Answer:
Amygdala, Frontal cortex
Explanation:
The amygdala is part of the brain responsible for aggressive behavior, fear and immediate reactions associated with high risks. The frontal cortex, on the other hand, is the part of the brain responsible for reasoning. Because the former matures faster than the latter in adolescents, then teens' behavior is generally associated with high risks and little reasoning before acting.
What can one say about the image produced by a thin lens that produces a positive magnification?
Answer:
The image is virtual and upright
Explanation:
The magnification of a lens can be written as follows:
[tex]M=\frac{y'}{y}=-\frac{q}{p}[/tex]
where
y' is the size of the image
y is the size of the object
q is the location of the image with respect to the lens
p is the location of the object with respect to the lens
In this situation, the magnification is positive. This means that:
- y' (the image) has same sign as y (the object) --> the image is upright (same orientation as the object)
- q has opposite sign to p --> this means that the image is located on the same side as the object, so it is a virtual image
Which law states that each planet revolves so that an imaginary line connecting it to the sun sweeps over equal areas in equal time intervals?
Kepler’s Laws are three mathematic laws to describe the movement of the planets around the Sun, but it can be generalized for the movement of any body orbiting a bigger one, for example, The Moon orbiting the Earth.
These laws were formulated by the astronomer Johannes Kepler from observations made by the Danish astronomer Tycho Brahe of the orbit of Mars.
Now, according to the Second Kepler’s Law of Planetary motion:
In equal times, the areas swept by the planet in its orbit around the Sun are equal.
For this to be possible, the speed of the planet must vary. Hence, the planet will move rapidly near the Sun (perihelion) and move slowly when it is away from the Sun (aphelion).
What is the shortest distance between two points
Answer: displacement
Explanation:
According to the definition of displacement it is the shortest distance between two points.
Final answer:
The shortest distance between two points is a straight line, which is the displacement in physics. The Pythagorean theorem can be used to calculate this distance in a two-dimensional space. Displacement differs from the total distance traveled as it signifies the most direct path between two points.
Explanation:
The shortest distance between two points is often referred to as a straight line. This concept is not only a geometric truth but also has applications in physics, particularly when discussing displacement and distance traveled.
In a two-dimensional space, such as when navigating a city with a grid layout, the shortest path between two points can be visualized as the hypotenuse of a right triangle.
This forms the basis for utilizing the Pythagorean theorem, which is expressed as a² + b² = c², where a and b are the legs of the triangle and c is the hypotenuse. The theorem helps to quantify the straight-line distance between two points, providing a mathematical model for the physical concept of displacement.
Furthermore, in physics, the term 'displacement' is used to describe this shortest-path scenario between the starting and ending points, which differs from the total distance traveled, which accounts for the actual path taken, regardless of its directness.
Why does temperature decrease with increasing altitude in the troposphere
In the troposphere, the temperature generally decreases with altitude. The reason is that the troposphere's gases absorb very little of the incoming solar radiation. Instead, the ground absorbs this radiation and then heats the tropospheric air by conduction and convection.
Mark me brainliest please!!!!
While studying physics at the library late one night, you noticethe image of the desk lamp reflected from the varnished tabletop.When you turn your Polaroid sunglasses sideways, the reflectedimage disappears.
If this occurs when the angle between the incident and reflectedrays is 120^\circ, what is the index ofrefraction of the varnish?
Explanation:
The situation described here is known as polarization by reflection. This was discovered by Scottish physicist David Brewster and then formulated the law that bears his name:
"When a beam of light hits the surface that separates two non-conducting media characterized by different electromagnetic characteristics (electrical permittivity and magnetic permeability), part of it is reflected back to the source medium, and part is transmitted to the second medium."
This polarization happens when the light incides at a specific angle, called the Brewster angle ([tex]\theta_{B}[/tex]), which is given by the following formula (taking into account that generally the magnetic permeabilities of the two media involved do not vary):
[tex]tan\theta_{B}=\frac{n_{2}}{n_{1}}[/tex] (1)
Where [tex]n_{2}[/tex] is the index of refraction of the second medium (the varnish in this case) and [tex]n_{1}=1[/tex] is the index of refraction of the first medium (the air).
Now, if we are told the angle between the incident and reflected rays is [tex]120\°[/tex], this means the incident angle is the half ([tex]60\°[/tex]), which is the Brewster angle in this case.
So, [tex]\theta_{B}=60\°[/tex] (2)
Rewriting (1) with this incident ray angle:
[tex]tan(60\°)=\frac{n_{2}}{1}[/tex] (3)
[tex]n_{2}=tan(60\°)[/tex]
Finally we obtain the index ofrefraction of the varnish:
[tex]n_{2}=1.732[/tex]
The Brewster's angle formula can help determine the index of refraction of a material based on the angle of reflection. In this case, with a 120° angle, the varnish's refractive index would be around 1.732.
When the angle between the incident and reflected rays is 120°, the index of refraction of the varnish can be calculated using the Brewster's angle formula.
For this scenario, if Brewster's angle is 120°, the refractive index of the varnish would be approximately 1.732.
The concept of Brewster's angle relates the angle of incidence and the refractive index of a material for which the reflected ray is entirely polarized, offering a method to determine the index of refraction of the varnish.
What causes charges to move in a circuit?
Charges move in a circuit due to the presence of an electrical field created by a voltage difference. The electrical field exerts forces on charged particles, causing them to accelerate and move through the circuit.
Explanation:Circuit charges refer to the movement of electric charge (usually electrons) through an electrical circuit. In a closed circuit, charges flow due to voltage (potential difference), creating an electric current. This flow of charges powers electrical devices and is described by Ohm's law, which relates current, voltage, and resistance in the circuit.
Charges move in a circuit due to the presence of an electrical field created by a voltage difference. The electrical field exerts forces on charged particles, causing them to accelerate and move through the circuit. As charges move, they lose potential energy and gain kinetic energy, traveling from an area of higher potential to an area of lower potential.
Learn more about circuit charges here:https://brainly.com/question/33472152
#SPJ6
Charges move in a circuit primarily due to the electrical field created by a voltage difference. The electrical field forces the charges, often free electrons, to accelerate, creating an electrical current and eventually reaching a constant 'drift velocity'. The presence and strength of a magnetic field can also affect the flow of charges.
Explanation:In a circuit, charges move due to an electrical field created by a voltage difference, such as a battery. This voltage difference exerts forces on the free electrons, causing them to accelerate and thus creating an electrical current. The exact rate at which these charges flow, meaning the amount of charge per unit of time, is influenced by factors such as the voltage applied, the state and type of the material (conductor or insulator), and the strength of the electrical field.
In the case of a conducting material, which is often the type of material used in circuits, the electrical field forces charge to flow and lose kinetic energy in the process until it reaches a constant velocity, known as the 'drift velocity'. This is essentially an equilibrium state where charges are constantly moving due to the force provided by the electrical field, but their speed or kinetic energy does not increase due to interactions with atoms and free electrons, similar to an object falling and reaching its terminal velocity.
It's also important to acknowledge here the role of a magnetic field, which can also impact the movement of charges in a conductor, causing a change in the direction of the electron flow, and hence, influencing the current within the circuit.
Learn more about the Movement of Charges in a Circuit here:https://brainly.com/question/933663
#SPJ6
When is the angular momentum of a system constant?
a. When the total kinetic energy is constant.
b. When no net external force acts on the system.
c. When the linear momentum and the energy are constant.
d. When no net torque acts on the system.
e. When the moment of inertia is constant.
The angular momentum of a system constant when no net torque acts on the system. The correct option is d.
When there is no external torque operating on a system in a net way, there will be no change in the system's angular momentum. The principle of the conservation of angular momentum is one of the most fundamental principles in all of physics. The rotational motion of an object or a system of objects can be described using a vector quantity known as the angular momentum of the system.
When there is no net external torque acting on a system, the total angular momentum of the system will not change over time; this property will be known as the system's inertia. This indicates that if an item or system is originally at rest or has a particular angular momentum, it will keep that angular momentum unless an external torque is applied to it and causes it to rotate in the opposite direction.
The other options (a,b,c, and e) do not guarantee continuous angular momentum. Even if some of those conditions could result in particular outcomes for the system, the conservation of angular momentum requires that the system have no net external torque.
To know more about angular momentum
https://brainly.com/question/4126751
#SPJ4
________ are more likely to be found near rural communities due to the large requirement for space.
Military bases
Farms
Domed stadiums
Coal mines
Complex highway interchanges
Military bases and Farms, Domed stadiums are more likely to be found near rural communities due to the large requirement for space.
What is Rural Communities?
A rural area is an expanse of open ground with few houses or other structures and few inhabitants. The population density in a rural location is very low.
A rural area is an expanse of open ground with few houses or other structures and few inhabitants. The population density in rural areas is quite low. Numerous individuals reside in urban or suburban areas. Their residences and places of business are situated close together.
Most rural communities' main industry is agriculture. On farms or ranches, the majority of people reside or work.
Therefore, Military bases and Farms, Domed stadiums are more likely to be found near rural communities due to the large requirement for space.
To learn more about Rural communities, refer to the link:
https://brainly.com/question/19515708
#SPJ5
proton with an initial speed of 800000 m/s is brought to rest by an electric field.
Part A- Did the proton move into a region of higher potential or lower potential?
Part B - What was the potential difference that stopped the proton?
ΔU = ________V
Part C - What was the initial kinetic energy of the proton, in electron volts?
Ki =_________eV
Best Answer
A) Into a region of higher potential
Explanation:
Let's remind that:
- Like charges repel each other
- Unlike charges attract each other
Here we have a proton, which is a positive charge, which is brought to rest by an electric field. This means that the electric field has slowed down the proton: so, the force exerted by the electric field on the proton was opposite to the direction of motion of the proton. But the lines of an electric field go from points at higher potential to points at lower potential - this means that the proton was actually moving towards a point at higher potential. (for example, it was moving towards another positive charge source of the field, so the potential increases as the proton approaches the source charge).
B) 3,338 V
The initial kinetic energy of the proton is given by:
[tex]K_i = \frac{1}{2}mv^2[/tex]
where
[tex]m=1.67\cdot 10^{-27} kg[/tex] is the proton mass
[tex]v=800,000 m/s=8\cdot 10^5 m/s[/tex] is the initial speed
Substituting,
[tex]K_i = \frac{1}{2}(1.67\cdot 10^{-27}kg)(8\cdot 10^5 m/s)^2=5.34\cdot 10^{-16}J[/tex]
When the proton is brought to rest, all this energy is converted into electric potential energy, given by
[tex]\Delta U = q \Delta V[/tex]
where
[tex]q=1.6\cdot 10^{-19} C[/tex] is the proton charge
[tex]\Delta V[/tex] is the potential difference
Since [tex]\Delta U = K_i[/tex], we can solve to find the potential difference:
[tex]\Delta V=\frac{K_i}{q}=\frac{5.34\cdot 10^{-16} J}{1.6\cdot 10^{-19} C}=3,338 V[/tex]
C) 3,338 eV
We already found the initial kinetic energy of the proton in part B), and it is given by
[tex]K_i =5.34\cdot 10^{-16}J[/tex]
Now we want to convert it into electron volts; keeping in mind the conversion factor between eV and Joules,
[tex]1 eV = 1.6\cdot 10^{-19}J[/tex]
we find:
[tex]K_i = \frac{5.34 \cdot 10^{-16} J}{1.6\cdot 10^{-19} J}=3,338 eV[/tex]
The proton moved into a region of higher potential. The potential difference that brought it to rest and its initial kinetic energy can be calculated using formulas and given values.
Explanation:Part A: The proton moved into a region of higher potential. This is because the electric field does work on the proton to bring it to a stop, which indicates that the proton moved against the direction of the electric field and hence into a region of higher potential.
Part B: The potential difference that stopped the proton can be calculated using the formula ΔU = ΔK/e, where ΔK is the change in kinetic energy and e is the charge of the proton. Given that the initial speed of the proton is 800000 m/s (which implies a kinetic energy of ½ mv^2), and knowing that the charge of a proton is 1.6 x 10^-19 C, you can solve this equation to find ΔU.
Part C: The initial kinetic energy of the proton can be calculated using the formula K = ½ mv^2. Converting this to electron volts (eV) involves dividing by the charge of an electron (e), which is also 1.6 x 10^-19 C.
Learn more about Electric Potential & Kinetic Energy here:https://brainly.com/question/16890427
#SPJ2
A 282 kg bumper car moving 3.50 m/s collides with a 155 kg bumper car moving -1.38 m/s. Afterwards the 282 kg car moves at 1.10 m/s. Find the velocity of the 155 kg car afterwards?
Answer:
4.03 m/s
Explanation:
Initial momentum = final momentum
(282 kg) (3.50 m/s) + (155 kg) (-1.38 m/s) = (282 kg) (1.10 m/s) + (115 kg) v
v = 4.03 m/s
We use the conservation of momentum to find the velocity of the 155 kg bumper car after the collision. Substituting the given values, we solve to get the final velocity as 2.99 m/s. The final velocity of the 155 kg car is 2.99 m/s.
The question is about a collision between two bumper cars and finding the velocity after the collision. We can use the principle of conservation of momentum which states that the total momentum before the collision is equal to the total momentum after the collision.
Let's define the variables:
Mass of first car, m₁ = 282 kgInitial velocity of first car, u₁ = 3.50 m/sMass of second car, m₂ = 155 kgInitial velocity of second car, u₂ = -1.38 m/sFinal velocity of first car, v₁ = 1.10 m/sFinal velocity of second car, v₂ = ?Using the conservation of momentum:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Substituting the given values into the equation:
(282 kg)(3.50 m/s) + (155 kg)(-1.38 m/s) = (282 kg)(1.10 m/s) + (155 kg)v₂
Simplifying:
987 kg·m/s - 213.9 kg·m/s = 310.2 kg·m/s + 155 kg·v₂
773.1 kg·m/s = 310.2 kg·m/s + 155 kg·v₂
Subtracting 310.2 kg·m/s from both sides:
462.9 kg·m/s = 155 kg·v₂
Solving for v₂:
v₂ = 462.9 kg·m/s / 155 kg = 2.99 m/s
Therefore, the final velocity of the 155 kg car after the collision is 2.99 m/s.
How can solar energy be used to produce electricity
Answer:
Explanation:
Electricity is generated from solar energy predominantly by the use of photovoltaic cells.
The sun is the ultimate source of energy for all life and the bulk of the solar system at large.
Energy from the sun is used for various life processes and other abiotic uses.
In order to harness the sun's energy to produce electricity, a photovoltaic cell is required. These cells are often used in making solar panels which are available in most places today.
Electricity is produced by the movement of electrons within a cell or a body. In a photovolatic cell, the radiation from the sun causes chemical reactions to occur on the surface of these materials. The reaction is such in which electrons are produced. The movement of electrons in these cells results in the generation of electricity.
In some other cases, sunlight can be concentrated for heating water to produce steam. Steam can be used to drive turbines to produce electricity too.
What are the four types of macromolecules
Hello There!
The 4 types of macromolecules are
NUCLEIC ACIDS
PROTEINS
LIPIDS
CARBOHYDRATES
Answer:
1 2 3 4
Explanation:
A neutral object develops an electric charge when it either gains or loses electrons
True or false ?
Answer:
True
Explanation:
A neutral object is an object whose net charge is zero, so the sum of the positive charges is equal to the sum of negative charges:
[tex]Q=Q_{pos}+Q_{neg}=0\\Q_{pos} = -Q_{neg}[/tex]
If the neutral object develops an electric charge (= different from zero), it means that this balance has changed. In particular, usually electric charge is carried by electrons (negative charges), so the object has either gained or lost electrons.
In particular:
- if the object has gained electrons, it has became negatively charged
- If the object has lost electrons, it has became positively charged
What effect does friction have on a roller coaster
Hello There!
Let's first talk about "What Is Friction"
Friction is a force that pulls when two object touch each-other. Friction happens because the molecules on one surface interlock with the molecules on another surface.
Now, let's get back to our original question "What Effect Does Friction Have On A Roller Coaster"
On a roller coaster, friction is a force that opposes motion and significantly slows the cars as they move on the track.
When the core of a star like the Sun uses up its supply of hydrogen for fusion, the core begins to ________.
Answer:
Shrink and heat
Explanation:
Hope my answer has helped you!
Answer:
Shrink and heat up
Explanation:
When the core of a star like the Sun uses up its supply of hydrogen for fusion, the core begins to contract or shrink up which leads to release of energy from the core.
The released energy starts to heat up core until it has gotten to the point where the core is hot enough to able start up the fusion of hydrogen into another element (helium).
The layers on the outside of the sun absorbs the released the energy and starts to enlarge or swell up and the sun develops a very high luminosity which means it start to shine brighter and brighter.
As the outside large swells up, due to the absorption of the released energy, it start to become cool thereby causing a low surface temperature.
It is at the stage that the sun becomes a red giant.
The amount of space an object takes up is its
Volume.
Hope this helps.
r3t40
A runner moves 2.88 m/s north. She accelerates at 0.350 m/s^2 at a -52.0 angle. At the point in the motion where she is running directly east, what is Δx?
Answer:
Δx = 11.7 and Δy = 15
The question requires the use of kinematics and vector decomposition to calculate the horizontal displacement of a runner when she changes direction from the north to the east due to acceleration at a given angle.
The student is asking about the projection motion of a runner moving north, who accelerates at an angle. The question focuses on calculating the horizontal displacement (denoted as Δx) when the runner is running directly east. To solve this, one would have to break down the acceleration vector into its northward and eastward components and then use kinematic equations to determine the eastward displacement from the point of initial velocity to the point where the northward velocity component reaches zero and the runner is moving directly east.
Is the distance traveled during a specific unit of time.
Answer:
Speed is the distance traveled during a specific unit of time.
Answer:
speed
Explanation:
edge 2021
Hydrogen-2 and Hydrogen-3 fuse to form Helium-4 and a neutron. How much energy is released in this nuclear reaction?
Final answer:
In a nuclear fusion reaction, when hydrogen-2 and hydrogen-3 combine to form helium-4 and a neutron, a certain amount of energy is released. The exact amount of energy released can be calculated using the equation E = mc^2, where E is the energy, m is the change in mass, and c is the speed of light.
Explanation:
In a nuclear fusion reaction, when hydrogen-2 (deuterium) and hydrogen-3 (tritium) combine to form helium-4 and a neutron, a certain amount of energy is released. The exact amount of energy released can be calculated using the equation E = mc2, where E is the energy, m is the change in mass, and c is the speed of light.
Based on the given information, we can calculate the change in mass by subtracting the mass of the reactants from the mass of the products. The mass of deuterium (hydrogen-2) is 2 grams, the mass of tritium (hydrogen-3) is 3 grams, the mass of helium-4 is 4 grams, and the mass of a neutron is negligible. Therefore, the change in mass is 2 grams + 3 grams - 4 grams = 1 gram.
Using the equation E = mc2, where c is the speed of light (approximately 3 x 108 m/s), we can calculate the energy released:
E = (1 gram) x (3 x 108 m/s)2 = 9 x 1016 joules
What causes convection currents to occur?
Answer:
Convection currents are caused by an uneven temperature within something.
For example, within the earth, Convection currents occur when a reservoir of fluid is heated at the bottom, and allowed to cool at the top.. Heat causes the fluid to expand, decreasing its density. If there is cooler material on top, it will be more compact and therefore, will sink to the bottom. The heated material will rise to the top.
When a second identical bulb is added in series to a circuit with a single bulb, the resistance of the circuit
Answer:
Will double
Explanation:
The total resistance of a circuit with n resistors in series is equal to the sum of the individual resistances:
[tex]R_T = R_1 + R_2 + ... + R_n[/tex]
In this problem, we have a circuit with initially one light bulb of resistance R, so the total resistance of the circuit is:
[tex]R_T = R[/tex]
Later, a second identical bulb (so, same resistance R) is added in series to the circuit; so applying the previous formula, we see that the new total resistance is
[tex]R_T = R + R = 2 R[/tex]
So, the resistance has doubled.
Two identical satellites orbit the earth in stable orbits. One satellite orbits with a speed v at a distance r from the center of the earth. The second satellite travels at a speed that is less than v. At what distance from the center of the earth does the second satellite orbit?
Answer:
The second satellite will orbit at a larger distance
Explanation:
A satellite orbits the Earth due to its gravitational attraction to the Earth, which is equal to the centripetal force, so we can write
[tex]G\frac{Mm}{r^2}=m\frac{v^2}{r}[/tex]
where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from Earth's center
v is the speed of the satellite
We can rewrite the formula as
[tex]r=\frac{GM}{v^2}[/tex]
so we see that the distance of the satellite from the center of the Earth is inversely proportional to the square of the distance. This means that the second satellite, which travels at a lower speed, will have a larger distance from the centre of the Earth.
A satellite orbiting at a lesser speed than another identical satellite orbits at a greater distance from the center of the earth based on principles of orbital dynamics and Kepler's Second Law.
Explanation:The distance at which the second satellite orbits the earth, with a speed less than v, is greater than r. This is based on principles of orbital dynamics, which show a relationship between orbital speed and the distance from the center of the object being orbited. Looking at the gravitational force that supplies the centripetal acceleration for an orbiting object, we can see that as speed decreases, the gravitational force also decreases, meaning the object must be further from the center of gravity.
Take into consideration Kepler's Second Law, in that the satellite travels an equal area within equal times. If we consider two satellites orbiting, the one with a lesser speed will take a greater time to cover the same area, hence, it will be at a greater distance from the earth's center.
These observations are true for stable, circular orbits. Real world conditions might vary due to additional influences such as atmospheric drag, oblateness of the earth, and gravitational perturbations from the sun and moon.
Learn more about Orbital Dynamics here:https://brainly.com/question/30239383
#SPJ3
A submarine can withstand an external pressure of 63 atm before collapsing. If seawater has a density of 1027 kg/m^3 how deep can the sub dive?
Answer:
623.8 m
Explanation:
At a distance of 0.75 meters from its center, a Van der Graff generator interacts as if it were a point charge, with that charge concentrated at its center. A test charge at that distance experiences an electric field of 4.5 × 10^5 newtons/coulomb. What is the magnitude of charge on this Van der Graff generator?
A. 1.7 × 10^-7 coulombs
B. 2.8 × 10^-7 coulombs
C. 3.0 × 10^-7 coulombs
D. 8.5 × 10^-7 coulombs
Answer: B
i tried putting explanation but its not working
Answer:
B. [tex]2.8 \times 10^{-5} C[/tex]
Explanation:
As we know that the electric field due to Van de graff generator is same as that of a point charge
so it is given by
[tex]E = \frac{kQ}{r^2}[/tex]
here we know that
[tex]E = 4.5 \times 10^5 N/c[/tex]
also we know that
[tex]r = 0.75 m[/tex]
now from above formula we have
[tex]4.5 \times 10^5 = \frac{(9\times 10^9)(Q)}{(0.75)^2}[/tex]
here we will have
[tex]Q = 2.8 \times 10^{-5} C[/tex]
Refraction occurs when light passing from one medium to another. True or False
Answer: True
Refraction is a phenomenon in which the light bends or changes its direction (and changes the speed of propagation, as well) when passing through a medium with a refractive index [tex]n[/tex] different from the other medium.
Where the Refractive index is a number that describes how fast light propagates through a medium or material:
[tex]n=\frac{c}{v}[/tex]
Being [tex]n[/tex] a relation between the speed of light in vacuum [tex]c[/tex] and its speed in the other medium [tex]v[/tex] .
It is important to note that in this process, the wavelength may be modified because it depends on the medium, however, the refracted ray of light does not change its frequency.
1).which of the following describes the interaction between a south pole and a north pole of a magnet
a) attract
b) repel
c) stay unchanged
d) it depends
2). which of the following producing a magnetic field
a) motion of electrons
b) pair of atoms
c) magnetic area
d) static charges
1) a) attract
The magnetic force between two magnetic poles is attractive for two unlike poles and repulsive for two like poles. Therefore we have:
1- For two north poles, the force between them is repulsive
2- For two south poles, the force between them is repulsive
3- For a north pole and a south pole, the force between them is attractive
In this problem, we are in the situation described in 3), so the force between the poles is attractive.
2) a) motion of electrons
While electric fields are produced by static electric charges, magnetic fields are produced by charges in motion (currents). In particular, a current in a wire (where a current is simply the motion of electrons inside the wire) produces a magnetic field whose intensity is
[tex]B=\frac{\mu_0 I}{2 \pi r}[/tex]
where
I is the current in the wire
r is the radial distance from the wire
And the direction of the field lines are such that the field form concentric circles around the wire.
Final answer:
A south pole and a north pole of a magnet will attract each other, and a magnetic field is mainly produced by the motion of electrons or the presence of an electric current.
Explanation:
When considering the interaction of magnetic poles, opposite poles indeed attract each other according to magnetic field principles. Specifically, a south pole and a north pole will experience attraction because the magnetic field lines become denser between them, pulling the magnets together. Therefore, the correct answer to the first part of the question is (a) attract.
Regarding what produces a magnetic field, one of the principal sources is the motion of electrons or an electric current. This relationship is observed in electromagnets, where a current flowing through wires creates a surrounding magnetic field. Consequently, the correct answer to the second part of the question is (a) motion of electrons.
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 1.00 s, it rotates 21.0 rad. During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 1.00 s? (d) With the angular acceleration unchanged, through what additional angle (rad) will the disk turn during the next 1.00 s?
With constant angular acceleration [tex]\alpha[/tex], the disk achieves an angular velocity [tex]\omega[/tex] at time [tex]t[/tex] according to
[tex]\omega=\alpha t[/tex]
and angular displacement [tex]\theta[/tex] according to
[tex]\theta=\dfrac12\alpha t^2[/tex]
a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of
[tex]21.0\,\mathrm{rad}=\dfrac12\alpha(1.00\,\mathrm s)^2\implies\alpha=42.0\dfrac{\rm rad}{\mathrm s^2}[/tex]
b. Under constant acceleration, the average angular velocity is equivalent to
[tex]\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2[/tex]
where [tex]\omega_f[/tex] and [tex]\omega_i[/tex] are the final and initial angular velocities, respectively. Then
[tex]\omega_{\rm avg}=\dfrac{\left(42.0\frac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)}2=42.0\dfrac{\rm rad}{\rm s}[/tex]
c. After 1.00 s, the disk has instantaneous angular velocity
[tex]\omega=\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)=42.0\dfrac{\rm rad}{\rm s}[/tex]
d. During the next 1.00 s, the disk will start moving with the angular velocity [tex]\omega_0[/tex] equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle [tex]\theta[/tex] according to
[tex]\theta=\omega_0t+\dfrac12\alpha t^2[/tex]
which would be equal to
[tex]\theta=\left(42.0\dfrac{\rm rad}{\rm s}\right)(1.00\,\mathrm s)+\dfrac12\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)^2=63.0\,\mathrm{rad}[/tex]
A constant voltage is applied across a circuit. If the resistance in the circuit is doubled, what is the effect on the power dissipated by the circuit?
a.The power dissipated is quadrupled
b.The power dissipated is reduced by a factor of 2.
c.The power dissipated is reduced by a factor of 4
d. The power dissipated is doubled.
e. The power dissipated remains constant.
Answer:
b.The power dissipated is reduced by a factor of 2.
Explanation:
The power dissipated in the circuit is given by
[tex]P=\frac{V^2}{R}[/tex]
where
V is the voltage
R is the resistance
In this problem:
- The voltage V is kept constant
- The resistance is doubled, so R' = 2R
Therefore, the new power dissipated is
[tex]P'=\frac{V^2}{R'}=\frac{V^2}{2R}=\frac{1}{2}\frac{V^2}{R}=\frac{1}{2}P[/tex]
so, the power dissipated is reduced by a factor of 2.
Final answer:
When resistance is doubled and voltage is constant, the power dissipated by the circuit is halved. The power is proportional to the inverse of resistance, so doubling resistance reduces power by a factor of 2.
Explanation:
When the resistance in a circuit is doubled while keeping the voltage constant, the current in the circuit according to Ohm's Law (V = IR) will be halved, because I = V/R. The power dissipated by the circuit can be calculated using the formula P = V2/R. If the resistance is doubled, the new power dissipated becomes Pnew = V2/(2R), which is half the original power. Since the original power is Porig = V2/R, by doubling the resistance, the power is effectively reduced by a factor of 2, not 4.
Thus, the correct answer is: b. The power dissipated is reduced by a factor of 2.
In 1909 Robert Millikan was the first to find the charge of an electron in his now-famous oil drop experiment. In the experiment tiny oil drops are sprayed into a uniform electric field between a horizontal pair of oppositely charged plates. The drops are observed with a magnifying eyepiece, and the electric field is adjusted so that the upward force q E on some negatively charged oil drops is just sufficient to balance the downward force m g of gravity. Millikan accurately measured the charges on many oil drops and found the values to be whole-number multiples of 1.6 × 10−19 C — the charge of the electron. For this he won the Nobel Prize. If a drop of mass 1.51837 × 10−12 kg remains stationary in an electric field of 1 × 106 N/C, what is the charge on this drop? The acceleration due to gravity is 9.8 m/s 2 . Answer in units of C.
Answer:
[tex]1.49\cdot 10^{-17}C[/tex]
Explanation:
The oil drop remains stationary when the electric force on it and the gravitational force are balanced, so we have:
[tex]F_E = F_G\\qE = mg[/tex]
where
q is the charge of the oil drop
E is the electric field strength
m is the mass of the drop
g is the acceleration due to gravity
here we have
[tex]E=1\cdot 10^6 N/C[/tex]
[tex]m=1.51837\cdot 10^{-12} kg[/tex]
[tex]g=9.8 m/s^2[/tex]
So the charge of the drop is
[tex]q=\frac{mg}{E}=\frac{(1.51837\cdot 10^{-12} kg)(9.8 m/s^2)}{1\cdot 10^6 N/C}=1.49\cdot 10^{-17}C[/tex]
Which of these stars has the coolest surface temperature?A. A starB. F starC. G starD. K star
Answer:
D. K star
Explanation:
Stars are classified into different groups according to their peak wavelength and their surface temperature.
In particular, we have the following group of stars, which correspond to the following surface temperatures:
Group O - Temperature > 25,000 K
Group B - Temperature 11,000 - 25,000 K
Group A - Temperature 7,500 - 11,000 K
Group F - Temperature 6,000 - 7,500 K
Group G - Temperature 5,000 - 6,000 K
Group K - Temperature 3,500 - 5,000 K
Group M - Temperature < 3,500 K
So among the options given, the star with the coolest surface temperature is star in group K.
The coolest surface temperature among the options is a K star. Ait depends on the surface temperature. The correct option is option (D).
Stars are categorized into different spectral classes based on their surface temperature.
The spectral classes are labeled with letters, starting from the hottest to the coolest: O, B, A, F, G, K, and M. So, a K star has a cooler surface temperature compared to an F star, a G star, and an A star.
Therefore, the correct option is option (D) K star has the coolest temperature.
To know more about the coolest surface temperature:
https://brainly.com/question/14203054
#SPJ6