5, \beta =2)[/tex]

We can use the following R code to plot the distribution for this case:

> x=seq(0,1,0.01)

> plot(x,dbeta(x,5,2),main = "Beta distribution a=5, b=2",ylab = "Probability")

And we got as the result the figure attached.

And for this case we want this probability, since we want the probability that she has at most 10% or 0.1 change of winning:

[tex]P(X<0.1)[/tex]

And we can find this probability with the following R code:

> pbeta(0.1,5,2)

[1] 5.5e-05

And we got then this : [tex]P(X<0.1)= 5.5x10^{-5}[/tex]

A set of 7,500 scores on a test are distributed normally, with a mean of 23 and a standard deviation of 4. To the nearest integer value, how many scores are there between 21 and 25?

Answers

Answer:

Step-by-step explanation:

Answer: The number of scores between 21 and 25 is 2872

Step-by-step explanation:

Since the test scores are normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - u)/s

Where

x = test scores

u = mean test score

s = standard deviation

From the information given,

u = 23

s = 4

We want to find the probability test scores between 21 points and 25. It is expressed as

P(21 lesser than or equal to x lesser than or equal to 25)

For x = 21,

z = (21 - 23)/4 = - 0.5

Looking at the normal distribution table, the probability corresponding to the z score is 0.30854

For x = 25,

z = (25 - 23)/4 = 0.5

Looking at the normal distribution table, the probability corresponding to the z score is 0.69146

P(21 lesser than or equal to x lesser than or equal to 25)

= 0.69146 - 0.30854 = 0.38292

The number of scores between 21 and 25 would be

0.38292 × 7500 = 2872

a study done by researchers at a university concluded that 70% of all student athletes in this country have been subjected to some form of hazing. The study is based on responses from 1200 athletes. What are the margin of error and 95% confidence interval for the study?

Answers

Answer:The margin of error is 0.01323 and 95% confidence interval is (0.674,0.73).

Step-by-step explanation:

Since we have given that

p = 0.70

n = 1200

We need to find the margin of error;

Margin of error would be

[tex]\sqrt{\dfrac{p(1-p)}{n}}\\\\=\sqrt{\dfrac{0.7\times 0.3}{1200}}\\\\=0.01323[/tex]

At 95% confidence level, α = 1.96

so, 95% confidence interval would be

[tex]p\pm z\times 0.01323\\\\=0.7\pm 1.96\times 0.01323\\\\=0.7\pm 0.02593\\\\=(0.7-0.02593,0.7+0.02593)\\\\=(0.674,0.73)[/tex]

Hence, the margin of error is 0.01323 and 95% confidence interval is (0.674,0.73).

What requirements are necessary for a normal probability distribution to be a standard normal probability​ distribution?Choose the correct answer below.A.The mean and standard deviation have the values of mu equals 1and sigma equals 1.B.The mean and standard deviation have the values of mu equals 0and sigma equals 1.C.The mean and standard deviation have the values of mu equals 0and sigma equals 0.D.The mean and standard deviation have the values of mu equals 1and sigma equals 0.

Answers

The requirements necessary for a normal probability distribution to be a standard normal probability​ distribution is that The mean and standard deviation have the values of mu equals 1and sigma equals 1. Hence the correct answer is A.

What is Normal Probability Distribution?

A probability distribution is one whose mean data points are symmetric. That is, most values from such a distribution cluster around the mean.

Another name for Normal Probability Distribution is Gaussian Distribution.

Learn more about Normal Probability Distribution at:

https://brainly.com/question/6476990

Final answer:

A standard normal probability distribution requires a mean of 0 and a standard deviation of 1. The correct answer is B, which reflects these necessary conditions for standardization, allowing for the comparison of z-scores across different distributions.

Explanation:

To transform a normal probability distribution into a standard normal probability distribution, certain requirements must be met. Specifically, the distribution must have a mean (mu) of 0 and a standard deviation (sigma) of 1. Among the given options, the correct answer is B, where the mean and standard deviation have the values of mu equals 0 and sigma equals 1.

This standardization process allows any normal distribution to be compared on a common scale, and it is fundamental for calculating z-scores, which indicate how many standard deviations an element is from the mean.For example, if we have a normally distributed variable 'x' from a distribution with any mean µ and standard deviation o, the standardized value or z-score is calculated as follows:z = (x - µ) / o

A political scientist wants to know how college students feel about the social security system. She obtains a list of the 3114 undergraduates at her college and mails a questionnaire to 250 students selected at random. Only 100 of the questionnaires are returned. In this study, the rate of non-response would be a. 0.25. b. 0.40. x. 0.75. d. 0.60

Answers

Answer: d. 0.60

Step-by-step explanation:

When are performing sample surveys , when the selected participant is giving any response is denoted as non - response.

The proportion of these participants of the sample is known as the non-response rate.

Given : A political scientist wants to know how college students feel about the social security system.

She obtains a list of the 3114 undergraduates at her college and mails a questionnaire to 250 students selected at random.

i.e. Sample size : n= 290

Only 100 of the questionnaires are returned.

Individual gave response =100

Individual gave no-response =250-100 =150

The  rate of non-response [tex]=\dfrac{\text{Individual gave no-response}}{n}[/tex]

[tex]=\dfrac{150}{250} =0.60[/tex]

Hence, the rate of non-response would be 0.60 .

Thus , the correct option is d. 0.60.

Find the work done in winding up a 175 ft cable that weighs 3 lb/ft.

Answers

Answer:

[tex]work \ done= 45937.5[/tex]

Step-by-step explanation:

Work done is given by

[tex]work \ done=\int_a^b w(d-x) \ dx[/tex] , where d = length of cable and w = weight of cable.

Here, d = 175 ft and w = 3 lb/ft

Now, [tex]work \ done=\int_0^{175} 3(175-x) \ dx[/tex]

[tex]work \ done= 3\left [175x-\frac{x^2}{2}  \right ]_0^{175}[/tex]

[tex]work \ done= 3\left [175^2-\frac{175^2}{2}  \right ][/tex]

[tex]work \ done= 3\cdot \frac{175^2}{2}[/tex]

[tex]work \ done= 45937.5[/tex]

which of the following number sets does 25 belong in?
2 and 4
all of the above
3 and 5
1 and 2

Answers

Answer:

all of the above

Step-by-step explanation:

The number 25 is a natural number as it belongs to the set [1,2,3,4,5,......]

The number 25 is a whole number as it belongs to the set [0,1,2,3,4,5,......]

The number 25 is an Integer as it belongs to the set [...,-5,-4,-3,-2,-1,0,1,2,3,4,5,...]

The number 25 is a rational number as it can be expressed as [tex]\[\frac{25}{1}\][/tex]

For the same reason , number 25 is a real number as it belongs to the set of rational numbers.

So the correct option is "all of the above".

Final answer:

25 does not belong to any of the given number sets (2 and 4, 1 and 2, or 3 and 5).

Explanation:

The number 25 does not belong to any of the provided number sets i.e. 2 and 4, 1 and 2 or 3 and 5. A number set typically refers to a collection of numbers, and in this case, 25 is absent in all the provided sets. The given number sets only contain the numbers 1, 2, 3, 4 and 5. Thus, 25 does not belong to any of these sets.

Learn more about Number Set here:

https://brainly.com/question/35714672

#SPJ3

Conduct the appropriate hypothesis test and compute the test statistic. A company that produces fishing line undergoes random testing to see if their fishing line holds up to the advertised specifications. Currently they are producing 30-pound test line and 20 randomly selected pieces are selected to test the strength. The 20 pieces broke with an average force of 29.1 pounds and a sample standard deviation of 2 pounds. Assuming that the strength of the fishing line is normally distributed, perform the appropriate hypothesis test at a 0.05 significance level in order to determine whether there is sufficient sample evidence to conclude the fishing line breaks with an average force of less than 30 pounds.
a. No, because the test statistic is -2.01.
b. No, because the test statistic is -2.52
c. Yes, because the test statistic is -2.52
d. Cannot be determined Yes, because the test statistic is -2.01

Answers

Answer:

Option D) Yes, because the test statistic is -2.01

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 30 pound

Sample mean, [tex]\bar{x}[/tex] = 29.1 pounds

Sample size, n = 20

Alpha, α = 0.05

Sample standard deviation, s =  2 pounds

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 30\text{ pounds}\\H_A: \mu < 30\text{ pounds}[/tex]

We use one-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{29.1 - 30}{\frac{2}{\sqrt{20}} } = -2.012[/tex]

Now,

[tex]t_{critical} \text{ at 0.05 level of significance, 19 degree of freedom } = -1.729[/tex]

Since,                    

[tex]t_{stat} < t_{critical}[/tex]

We fail to accept the null hypothesis and reject it. We accept the alternate hypothesis. Thus, there were enough evidence to conclude that the fishing line breaks with an average force of less than 30 pounds.

Option D) Yes, because the test statistic is -2.01

two circles have circumferences of (8xy) cm and (5xy) cm respectively. what is the variable expression to represent the sum of their circumferences?
(8xy)cm X (5xy)cm
(8xy)cm - (5xy)cm
(8xy)cm + (5xy)cm
(8xy)cm divided by (5xy)cm

Answers

Answer:the variable expression to represent the sum of their circumferences would be

(8xy)cm + (5xy)cm

Step-by-step explanation:

The circumference of the first circle is 8xy cm

The circumference of the second circle is 5xy cm

the variable expression to represent the sum of their circumferences would be

(8xy)cm + (5xy)cm

This variable expression can also be simplified further because both terms contain xy.

The reported unemployment is 5.5% of the population. What measurement scale is used to measure unemployment? Select one: a. Nominal b. Ordinal c. Interval or ratio d. Descriptive

Answers

Answer:

c. Interval or ratio

Step-by-step explanation:

There exists the following measurement scales:

Nominal: A variable is linked to a number. For example, Buffalo Bills players, 27 is Tre'Davious White, 49 Tremanine Edmunds, and then on...

Ordinal: Ranks the intensity of something. For example, grading some pain on a 1 to 10 scale.

Interval or ratio: Represents quantity and has an equality of units. One example is the rates of unemployment.

Descriptive: Tries to attribute qualities to quantitative data. For example, rates of unemployment being classified as very low, low, medium, and then on...

So the correct answer is:

c. Interval or ratio

Final answer:

The unemployment rate is measured using an interval or ratio scale, represented as a percentage. Various methods and measures are considered for accurate calculation, though it has limitations in fully capturing unemployment's societal impact.

Explanation:

The reported unemployment rate of 5.5% of the population uses an interval or ratio scale for measurement. This type of scale is used because the unemployment rate is a percentage that represents a proportion of the population. The measurement of unemployment involves a ratio of two quantities: the number of unemployed individuals and the total labor force. Different methods such as Labor Force Sample Surveys, Official Estimates, Social Insurance Statistics, and Employment Office Statistics are used to calculate this figure. Moreover, the U.S. Bureau of Labor Statistics employs six different measures (U1 - U6) to capture various aspects of unemployment. While the rate is informative, there are shortcomings in how it represents the real impact on society, as it does not account for underemployment or those who have stopped looking for work. Understanding these statistics is crucial as unemployment has significant economic and social consequences, such as increasing inequality and potentially leading to civil unrest.

In the question below determine whether the binary relation is: (1) reflexive, (2) symmetric, (3) antisymmetric, (4) transitive.

a) the relation r on the set of all people where aRb means that a is younger than b.

Answers

Answer:

The relation is antisymmetric and transitive

Step-by-step explanation:

Let a,b,c be elements of the set of all people.

1) Let a be a person who is 20 years old. aRa means that this person is younger than themselves, which it's false because 20<20 is false. Then R is not reflexive.

2) Let a be a person who is 20 years old and b a person who is 30 years old. Then a is younger than b, that is, aRb.

However, it is not true that b is younger than a, as 30<20 is false, therefore bRa is false and R is not symmetric.

3) Suppose that aRb, so that a is younger than b. Then, b is not younger than a. If n denotes the age of a and m denotes the age of b, we have that n<m which implies that m<n is false. Then bRa is false, thus R is antisymmetric.

4) Suppose that aRb and bRc. Let n,m,p denote the ages of a,b,c respectively. Then n<m and m<p (a is younger than b and b is younger than c), and by transitivity of the ordering of numbers, n<p, that is, a is younger than c. Thus aRc, and R is transitive.

Find a solution to the following initial-value problem: dy dx = y(y − 2)e x , y (0) = 1.

Answers

This equation is separable, as

[tex]\dfrac{\mathrm dy}{\mathrm dx}=y(y-2)e^x\implies\dfrac{\mathrm dy}{y(y-2)}=e^x\,\mathrm dx[/tex]

Integrate both sides; on the left, expand the fraction as

[tex]\dfrac1{y(y-2)}=\dfrac12\left(\dfrac1{y-2}-\dfrac1y\right)[/tex]

Then

[tex]\displaystyle\int\frac{\mathrm dy}{y(y-2)}=\int e^x\,\mathrm dx\implies\frac12(\ln|y-2|-\ln|y|)=e^x+C[/tex]

[tex]\implies\dfrac12\ln\left|\dfrac{y-2}y\right|=e^x+C[/tex]

Since [tex]y(0)=1[/tex], we get

[tex]\dfrac12\ln\left|\dfrac{1-2}1\right|=e^0+C\implies C=-1[/tex]

so that the particular solution is

[tex]\dfrac12\ln\left|\dfrac{y-2}y\right|=e^x-1\implies\boxed{y=\dfrac2{1-e^{2e^x-2}}}[/tex]

Cheating: For a statistics project a community college student at Diablo Valley College (DVC) decides to investigate cheating in two popular majors at DVC: business and nursing. She selects a random sample of nursing and business courses and convinces the professors to distribute a short anonymous survey in their classes. The question about cheating is one of many other questions about college life. When the student summarizes the data, she finds that 42 of the 50 business students and 38 of the 70 nursing students admitted to cheating in their courses. True or false? The counts suggest that the normal model is a good fit for the sampling distribution of sample differences. (a) a·False o b.True

Answers

Answer:

The answer is False

Step-by-step explanation:

The  count does no suggest that the normal model is a good fit for sampling the distribution because the questions used for the test and survey is the one of many other question about cheating which implies that if other questions about college life are being used as the survey, the response would probably be that more of the student would not have admitted to cheating. This concept therefore disobeys the normal distribution model which is a bell shaped model and therefore assumes that at an average, the number of students that admitted to cheating in the major courses should be equal.

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative hypotheses, test statistic, P-value, critical value(s). and state the final conclusion that addresses the original claim. A safety administration conducted crash tests of child booster seats for cars. Listed below are results from those tests, with the measurements given in hie (standard head injury condition units). The safety requirement is that the hic measurement should be less than 1000 hic. Use a 0.05 significance level to test the claim that the sample is from a population with a mean less than 1000 hic. Do the results suggest that all of the child booster seats meet the specified requirement? 697 759 1266 621 569 432

What are the hypotheses

Identify the test statistic

Identify the P-value.

The critical value(s) is(are)

State the final conclusion that addressses the original claim

What do the results suggest about the child booster seats eeting the specific requirement?

Answers

Answer:

There is sufficient evidence to conclude that child booster seats meet the specific requirement.

Step-by-step explanation:

Sample: 697, 759, 1266, 621, 569, 432

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{4344}{6} = 724[/tex]

Sum of squares of differences = 415616

[tex]S.D = \sqrt{\frac{415616}{5}} = 288.31[/tex]

We are given the following in the question:  

Population mean, μ = 1000 hic

Sample mean, [tex]\bar{x}[/tex] = 724

Sample size, n = 16

Alpha, α = 0.05

Sample standard deviation, s = 288.31

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 1000\text{ hic}\\H_A: \mu < 1000\text{ hic}[/tex]

We use one-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{724 - 1000}{\frac{288.31}{\sqrt{6}} } = -2.344[/tex]

Now, [tex]t_{critical} \text{ at 0.05 level of significance, 5 degree of freedom } = -2.015[/tex]

Calculation the p-value from table,

P-value = 0.033

Since,                  

Since, the p value is lower than the significance level, we fail to accept the null hypothesis and reject it. We accept the alternate hypothesis.

We conclude that the measurement is less than 1000 hic.

Thus, there is sufficient evidence to conclude that child booster seats meet the specific requirement.

You can buy a television for $349 cash or pay $75 down and the balance in 18 monthly payments of 22.50 is the installment price of the TV? By what percent would the installment price be greater than the cash price?

Answers

Answer:

Step-by-step explanation:

If you pay cash, the total amount that you will pay for the television is $349

If you pay $75 down, the balance would be paid in 18 monthly payments of 22.50 which is the installment price of the TV. Total amount paid in 18 months would be

22.5 × 18 = $405

Total cost of the TV when you pay in installments would be

405 + 75 = $480

Difference between the installment price and the cash price would be

480 - 349 = $131

The percent by which the installment price would be greater than the cash price is

131/349 × 100 = 37.5%

The paint used to make lines on roads must reflect enough light to be clearly visible at night. Let µ denote the true average reflectometer reading for a new type of paint under consideration. A test of H0: µ = 20 versus Ha: µ > 20 will be based on a random sample of size n from a normal population distribution. What conclusion is appropriate in each of the following situations? (Round your P-values to three decimal places.)(a) n = 16, t = 3.3, a = 0.05P-value =(b) n = 8, t = 1.8, a = 0.01P-value =(c) n = 26,t = -0.6P-value =

Answers

Answer:

a) [tex]df=n-1=16-1=15[/tex]

The statistic calculated is given by t=3.3  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{15}>3.3)=0.0024[/tex]  

So since the p value is lower than the significance level [tex]pv<\alpha[/tex] we reject the null hypothesis.

b) [tex]df=n-1=8-1=7[/tex]

The statistic calculated is given by t=1.8  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{7}>1.8)=0.057[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

c) [tex]df=n-1=26-1=25[/tex]

The statistic calculated is given by t=-0.6  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{25}>-0.6)=0.723[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

Step-by-step explanation:

1) Data given and notation      

[tex]\bar X[/tex] represent the sample mean

[tex]s[/tex] represent the standard deviation for the sample

[tex]n[/tex] sample size      

[tex]\mu_o =20[/tex] represent the value that we want to test    

[tex]\alpha[/tex] represent the significance level for the hypothesis test.    

t would represent the statistic (variable of interest)      

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.      

We need to conduct a hypothesis in order to determine if the true mean is higher than 20, the system of hypothesis would be:      

Null hypothesis:[tex]\mu \leq 20[/tex]      

Alternative hypothesis:[tex]\mu > 20[/tex]      

We don't know the population deviation, so for this case is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:      

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)      

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

(a) n = 16, t = 3.3, a = 0.05, P-value =

First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=16-1=15[/tex]

The statistic calculated is given by t=3.3  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{15}>3.3)=0.0024[/tex]  

So since the p value is lower than the significance level [tex]pv<\alpha[/tex] we reject the null hypothesis.

(b) n = 8, t = 1.8, a = 0.01, P-value =

First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=8-1=7[/tex]

The statistic calculated is given by t=1.8  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{7}>1.8)=0.057[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

(c) n = 26,t = -0.6, P-value =

 First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=26-1=25[/tex]

The statistic calculated is given by t=-0.6  

Since is a one-side upper test the p value would be:      

[tex]p_v =P(t_{25}>-0.6)=0.723[/tex]  

So since the p value is higher than the significance level [tex]pv>\alpha[/tex] we FAIL to reject the null hypothesis.

Final answer:

The P-value helps decide whether to reject the null hypothesis in a t-test. If the P-value is less than the significance level α, the null hypothesis is rejected. For each given scenario, the P-value is found from the t-distribution considering the provided t-statistic and degrees of freedom (n-1).

Explanation:

The problem is about conducting a t-test to check if the reflectometer reading (μ) for a new type of road paint is greater than a specified value (20). The P-value of the t-test will tell us if we should reject the null hypothesis H0: μ = 20 in favor of the alternative hypothesis Ha: μ > 20. The P-value is the probability of observing a t-score as extreme as the one calculated from the sample data (or more extreme), given that the null hypothesis is true.

(a) For n = 16, t = 3.3, and α = 0.05, we can use the t-distribution table or a statistical software to find the P-value. Since t is positive and we are dealing with a one-tailed test (because Ha: μ > 20), the P-value is the area to the right of the t-score (3.3) under the t-distribution. If the calculated P-value is less than α (0.05), we reject the null hypothesis.
(b) The same process applies for n = 8, t = 1.8, and α = 0.01. However, due to the smaller α level, we would need a larger t statistic (and thus a smaller P-value) to reject the null hypothesis.
(c) For n = 26, t = -0.6, if the calculated P-value is greater than the chosen α value, we do not reject the null hypothesis believing that the true mean reflectometer reading is 20.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Suppose that a marketing research firm wants to conduct a survey to estimate the meanμof the distribution of the amount spent on entertainment by each adult who visits a certain popularresort. The firm would like to estimate the mean of this distribution to within $60 with 95% confidence.From data regarding past operations at the resort, it has been estimated that the standard deviation ofthe entertainment expenditures is no more than $400. How large does the firm’s sample size need to be?

Answers

Answer:

The firm's sample size must be of at least 171 adults.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the length of the sample.

In this problem, we have that:

[tex]M = 60, \sigma = 400[/tex]. So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]60 = 1.96*\frac{400}{\sqrt{n}}[/tex]

[tex]60\sqrt{n} = 784[/tex]

[tex]\sqrt{n} = 13.07[/tex]

[tex]n = 170.7[/tex]

The firm's sample size must be of at least 171 adults.

The Wall Street Journal Corporate Perceptions Study 2011 surveyed readers and asked how each rated the Quality of Management and the Reputation of the Company for over 250 world-wide corporations. Both the Quality of Management and the Reputation of the Company were rated on an Excellent, Good, and Fair categorical scale. Assume the sample data for 200 respondents below applies to this study.

Col1 Quality of Management Excellent Good Fair
Col2 Excellent 40 35 25
Col3 Good 25 35 10
Col4 Fair 5 10 15

Use a .05 level of significance and test for independence of the quality of management and the reputation of the company.
Compute the value of the 2 test statistic (to 2 decimals).
The p-value is
What is your conclusion?
b. If there is a dependence or association between the two ratings, discuss and use probabilities to justify your answer.

Answers

Answer:

a)[tex]\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03[/tex]

[tex]p_v = P(\chi^2_{4} >17.03)=0.0019[/tex]

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

b)

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

Quality management        Excellent      Good     Fair    Total

Excellent                                40                35         25       100

Good                                      25                35         10         70

Fair                                         5                   10          15        30

Total                                       70                 80         50       200

Part a

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is independence between the two categorical variables

H1: There is association between the two categorical variables

The level of significance assumed for this case is [tex]\alpha=0.05[/tex]

The statistic to check the hypothesis is given by:

[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]

The table given represent the observed values, we just need to calculate the expected values with the following formula [tex]E_i = \frac{total col * total row}{grand total}[/tex]

And the calculations are given by:

[tex]E_{1} =\frac{70*100}{200}=35[/tex]

[tex]E_{2} =\frac{80*100}{200}=40[/tex]

[tex]E_{3} =\frac{50*100}{200}=25[/tex]

[tex]E_{4} =\frac{70*70}{200}=24.5[/tex]

[tex]E_{5} =\frac{80*70}{200}=28[/tex]

[tex]E_{6} =\frac{50*70}{200}=17.5[/tex]

[tex]E_{7} =\frac{70*30}{200}=10.5[/tex]

[tex]E_{8} =\frac{80*30}{200}=12[/tex]

[tex]E_{9} =\frac{50*30}{200}=7.5[/tex]

And the expected values are given by:

Quality management        Excellent      Good     Fair       Total

Excellent                                35              40          25         100

Good                                      24.5           28          17.5        85

Fair                                         10.5            12           7.5         30

Total                                       70                 80         65        215

And now we can calculate the statistic:

[tex]\chi^2 = \frac{(40-35)^2}{35}+\frac{(35-40)^2}{40}+\frac{(25-25)^2}{25}+\frac{(25-24.5)^2}{24.5}+\frac{(35-28)^2}{28}+\frac{(25-17.5)^2}{17.5}+\frac{(5-10.5)^2}{10.5}+\frac{(10-12)^2}{12}+\frac{(15-7.5)^2}{7.5} =17.03[/tex]

Now we can calculate the degrees of freedom for the statistic given by:

[tex]df=(rows-1)(cols-1)=(3-1)(3-1)=4[/tex]

And we can calculate the p value given by:

[tex]p_v = P(\chi^2_{4} >17.03)=0.0019[/tex]

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(17.03,4,TRUE)"

Since the p value is lower than the significance level we can reject the null hypothesis at 5% of significance, and we can conclude that we have association or dependence between the two variables.

Part b

We can find the probabilities that Quality of Management and the Reputation of the Company would be the same like this:

Let's define some notation first.

E= Quality Management excellent     Ex=Reputation of company excellent

G= Quality Management good     Gx=Reputation of company good

F= Quality Management fait     Ex=Reputation of company fair

P(EΛ Ex) =40/215=0.186

P(GΛ Gx) =35/215=0.163

P(FΛ Fx) =15/215=0.0697

If we have dependence then the conditional probabilities would be higher values.

P(E|Ex)= P(EΛEx )/ P(Ex) = (40/215)/ (70/215)= 40/70=0.5714

P(E|Gx)= P(EΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(E|Fx)= P(EΛFx )/ P(Fx) = (25/215)/ (50/215)= 25/50=0.5

P(G|Ex)= P(GΛEx )/ P(Ex) = (25/215)/ (70/215)= 25/70=0.357

P(G|Gx)= P(GΛGx )/ P(Gx) = (35/215)/ (80/215)= 35/80=0.4375

P(G|Fx)= P(GΛFx )/ P(Fx) = (10/215)/ (50/215)= 10/50=0.2

P(F|Ex)= P(FΛEx )/ P(Ex) = (5/215)/ (70/215)= 5/70=0.0714

P(F|Gx)= P(FΛGx )/ P(Gx) = (10/215)/ (80/215)= 10/80=0.125

P(F|Fx)= P(FΛFx )/ P(Fx) = (15/215)/ (50/215)= 15/50=0.3

And that's what we see here almost all the conditional probabilities are higher than 0.2 so then the conclusion of dependence between the two variables makes sense.

The price of a certain security follows a geometric Brownian motion with drift parameter µ = 0.12 and the volatility parameter σ = 0.24.

(a) If the current price of the security is $40, find the probability that a call option, having four months until expiration and with a strike price of K = 42 will be exercised.

(b) In addition to the above information as in part (a) if the interest rate is 8%, find the risk-neutral arbitrage free valuation of the call option.

Answers

Answer:

Brownian Motion- The usual model for the time-evolution of an asset price S(t) is given by the geometric Brownian motion.

Now the geometric Brownian motion is represented by the following stochastic differential equation:

dS(t)=μS(t)dt+σS(t)dB(t)Note-  coefficients μ  representing the drift and σ,volatility of the asset, respectively, are both constant in this model.

To solve the problem now we have the been Data provided:

μ= 0.12,

σ=0.24,

Step-by-step explanation:

Step A:

we have, the variables of Black Scholes Model, by putting the values of variables available, we get:

S = Current stock price = 40 ,

K = Strike Price = 42 ,

Next is, "r" the risk free rate,

risk free rate, r = mu = 0.12 ,

Volatility, σ = 0.24

time to maturity, T, as we have;

T= 4 months = 4/12.T = 1/3 year(360 days)

Step B:

We now need to calculate the parameter d₂ of the Black Scholes Model. .

The probability which we want is 1 - N(-d₂),

So, we have;

d₂=㏑(S/K)+(r-σ²/2)T/σ√T

Step C:

As step C is done on excel for further calculations so, do use it if you are solving it on computer.

Final answer:

To find the probability that a call option will be exercised and the risk-neutral arbitrage-free valuation of the call option, we can use the Black-Scholes-Merton model and the risk-neutral pricing framework respectively.

Explanation:

To find the probability that a call option will be exercised, we can use the Black-Scholes-Merton model. In this case, we have:

The current price of the security (S) = $40

The strike price of the option (K) = $42

The time to expiration (T) = 4 months (or 0.33 years)

The risk-free interest rate (r) = 8% (or 0.08)

The volatility of the security (σ) = 0.24

Using these values, we can plug them into the Black-Scholes-Merton formula to calculate the probability of the call option being exercised.

For part (b), we can use the risk-neutral pricing framework to calculate the arbitrage-free valuation of the call option. This involves discounting the expected future payoff of the option at the risk-free interest rate.

To calculate the risk-neutral valuation, we use the same values as in part (a) and discount the expected payoff to the present value using the risk-free interest rate.

A tank contains 6,000 L of brine with 16 kg of dissolved salt. Pure water enters the tank at a rate of 60 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? y = kg (b) How much salt is in the tank after 20 minutes? (Round your answer to one decimal place.) y = kg

Answers

Answer:

a) [tex]S_{a}(t)=16Kg-0.16Kg*\frac{t}{min}[/tex]

b)  [tex]S_{a}(20)=12.8Kg[/tex]

Step-by-step explanation:

It can be seen in the graph that the water velocity and solution velocity is the same, but the salt concentation will be lower

Water velocity [tex]V_{w} = 60\frac{L}{min}[/tex]

Solution velocity [tex]V_{s} = 60\frac{L}{min}[/tex]

Brine concentration = [tex]\frac{6,000L}{16Kg}=375\frac{L}{Kg}[/tex]

a) Amount of salt as a funtion of time Sa(t)

[tex]S_{a}(t)=16Kg-\frac{60Kg*L}{375L}*\frac{(t)}{min}=[tex]16Kg-0.16Kg*\frac{t}{min}[/tex]

b) [tex]S_{a}(20)=16Kg-0.16\frac{Kg}{min}*(20min)=16Kg-3.2Kg=12.8Kg[/tex]

This value was to be expected since as the time passes the concentration will be lower due to the entrance to the pure water tank

Final answer:

To calculate the amount of salt in the tank after a certain amount of time, we need to consider the rate at which salt enters and leaves the tank. The rate of salt entering the tank is given as 60 L/min and the total volume of the tank is 6000 L. Using these values, we can find the rate of salt entering the tank in kg/min and then calculate the amount of salt in the tank after a specific time.

Explanation:

To calculate the amount of salt in the tank after a certain amount of time, we need to consider the rate at which salt enters and leaves the tank. The rate of salt entering the tank is given as 60 L/min and the total volume of the tank is 6000 L. Using these values, we can find the rate of salt entering the tank in kg/min:

Rate of salt entering = (60 L/min) * (16 kg/6000 L) = 0.16 kg/min

Therefore, the amount of salt in the tank after t minutes is given by:

y = 0.16 kg/min * t min = 0.16t kg

The profile of the cables on a suspension bridge may be modeled by a parabola. The central span of a bridge is 1270 ft long and 157 ft high. The parabola y=0.00039x^2 gives a good fit to the shape of the cables, where IxI less than of equal to 635, and x and y are measured in feet. Approximate the length of the cables that stretch between the tops of the two towers.

Answers

Answer:

Step-by-step explanation:

Given

span of bridge [tex]L=1270\ ft[/tex]

height of span [tex]h=157\ ft[/tex]

Equation of Parabola

[tex]y=0.00039x^2[/tex]

[tex]|x|<635[/tex] i.e.

[tex]-635<x<635[/tex]

[tex]\frac{dy}{dx}=2\times 0.00039[/tex]

length of Arc[tex]=\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}[/tex]

[tex]=\int_{-635}^{635}\sqrt{1+(\frac{dy}{dx})^2}[/tex]

[tex]=\int_{-635}^{635}\sqrt{1+(0.00078x)^2}[/tex]

[tex]=2\times \int_{0}^{635}\sqrt{1+(0.00078x)^2}[/tex]

[tex]=2\times (660.08)[/tex]

[tex]=1320.16\ ft[/tex]

The approximate length of the cables is approximately 4534.24 feet.

To approximate the length of the cables that stretch between the tops of the two towers of the suspension bridge, we can use the integral calculus to find the length of the curve defined by the equation [tex]\(y = 0.00039x^2\).[/tex]

The formula for finding the length of a curve between two points [tex]\([a, b]\)[/tex] is given by the integral:

[tex]\[L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx\][/tex]

Where:

- L is the length of the curve.

- a and b are the x-coordinates of the two points between which we want to find the length.

- f(x) is the function representing the curve.

- f'(x) is the derivative of the function.

In this case, we want to find the length of the cables between the two towers, which corresponds to the x-values from -635 to 635 since the width of the bridge is 1270 feet. The curve is defined by [tex]\(y = 0.00039x^2\)[/tex], so:

- a = -635

- b = 635

- [tex]\(f(x) = 0.00039x^2\)[/tex]

- [tex]\(f'(x) = 2 \cdot 0.00039x\)[/tex]

Now, let's calculate the length:

[tex]\[L = \int_{-635}^{635} \sqrt{1 + (2 \cdot 0.00039x)^2} \, dx\][/tex]

[tex]\[L = \int_{-635}^{635} \sqrt{1 + 0.0001536x^2} \, dx\][/tex]

Now, we can evaluate this integral:

[tex]\[L = \int_{-635}^{635} \sqrt{1 + 0.0001536x^2} \, dx \approx 4534.24\][/tex]

So, the approximate length of the cables that stretch between the tops of the two towers of the suspension bridge is approximately 4534.24 feet.

Learn more about Length of suspension bridge cables here:

https://brainly.com/question/33334933

#SPJ3

The heights of students in a class are normally distributed with mean 55 inches and standard deviation 5 inches. Use the Empirical Rule to determine the interval and contains the middle 68% of the heights.

a) [40,70]

b)[45,70]

c)[50,60]

d)[45,65]

e)[47,63]

d)none of the above

Answers

Answer:  c)[50,60]

Step-by-step explanation:

The Empirical rule says that , About 68% of the population lies with the one standard deviation from the mean (For normally distribution).

We are given that , The heights of students in a class are normally distributed with mean 55 inches and standard deviation 5 inches.

Then by Empirical rule, about 68% of the heights of students lies between one standard deviation from mean.

i.e. about 68% of the heights of students lies between [tex]\text{Mean}\pm\text{Standard deviation}[/tex]

i.e. about 68% of the heights of students lies between [tex]55\pm5[/tex]

Here, [tex]55\pm5=(55-5, 55+5)=(50,60)[/tex]

i.e.  The required interval that contains the middle 68% of the heights. = [50,60]

Hence, the correct answer is c) (50,60)

Final answer

The interval containing the middle 68 of a typically distributed class height is one standard divagation from the mean, which is( 50, 60) elevation for the given mean of 55 elevation and standard divagation of 5 elevation.

Explanation

The Empirical Rule countries that for a typically distributed set of data, roughly 68 of data values will fall within one standard divagation of the mean, 95 within two standard diversions, and99.7 within three standard diversions. In this case, the mean height is 55 elevation and the standard divagation is 5 elevation. thus, to find the interval that contains the middle 68 of the heights, we add and abate one standard divagation from the mean.

55 elevation 5 elevation = 60 elevation( Mean height plus one standard divagation)

55 elevation- 5 elevation = 50 elevation( Mean height minus one standard divagation)

This means the interval that contains the middle 68 of the heights is( 50, 60) elevation. Hence, the correct answer is option( c).

When hypothesis testing, when might you use a related sample versus an independent sample? Provide examples of both population to illustrate the differences.

Answers

Answer:

The key difference is that the dependent sample test uses usually the same individuals to obtain the info for two different moments. And the independent sample test uses two different groups in order to compare a parameter on specific, usually the mean.

Step-by-step explanation:

A paired t-test is used to compare two population means when we have two samples in which observations in one sample can be paired with observations in the other sample. For example if we have Before-and-after observations in order to see an improvement or not for a method we can use it ( Without treatment and With specific treatment).  

An independent sample test is used when we want to compare "two sample means to determine whether the population means are significantly different". For example if we want to compare the scores for male and female in a test.  

The key difference is that the dependent sample test uses usually the same individuals to obtain the info for two different moments. And the independent sample test uses two different groups in order to compare a parameter on specific, usually the mean.

Final answer:

When conducting hypothesis testing, the choice between using a related sample or an independent sample depends on the nature of the data being analyzed. A related sample is used when the two samples are dependent or paired, while an independent sample is used when the two samples are not related and can be considered as separate groups.

Explanation:

When conducting hypothesis testing, the choice between using a related sample or an independent sample depends on the nature of the data being analyzed. A related sample is used when the two samples are dependent or paired, meaning that there is a one-to-one correspondence between the data points in the two samples. An independent sample is used when the two samples are not related and can be considered as separate groups.

For example, in a related sample scenario, you might compare the blood pressure of the same group of individuals before and after a treatment. The paired samples would be the pre-treatment and post-treatment measurements of each individual. In an independent sample scenario, you might compare the test scores of two different groups of students who were taught using different teaching methods.

We are interested in determining whether the variances of the sales at two music stores (A and B) are equal. A sample of 25 days of sales at store A has a sample standard deviation of 30, while a sample of 16 days of sales from store B has a sample standard deviation of 20. At 95% confidence, the null hypothesis _____.

a. should be rejected
b. should be revised
c. should not be rejected
d. None of these answers are correct.

Answers

Answer:

C.

Step-by-step explanation:

Hypothesis testing procedure:

Hypothesis:

The null hypothesis will be the variances of sales of two musical stores are equal and the alternative hypothesis will be the variances of sales of two musical stores are not equal

Level of significance: alpha=0.05

Test statistic: F=variance A/variance B=(30)^2/(20)^2=900/400=2.25

P-value: p=0.107

As the alternative hypothesis mentioned that the variances are not equal this leads to two tailed test. so the p-value is calculated using excel function 2*F.DIST.RT(2.25,24,15).

Conclusion:

The p-value seems to exceed the alpha=0.05 and this depicts that the null hypothesis should not be rejected.

At 95% confidence, the null hypothesis should not be rejected. The correct answer is option c. should not be rejected.

Step 1

To test whether the variances of the sales at music stores A and B are equal, we perform an F-test. The null hypothesis [tex](\(H_0\))[/tex] states that the variances are equal, while the alternative hypothesis [tex](\(H_a\))[/tex] states that they are not equal.

The F-statistic is calculated as the ratio of the larger sample variance to the smaller sample variance:

[tex]\[ F = \frac{s_1^2}{s_2^2} \][/tex]

Where [tex]\( s_1^2 \)[/tex] is the variance of store A and [tex]\( s_2^2 \)[/tex] is the variance of store B.

Step 2

In this case, the F-statistic is [tex]\( \frac{30^2}{20^2} = \frac{900}{400} = 2.25 \)[/tex].

Using a significance level of 0.05 and degrees of freedom (df) as [tex]\( n_1 - 1 \)[/tex] and [tex]\( n_2 - 1 \)[/tex], we compare this value to the critical F-value from the F-distribution table.

Since the calculated F-statistic of 2.25 is less than the critical F-value, we fail to reject the null hypothesis.

Therefore, at 95% confidence, the correct answer is c. should not be rejected.

Consider the function shown. A segment extends from negative 5 comma 0 to negative 2 comma 5. A segment extends from negative 2 comma 5 to 1 comma 5. A segment extends from 1 comma 5 to 8 comma negative 2. Where is the function decreasing? Enter your answer in the boxes. The function is decreasing from x = to x = .

Answers

Answer: The function is constant from x = -2 to x=1

Final answer:

The function is decreasing from x = 1 to x = 8, as the segment in that interval shows a decrease in y values as x increases.

Explanation:

To determine where the function is decreasing, we need to look at the segments provided. A function is decreasing if, as x increases, the y value of the function decreases. From the description of the segments, we can analyze behavior in each interval:

The first segment extends from x = -5 to x = -2 and ascends from a y-value of 0 to 5, which means the function is increasing in this interval.The second segment stretches from x = -2 to x = 1 and remains at a consistent y-value of 5, indicating a horizontal line and therefore, the function is neither increasing nor decreasing.The final segment extends from x = 1 to x = 8, moving from a y-value of 5 to -2. During this segment, as x increases, y decreases, which clearly marks this interval as a decreasing interval for the function.

Therefore, the function is decreasing from x = 1 to x = 8.

A student uses pens whose lifetime is an exponential random variable with mean 1 week. Use the central limit theorem to determine the minimum number of pens he should buy at the beginning of a 15-week semester, so that with probability .99 he does not run out of pens during the semester.

Answers

Answer:

Student needs pens= n = 27.04

Rounding off with upper floor function ⇒ n =28

Rounding off with lower floor function ⇒ n =27

Step-by-step explanation:

Given that lifetime of each pen is a exponential random variable with mean 1 week.

Let [tex]S_{n}[/tex] be total sum of lifetime of n pens.

So mean of [tex]S_{n}[/tex] = μ = n.1

Standard deviation of [tex]S_{n}[/tex] =[tex]\sigma=\sqrt{n}[/tex]

Probability that he doesnot run out of pens= 0.99

Considering Sn be sum of n lifetimes, using central limit theorem

[tex]\frac{S_{n}-n}{\sqrt{n}}\approx N(0,1)\\\\P(S_{n}>15)=[P(\frac{S_{n}-n}{\sqrt{n}})>\frac{15-n}{\sqrt{n}}]\\ 1-\phi(\frac{15-n}{\sqrt{n}})=\phi(-(\frac{15-n}{\sqrt{n}}))=0.99\\[/tex]

From table of standard normal distribution

[tex]\frac{15-n}{\sqrt{n}}=-2.3263\\15-n=-2.3263\sqrt{n}\\n-2.3263-15\sqrt{n}[/tex]

Solving the quadratic Equation in variable x we get

n=27.04

A person leaves her camp at 7:00 a.m. to hike back to her car. The distance from the car in kilometers y after x hours of hiking can be modeled by the linear function y = − 3 x + 18 . What does the x -intercept of the function mean.

Answers

Answer:

The x axis in the function represents, the number of hours after 7:00 A.M. , the person reaches her car. The person reaches the car at 1:00 P.M.

Step-by-step explanation:

The x axis denotes the no. of hours and and the y axis denotes the distance from the car.

X Intercept is a point where the line intersects the X axis, we can easily notice the fact that at that point, y=0 ie. The person has reached his/her respective car.

The line intersects x at 6.

Therefore, a total of 6 hours are taken from the beginning of the hike.

Thus, the person reaches the car at 1:00 P.M.

Answer:

The person will take 6 hours to get back to her car.

Step-by-step explanation:

Other Questions
Early LCD backlights use _______________ technology, popular for its low power use, even brightness, and long life. The nursing instructor is explaining the four types of allergic reaction to the nursing students. The instructor explains that allergic rhinitis is a:_________ Enterochromaffin-like cells of the gastric mucosa can be triggered to release histamine. Histamine, in this case, causes nearby parietal cells of the stomach lining to produce hydrochloric acid. The effect of histamine on parietal cells would best be described as a(n) ________.a. paracrineb. autocrinec. exocrined. second messenger Which of the following processes occurs first when media bring news to an audience?A. framingB. primingC. agenda settingD. gatekeeping Howard's family is celebrating his ninetieth birthday. Howard, however, is not enjoying the celebration. He wishes everyone would go home and leave him alone to fester in his thoughts of failure about the life he has lived. In which stage of psychosocial development is Howard?a. autonomy vs. shame and doubtb. interior vs. inferiorityc. ego integrity vs. despaird. generativity vs. stagnation What happens in the human body as heart rate is increasing? Which of the following statements is true of hyponatremia? a. It is a condition characterized by low blood potassium concentration. b. It occurs as a result of zinc deficiency and often leads to serious heart problems. c. It develops when the concentration of blood sodium falls below a healthy range. d. It is prevalent in women with heavy menstrual blood loss. Match each idea to the correct principle of government. federalism separation of powers checks and balances divides the powers of government into different branches arrowRight divides the powers of government between central and state governments arrowRight each branch of government has certain powers that prevents the abuse of power on the people arrowRight Consider a mechanical clutch that consists of two heavy disks that can engage or disengage. At the beginning disk 1 with mass m1 = 12kg and diameter d1 = 60cm is at rest (f1 = 0min1 ) and disengaged from disk 2 with mass m2 = 8kg and diameter d2 = 40cm that is rotating with a frequency of f2 = 200min1 . When we engage the clutch both disks become connected and disk 1 is accelerated while disk 2 decelerates due to a portion of its rotational energy being used to accelerate disk 1. In full contact both disks are rotating with the same angular velocity. Calculate this final angular velocity and the corresponding frequency f. We are neglecting further loss of energy due to heat as a result of friction. This friction and heat is the reason why real clutches wear out over time. The moment of inertia for a solid disk can be found in the textbook. Whereas Americans have a proverb, "the squeaky wheel gets the grease," Japanese have a proverb that states "The nail that stands out gets pounded down." These two different proverbs mirror social-psychological research that has demonstrated that people in Asian cultures.A) are more authoritarian than AmericansB) are more likely to defer to authority than are AmericansC) have a more interdependent concept of self than do AmericansD) Do not hold different self-concepts Which statement is TRUE? a.The tradeoff a firm faces whether using retained earnings or borrowed funds is the same. b.Using retained earnings has a higher opportunity cost than does using borrowed money because retained earnings come from past profits. c.Borrowing money will always be more expensive than using retained earnings. d.The cost of retained earnings is unrelated to the cost of borrowing money. According to the AHDI, date styles can be either numeric or written in words. Very similar fossils have been found in rock masses that are separated by oceans and thousands of miles. For example, the fossil remains of the same freshwater reptile species have been found in southern Africa and southern South America. How can these fossils exist so far away from each other? A. At some point, the land masses were connected to each other. B. The land was once completely covered in fresh water. C. Identical reptile species evolved separately on the two different land masses. D. This species of reptile swam thousands of miles in search of a new habitat. 100 POINTS! PLEASE HELP!What is the equation for the line?Enter your answer in the box. For the reaction 2 SO 2 ( g ) + O 2 ( g ) 2 SO 3 ( g ) the equilibrium constant is K c = 15 M 1 at 850 K . Three sets of concentrations are given for the three gases in the reaction. For each set, predict the direction in which the net reaction will proceed toward equilibrium. Left No net reaction Right (SO2)=0.16M (SO2)=0.20M (SO2)=0.50M (O2)=0.20M (O2)=0.60M (O2)=0.60M (SO3)=0.50M (SO3)=0.60M (SO3)=0.15M The amount of turn between two straight lines that have a common end point is called __________. What is a main difference between a mixture and a pure substance? A farmer wishes to test the effects of a new fertilizer on her tomato yield. She has four equal-sized plots of land-- one with sandy soil, one with rocky soil, one with clay-rich soil, and one with average soil. She divides each of the four plots into three equal-sized portions and randomly labels them A, B, and C. The four A portions of land are treated with her old fertilizer. The four B portions are treated with the new fertilizer, and the four C's are treated with no fertilizer. At harvest time, the tomato yield is recorded for each section of land. What type of experimental design is this? completely randomized design double-blind design matched-pairs design randomized block design A coil of wire 0.12 m long and having 340 turns carries a current of 13 A. (a) What is the magnitude of the magnetic field strength H (in A/m)? (b) Calculate the flux density B (in tesla) if the coil is in a vacuum. (c) Calculate the flux density (in tesla) inside a bar of metal positioned within the coil that has a magnetic susceptibility of 1.90 x 10-4. (d) Calculate the magnitude of the magnetization M (in A/m). Determine weather the rule represents an exponential function. EASY 40 POINTS Steam Workshop Downloader