In an ionic compound, the size of the ions affects the internuclear distance (the distance between the centers of adjacent ions), which affects lattice energy (a measure of the attractive force holding those ions together). Based on ion sizes, rank these compounds of their expected lattice energy..
Note: Many sources define lattice energies as negative values. Please rank by magnitude and ignore the sign. |Lattice energy| = absolute value of the lattice energy.
a. RbCl ,b. RbBr ,c. Rbl ,d. RbF

Answers

Answer 1

Answer:

b

Explanation:

bc


Related Questions

Red #40 has an acute oral LD50 of roughly 5000 mg dye/1 kg body weight. This means if you had a mass of 1 kg, ingesting 5000 mg of Red #40 will have a 50% of killing you. Determine the amount of dye a 70 kg person would need to eat to reach his or her LD50. How many moles of dye would that be? The molar mass of Red #40 is 496.42 g/mol. Using the calculated concentration of Red #40 dye in the sports drink, how many of liters of sports drink would it take to reach this LD50?

Answers

Answer:

350 g dye

0.705 mol

2.9 × 10⁴ L

Explanation:

The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:

70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye

The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:

350 g × (1 mol / 496.42 g) = 0.705 mol

The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:

3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L

Final answer:

A 70 kg person would need to eat 350,000 mg of Red #40 dye to reach the LD50. This is equivalent to 704.01 mol of Red #40 dye. The number of liters of sports drink needed depends on the concentration of Red #40 dye in the drink.

Explanation:

To determine the amount of dye a 70 kg person would need to eat to reach the LD50, we can use the information provided. The LD50 for Red #40 is 5000 mg dye/1 kg body weight. So for a 70 kg person, the LD50 would be:

(5000 mg dye/1 kg body weight) * 70 kg = 350,000 mg of Red #40 dye.

To calculate the number of moles of dye, we divide the mass of dye by its molar mass. The molar mass of Red #40 is 496.42 g/mol, so:

(350,000 mg) / (496.42 g/mol) = 704.01 mol of Red #40 dye.

Finally, to determine the number of liters of sports drink needed to reach this LD50, we need to know the concentration of Red #40 dye in the sports drink.

Learn more about LD50 here:

https://brainly.com/question/34196078

#SPJ3

The gas OF2 can be produced from the electrolysis of an aqueous solution of KF, as shown in the equation below.
OF2(g) + 2 H+(aq) + 4 e- → H2O(l) + 2 F-(aq) E° = +2.15 V
Using the given standard reduction potential, calculate the amount of OF2 that is produced, and the electrode at which the OF2 is produced, upon the passage of 0. 480 faradays through an aqueous KF solution.

A) 6.48 g of OF2 at the anode.
B) 26.0 g of OF2 at the anode.
C) 6.48 g of OF2 at the cathode.
D) 26.0 g of OF2 at the cathode

Answers

Answer:

A) 6.48 g of OF₂ at the anode.

Explanation:

The gas OF₂ can be obtained through the oxidation of F⁻ (inverse reaction of the reduction presented). The standard potential of the oxidation is the opposite of the standard potential of the reduction.

H₂O(l) + 2 F⁻(aq) → OF₂(g) + 2 H⁺(aq) + 4 e⁻    E° = -2.15 V

Oxidation takes place in the anode.

We can establish the following relations:

1 Faraday is the charge corresponding to 1 mole of e⁻.1 mole of OF₂ is produced when 4 moles of e⁻ circulate.The molar mass of OF₂ is 54.0 g/mol.

The mass of OF₂ produced when 0.480 F pass through an aqueous KF solution is:

[tex]0.480F.\frac{1mole^{-} }{1F} .\frac{1molOF_{2}}{4mole^{-} } .\frac{54.0gOF_{2}}{1molOF_{2}} =6.48gOF_{2}[/tex]

Using the data provided here, the mass of the compound produced is 6.48 g of OF2

What is electrolysis?

Electrolysis refers to the breaking u p of a molecule by the passage of direct current through it. The equation of the reaction is; H₂O(l) + 2 F⁻(aq) → OF₂(g) + 2 H⁺(aq) + 4 e⁻    E° = -2.15 V.

Now;

1 mole of OF2 is realeased by the passage of 4 F of electricity

x moles of OF2 is produced by the passage of  0.480F

x = 0.12 moles

Mass of OF2 = 0.12 moles * 54 g/mol = 6.48 g of OF2

Learn more about electrolysis: https://brainly.com/question/11934397

Every night when the sun sets, the air temperature decreases. How does the relative humidity change (increase, decrease, or stay the same) when the air temperature decreases?

Answers

Final answer:

As the air temperature decreases, the relative humidity generally increases because the air's capacity to hold water vapor also reduces. On evenings when the temperature reduces enough to reach the dew point, fog might form as a result. This relationship between temperature and humidity also affects the likelihood of condensation and the range of temperature fluctuations in different regions.

Explanation:

The term humidity often refers to relative humidity, which indicates how much water vapor is present in the air compared to the maximum possible. This maximum relies on the air's temperature: as the air temperature decreases, the amount of water vapor the air can hold also decreases. Consequently, if the quantity of water vapor stays the same, the relative humidity will increase.

In the evening, when the air temperature declines, the relative humidity usually rises, sometimes to the point of reaching the dew point, the temperature at which the relative humidity is 100% and fog can form due to the condensation of small water droplets that stay in suspension. When the dew point is below 0°C, a greater possibility of freezing temperatures exists, which is a concern for farmers. In arid regions, the low humidity means low dew-point temperatures, hence, condensation is unlikely, resulting in a larger range of temperature fluctuations compared to regions with higher humidity.

Learn more about Relative Humidity here:

https://brainly.com/question/10849972

#SPJ3

Determine the value of Kc for the following reaction if the equilibrium concentrations are as follows:
[N2]eq = 1.5 M,[H2]eq = 1.1 M,[NH3]eq = 0.47 M.
N2(g) + 3 H2(g) ⇌ 2 NH3(g)

Answers

Answer:

0.11

Explanation:

The given equilibrium reaction and the equilibrium concentrations are shown below as:-

[tex]\begin{matrix}&N_2&+&3H_2&\rightleftharpoons &2NH_3\\Concentration\ at\ equilibrium:-&1.5&&1.1&&0.47\end{matrix}[/tex]

The Kc of an equilibrium reaction measures relative amounts of the products and the reactants present during the equilibrium.

It is the ratio of the concentration of the products and the reactants each raised to their stoichiometric coefficients. The concentration of the liquid and the gaseous species does not change and thus is not written in the expression.

The equation is as follows:-

[tex]N_2_{(g)} +3H_2_{(g)}\rightarrow 2NH_3_{(g)}[/tex]

The expression for the Kc is:-

[tex]K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}[/tex]

Thus, applying the values as:-

[tex]K_c=\frac{0.47^2}{1.5\times 1.1^3}=0.11[/tex]

The value of the equilibrium constant (Kc) for the reaction N2(g) + 3 H2(g) ⇌ 2 NH3(g) with the given equilibrium concentrations is approximately 0.11.

To determine the value of the equilibrium constant (Kc) for the reaction N2(g) + 3 H2(g) ⇌ 2 NH3(g), where the equilibrium concentrations are [N2]=1.5 M, [H2]=1.1 M, and [NH3]=0.47 M, we would use the equilibrium expression for Kc:

Kc = [NH3]2 / ([N2] × [H2]3)

Inserting the given equilibrium concentrations, we get:

Kc = (0.47 M)2 / (1.5 M × (1.1 M)3)

Kc = (0.2209 M2) / (1.5 M × 1.331 M3)

Kc = 0.2209 M2 / 1.9965 M4

Kc ≈ 0.11

The value of the equilibrium constant for this reaction is therefore approximately 0.11.

Part D 2ClO2(g)+2I−(aq)→2ClO−2(aq)+I2(s) Drag the appropriate labels to their respective targets. ResetHelp e−→e Superscript- rightarrow ←e−leftarrow e Superscript- Cathode Cathode Anode Anode II Superscript- ClO−2C l O Subscript 2 Superscript- Request Answer Part E Indicate the half-reaction occurring at Anode. Express your answer as a chemical equation. Identify all of the phases in your answer. nothing

Answers

Answer: The half reaction occurring at anode is [tex]2I^-(aq.)\rightarrow I_2(s)+2e^-[/tex]

Explanation:

The substance having highest positive [tex]E^o[/tex] potential will always get reduced and will undergo reduction reaction.

For the given chemical equation:

[tex]2ClO_2(g)+2I^-(aq)\rightarrow 2ClO^{-2}(aq.)+I_2(s)[/tex]

The half reaction follows:

Oxidation half reaction:  [tex]2I^-(aq.)\rightarrow I_2(s)+2e^-;E^o_{I_2/I^-}=0.53V[/tex]

Reduction half reaction:  [tex]ClO_2(g)+e^-\rightarrow ClO_2^-(aq.);E^o_{ClO_2/ClO_2^-}=+0.954V[/tex]    ( × 2 )

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

Hence, the half reaction occurring at anode is [tex]2I^-(aq.)\rightarrow I_2(s)+2e^-[/tex]

The half reaction occurring at anode is:

[tex]2I^-(aq)---- > I_2(s)+2e^-[/tex]

Half reaction for the cell:

The substance having highest positive  potential will always get reduced and will undergo reduction reaction.

Balanced chemical equation:

[tex]2ClO_2(g)+2I^-(aq)----- > 2ClO^{2-}(aq)+I_2(s)[/tex]

The half reaction follows:

Oxidation half reaction:  [tex]2I^-(aq)---- > I_2(s)+2e^-[/tex] , Reduction potential is 0.53V

Reduction half reaction:  [tex]ClO_2(g)+e^----- > ClO_2^-[/tex]   ( × 2 ), Oxidation potential is +0.954 V

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

Hence, the half reaction occurring at anode is :

[tex]2I^-(aq)---- > I_2(s)+2e^-[/tex]

Find more information about Reduction potential here:

brainly.com/question/7484965

Give the set of four quantum numbers that represent the last electron added (using the Aufbau principle) to the Ni atom. Give the set of four quantum numbers that represent the last electron added (using the Aufbau principle) to the Ni atom.

a) n = 4, l = 6, ml = 0, ms = -12
b) n = 3, l = 2, ml = 0, ms = -12
c) n = 3, l = 1, ml = 1, ms = -12
d) n = 4, l = 3, ml = 3, ms = +12
e) n = 3, l = 2, ml = 2, ms = +12

Answers

Answer:

B

Explanation:

That electron is found in the 3d orbital.

ml=-2,-1,0,1,2

n=3

l=2

ml=0

ms=-1/2

Since it must be of opposite spin according to Pauli exclusion principle.

I know that the answer is C. 8, but can you explain step by step how to get that answer?

Answers

Answer:

8

Explanation:

Oxidation:

[tex]Fe^{2+} -->Fe^{3+}+e^{-}[/tex]

Reduction:

[tex]Cr_{2}O_{7}^{2-}+6e^{-} -->2Cr^{3+}[/tex]

We have to equalise the number  of moles of electrons gained and lost in a redox reaction in order to get a balanced reaction.

Hence we have to multiply the oxidation reaction throughout by 6.

and adding the two half-reactions we obtain:

[tex]6Fe^{2+}+Cr_{2}O_{7}^{2-} -->6Fe^{3+}+2Cr^{3+}[/tex]

Still the total charge and number of oxygen is not balanced.

Since the reaction takes place in acidic conditions, we will add required number of H+ to the appropriate side to balance the charge and add half the amount of H2O to balance the hydrogen atoms.

We add 14 H+ on LHS and 7H2O on RHS to obtain:

[tex]6Fe^{2+}+Cr_{2}O_{7}^{2-}+14H^{+} -->6Fe^{3+}+2Cr^{3+}+7H_{2}O[/tex]

Sum of coefficients of product cations = 6+2 = 8

The solubility of NaCH3CO2 in water is ~1.23 g/mL. What would be the best method for preparing a supersaturated NaCH3CO2 solution?a)add 130 g of NaCH3CO2 to 100 mL of H2O at room temperature while stirring until all the solid dissolvesb)add 130 g of NaCH3CO2 to 100 mL of H2O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperaturec)add 1.23 g of NaCH3CO2 to 200 mL of H2O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature

Answers

Answer:

b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.

Explanation:

The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).

What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?

a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves. NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.

b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.

c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.

When nickel metal is added to silver nitrate in solution, silver metal and nickel (II) nitrate are
Sduced. What mass of silver is produced from 115 g of Ni?

Answers

Answer:

Mass of silver metal = 424 g

Explanation:

Data Given

Reactants = Nickle (Ni) metal and Silver nitrate (AgNO₃)

product = Ni(NO₃)₂ and Silver metal (Ag)

mass of nickle = 115 g

mass of silver = ?

Solution:

First write a balanced reaction

               Ni + 2AgNO₃ ----------> 2Ag + Ni(NO₃)₂

Now Look for the  number of moles of Nickle and Silver meta

                Ni + 2AgNO₃ ----------> 2Ag + Ni(NO₃)₂

               1 mol                              2 mol

So,

1 mole of nickle combine with silver nitrate and produce 2 moles of silver metal

Now Convert moles to mass for which we have to molar masses of Nickle and Silver metal

Molar mass of Nickle = 58.6 g/mol

Molar mass of Silver = 108 g/mol

                 Ni         +     2AgNO₃   ---------->    2Ag      +     Ni(NO₃)₂

               1 mol (58.6 g/mol)                      2 mol (108 g/mol)

                58.6 g                                                216 g

So,

58.6 g of Nickle metal produces 216 grams of silver metal.

Now

What mass of silver is produced from 115 g of Ni

Apply unity formula

                       58.6 g of Ni ≅ 216 g of Ag

                       115 g of Ni ≅ X g of Ag

By doing cross multiplication

                     Mass of Ag = 216 g x 115 g / 58.6 g

                     Mass of Ag = 424 g

Calculate ΔGrxn at 298 K under the conditions shown below for the following reaction.
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g)
ΔG° = -28.0 kJ
P(CO) = 1.4 atm, P(CO2) = 2.1 atm
ΔG°rxn = ?

Answers

Answer : The value of [tex]\Delta G_{rxn}[/tex] is -24.9 kJ/mol

Explanation :

First we have to calculate the value of 'Q'.

The given balanced chemical reaction is,

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(s)+3CO_2(g)[/tex]

The expression for reaction quotient will be :

[tex]Q=\frac{(p_{CO_2})^3}{(p_{CO})^3}[/tex]

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

[tex]Q=\frac{(2.1)^3}{(1.4)^2}[/tex]

[tex]Q=3.375[/tex]

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]    ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction  = ?

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = -28.0 kJ/mol

R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]

T = temperature = 298 K

Q = reaction quotient = 3.375

Now put all the given values in the above formula 1, we get:

[tex]\Delta G_{rxn}=(-28.0kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (3.375)[/tex]

[tex]\Delta G_{rxn}=-24.9kJ/mol[/tex]

Therefore, the value of [tex]\Delta G_{rxn}[/tex] is -24.9 kJ/mol

The standard free energy change of the reaction is -25kJ/mol.

The perform the task we must first calculate Kp from the data provided as follows;

P(CO) = 1.4 atm

P(CO2) = 2.1 atm

Kp = (p.CO2)^3/(p.CO)^3

Kp = (2.1)^3/(1.4)^3

Kp = 9.3/2.7

Kp = 3.4

ΔG°rxn =ΔG° + RTlnKp

Where;

R = 8.314 J/Kmol

T =  298 K

ΔG°rxn = -28.0 kJ + (8.314 * 298 * ln 3.4) * 10^-3

ΔG°rxn = -25kJ/mol

Learn more about Kp: https://brainly.com/question/953809

Draw the α-keto acid product of the transamination of an α-keto acid with an amino acid that has the side chain X (double click an existing atom and type X).

Answers

Answer:

On the attached picture.

Explanation:

Hello,

In this case, one must remember that transamination is a biochemical reaction that transfers an amino group to the carbonyl group of a ketoacid to form a new amino acid and a new ketoacid.

For this example, on the attached picture you will see the corresponding chemical reaction in which to the initial ketoacid, both the amino and an additional hydrogen are transferred from the amino acid of side chain X to form the requested α-ketoacid of side chain X.

Best regards.

An acid which could not be prepared by the reaction of an organic halide with cyanide ion followed by acid hydrolysis of the nitrile is:______a. Acetic acidb. Phenylacetic Acidc. Propanic Acid

Answers

Complete question: An acid which could not be prepared by the reaction of an organic halide with cyanide ion followed by acid hydrolysis of the nitrile is: A) propanoic acid B) phenylacetic acid C) acetic acid D) (CH3)3CCO2H E) CH3(CH2)14CO2H

Answer: the correct option is option D ((CH3)3CCO2H).

Explanation: An acid which could not be prepared by the reaction of an organic halide with cyanide ion followed by acid hydrolysis of the nitrile is Pivalic acid. Pivalic acid with the molecular formula of CH3)3CCO2H is rather prepared by hydrocarboxylation of isobutene via the Koch reaction.

Final answer:

Phenylacetic acid cannot be prepared by the SN₂ reaction of an organic halide with cyanide ion followed by acid hydrolysis of the nitrile due to the reaction's failure with aryl halides. Instead, such reactions often lead to E₂ elimination or no reaction at all. Option B

Explanation:

The question pertains to the inability to synthesize certain carboxylic acids by the reaction of an organic halide with cyanide ion followed by acid hydrolysis of the resulting nitrile. Specifically, it's impossible to use this method to prepare an acid which can't be derived from a primary or secondary alkyl halide due to the limitations of the SN₂ reaction mechanism.

To synthesize acetic acid, for example, one may treat methyl bromide with cyanide ion to form acetonitrile, which upon hydrolysis yields acetic acid. However, phenylacetic acid, which requires a phenylacetyl halide precursor, cannot be formed this way because the reaction of cyanide ions with aryl halides does not proceed through an SN₂ mechanism. Instead, an E₂ elimination often occurs or, typically, there is no reaction due to the stability of the benzene ring and the partial double bond character of the C-X bond.

Therefore, phenylacetic acid could not be prepared using the reaction of an organic halide with cyanide ion followed by acid hydrolysis of the nitrile, while acetic acid and propanoic acid can be synthesized using this method. The correct answer to the student's question is phenylacetic acid.

Given the equation 2CH4 S8 --> 2CS2 4H2S Calculate the moles of H2S produced when 1.5 mol S8 is used.

Answers

Answer:

6.0 moles of H₂S are produced.

Explanation:

Let's consider the following balanced equation.

2 CH₄ + S₈ → 2 CS₂ +  4 H₂S

The molar ratio of S₈ to H₂S is 1 mol S₈: 4 mol H₂S. The moles of H₂S produced when 1.5 mol of S₈ react are:

1.5 mol S₈ × (4 mol H₂S/ 1 mol S₈) = 6.0 mol H₂S

6.0 moles of H₂S are produced, when 1.5 mol of S₈ react.

Final answer:

Using stoichiometry based on the balanced chemical equation 2CH₄ + S₈ → 2CS₂ + 4H₂S, we find that 1.5 mol of S₈ will produce 6 mol of H₂S.

Explanation:

The student asked how to calculate the moles of H₂S produced when 1.5 mol S₈ is used given the equation 2CH₄ + S₈ → 2CS₂ + 4H₂S. To solve this, we use stoichiometry to find the mole ratio between S₈ and H₂S. According to the balanced chemical equation, 1 mol of S₈ produces 4 mols of H₂S. Therefore, if 1.5 mols of S₈ are used, we simply multiply this by the stoichiometric ratio (1.5 mol S₈ × 4 mol H₂S/mol S₈) to find the moles of H₂S produced.

The calculation will be as follows:
1.5 mol S₈ × 4 mol H₂S/mol S₈ = 6 mol H₂S.

SiH4 Draw the molecule by placing atoms on the grid and connecting them with bonds. Do not identify the charge on each of these species. Include all lone pairs of electrons. To change the symbol of an atom, double-click on the atom and enter the letter of the new atom. +- CHONSPFBrClIXMore

Answers

Answer:

Attached image of the Lewis structure.

Explanation:

To draw the Lewis structure of SiH₄, we need to consider the octet rule: atoms gain, lose or share electrons to have 8 electrons in their valence shell. H is an exception to this rule because it is completed with 2 electrons (duet).

Si is a semimetal and H a nonmetal, and they form covalent bonds, that is, they share pairs of electrons to be complete.

Si has 4 valence electrons, so it forms 4 covalent bonds to reach the octet.

Each H has 1 valence electron, so each H forms 1 covalent bond to reach the duet.

The resulting structure can be seen in the attached picture.

Final answer:

To draw the Lewis structure of SiH4, the total number of valence electrons in the molecule is determined. The central atom is Silicon (Si) and each Hydrogen atom is bonded to Silicon with a single bond. The Lewis structure is represented by connecting the atoms with single bonds.

Explanation:

To draw the Lewis structure of SiH4, we need to determine the total number of valence electrons in the molecule. Silicon (Si) is in group 14 of the periodic table and has 4 valence electrons. Hydrogen (H) is in group 1 and has 1 valence electron. Since there are 4 hydrogen atoms, we have a total of 4 valence electrons. Therefore, the total number of valence electrons in SiH4 is 4 + 4 = 8.

In the Lewis structure, the central atom is silicon. Each hydrogen atom will be bonded to silicon with a single bond. Since each hydrogen atom needs 2 electrons to complete its outer shell, the silicon atom will share its 4 valence electrons with the 4 hydrogen atoms, resulting in 4 single bonds.

The Lewis structure of SiH4 can be represented as follows:

Learn more about Lewis Structure here:

https://brainly.com/question/20300458

#SPJ6

Chemistry is not always as simple as we are learning it, of course. Many times, reactions are linked, and the products of one reaction immediately become the reactants in another one. For example, 2 KClO3 → 3 O2 + 2 KCl, and then the oxygen produced goes on to make 2 Mg + O2 → 2 MgO. Suppose you begin with exactly 4 moles of potassium chlorate. If so, how much magnesium oxide can you produce? NOTE: All numbers located immediately after elemental symbols below should be considered subscripts.

A. 4 moles
B. 12 moles
C. 6 moles
D. 2 moles
E. none of the above

Answers

Answer:

It can be produced, 12 moles of MgO.

Option B

Explanation:

2 KClO₃ → 3O₂ + 2 KCl

Ratio in this reaction is 2:3

In the begining, I make 3 moles of oxygen, that came from 2moles of chlorate. If I have 4 moles of salt, let's make a rule of three.

2 moles of salt ___ make __3 moles of O₂

4 moles of salt ___ make (4 .3) /2 = 6 moles of O₂

2 Mg + O2 → 2 MgO.

From 1 mol of oxygen, I can make 2 moles of oxygen.

If I have 6 moles, I would make the double, though.

For a galvanic cell that uses the following two half-reactions, Cr2O72-(aq) + 14 H+(aq) + 6 e- → 2 Cr3+(aq) + 7 H2O(l) Pb(s) → Pb2+(aq) + 2 ehow many moles of Pb(s) are oxidized by three mol es of Cr2O72-?

A) 3

B) 6

C) 9

D) 18

Answers

Answer:

C

Explanation:

The detailed solution is found in the image attached. It is necessary to note that the oxidation half equation is multiplied by three to balance electron gain and loss. This is adequately shown in the image below. Inferences are only drawn from balanced redox reaction equation hence the first step is to balance the redox reaction equation.

Consider a reaction involving two reactants (A and B) in which the reaction is first-order in reactant A and second-order in reactant B.


a. write the rate law for this equation.

b. what is the overall order of the reaction?

c. identify how the reaction rate would change if...


i. [A] is doubled and [B] held constant.

ii. [A] is held constant and [B] is doubled.

iii. [A] is tripled and [B] is doubled

iv. [A] is doubled and [B] is halved.

Answers

Answer:

(a) R = k [A]¹ [B]²

(b) The given chemical reaction is a third order reaction

(c)

[A] is doubled and [B] held constant: the reaction rate doubles. [A] is held constant and [B] is doubled: the reaction rate becomes 4 times. [A] is tripled and [B] is doubled : the reaction rate becomes 12 times.[A] is doubled and [B] is halved: the reaction rate becomes half.            

Explanation:

Rate law is the equation that defines the rate of a given chemical reaction and depends on the concentration of the reactants, raised to the power partial orders of reaction.

The overall order of the given chemical reaction is equal to the sum of partial orders of reaction.

Given: Partial order of reaction of reactant A: a = 1,

Partial order of reaction of reactant B: b = 2

(a) Therefore, the rate law equation of the given reaction is given by

R = k [A]ᵃ [B]ᵇ = k [A]¹ [B]²                          ....equation 1

here k is the rate constant

(b) The overall order of the reaction = a + b = 1 + 2 = 3

Therefore, the given chemical reaction is a third order reaction.

(c) Since, the rate of a reaction is directly proportional to the reactant concentration. Therefore, when

i. [A] is doubled and [B] held constant.

⇒ Concentration of reactant A becomes 2[A]

The new rate law is:

R' = k {2[A]}¹ [B]² = 2 {k [A]¹ [B]²}                   ....equation 2

Comparing equations 1 and 2, we get

R' = 2 R  ⇒ the reaction rate doubles.

ii. [A] is held constant and [B] is doubled.

⇒ Concentration of reactant B becomes 2[B]

The new rate law is:

R' = k [A]¹ {2[B]}² = 4 {k [A]¹ [B]²}                   ....equation 3

Comparing equations 1 and 3, we get

R' = 4 R  ⇒ the reaction rate becomes 4 times.

 

iii. [A] is tripled and [B] is doubled

⇒ Concentration of reactant A becomes 3[A], Concentration of reactant B becomes 2[B]

The new rate law is:

R' = k {3[A]}¹ {2[B]}² = 12 {k [A]¹ [B]²}                   ....equation 4

Comparing equations 1 and 4, we get

R' = 12 R  ⇒ the reaction rate becomes 12 times.

iv. [A] is doubled and [B] is halved.

⇒ Concentration of reactant A becomes 2[A], Concentration of reactant B becomes 1/2 [B]

The new rate law is:

R' = k {2[A]}¹ {1/2[B]²} = 1/2 {k [A]¹ [B]²}                   ....equation 5

Comparing equations 1 and 5, we get

R' = 1/2 R  ⇒ the reaction rate becomes half.

Part A Write an equation for the reaction between NaOH and KHP. Write an equation for the reaction between and . NaOH+KHC8H4O4→Na++K++HC8H4O2−4+OH− NaOH+2KHC8H4O4→Na++K++2C8H4O2−4+2H2O NaOH+2KHC8H4O4→Na++K++2HC8H4O2−4+2OH− NaOH+KHC8H4O4→Na++K++C8H4O2−4+H2O Request Answer Part B The titration of 0.5516 g of KHP required 25.82 mL of an NaOH solution to reach the equivalence point. What is the concentration of the NaOH solution? Express your answer using four significant figures. [NaOH][ N a O H ] = nothing M Request Answer Provide Feedback

Answers

Answer: The molarity of NaOH solution is 0.1046 M.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of KHP = 0.5516 g

Molar mass of KHP = 204.22 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of KHP}=\frac{0.5516g}{204.22g/mol}=0.0027mol[/tex]

The chemical reaction for the reaction of KHP and NaOH follows

[tex]KHC_8H_4O_4(aq.)+NaOH\rightarrow KNaC_8H_4O_4(aq.)+H_2O(l)[/tex]

By Stoichiometry of the reaction:

1 mole of KHP reacts with 1 mole of NaOH.

So, 0.0027 moles of KHP will react with = [tex]\frac{1}{1}\times 0.0027=0.0027mol[/tex] of NaOH.

To calculate the molarity of NaOH, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

We are given:

Moles of NaOH = 0.0027 moles

Volume of solution = 25.82 mL  = 0.02582L      (Conversion factor:  1L = 1000 mL)

Putting values in above equation, we get:

[tex]\text{Molarity of NaOH }=\frac{0.0027mol}{0.02582L}=0.1046M[/tex]

Hence, the molarity of NaOH solution is 0.1046 M.

Based on the data provided, the balanced equation of the reaction is:

NaOH + KHC8H4O4 ---> KNaC8H4O4 + H2Othe molarity of NaOH solution is 0.105 M.

What is the equation of the reaction between KHP and NaOH?

The equation of the reaction between KHP and NaOH is given below as:

NaOH + KHC8H4O4 ---> KNaC8H4O4 + H2O

From the equation of reaction, mole ratio of KHP and NaOH is 1 : 1

Moles of KHP = mass/molar mass

molar mass of KHP = 204 g/mol

Moles of KHP = 0.5516/204

Moles of KHP = 0.00271 moles

At equivalence point, moles of KHP = moles of NaOH

Moles of NaOH = molarity × volume

Volume of NaOH = 25.82 mL = 0.02582 L

0.00271 = molarity × 0.02582

Molarity = 0.00271/0.02582

Molarity of KOH = 0.105 M

Hence, the molarity of NaOH solution is 0.105 M.

Learn more about molarity at: https://brainly.com/question/10608366

Which of the following gases would have the greatest kinetic energy at 300 K?
A. N2
B. NH3
C. Ar
D. All of them would have the same kinetic energy

Answers

Answer:

D. All of them would have the same kinetic energy

Explanation:

The expression for the kinetic energy of the gas is:-

[tex]K.E.=\frac{3}{2}\times K\times T[/tex]

k is Boltzmann's constant = [tex]1.38\times 10^{-23}\ J/K[/tex]

T is the temperature

Since, kinetic energy depends only on the temperature. Thus, at same temperature, at 300 K, all the gases which are [tex]N_2,\ NH_3\ and\ Ar[/tex] will posses same value of kinetic energy.

A chemist must prepare of aqueous potassium permanganate working solution. He'll do this by pouring out some aqueous potassium permanganate stock solution into a graduated cylinder and diluting it with distilled water. Calculate the volume in of the potassium permanganate stock solution that the chemist should pour out. Round your answer to significant digits.

Answers

Final answer:

To calculate the volume of potassium permanganate stock solution that the chemist should pour out, we use the formula C1V1 = C2V2. Plugging in the given values, the chemist should pour out 3.00 L of the potassium permanganate stock solution.

Explanation:

To calculate the volume of potassium permanganate stock solution that the chemist should pour out, we can use the formula:

C1V1 = C2V2

where C1 and C2 are the concentrations of the stock and working solutions respectively, and V1 and V2 are the volumes of the stock and working solutions. Rearranging the formula, we can solve for V1:

V1 = (C2 * V2) / C1

Plugging in the given values, we have:

V1 = [tex](0.250 M * 3.00 L) / 0.250 M = 3.00 L[/tex]

Therefore, the chemist should pour out 3.00 L of the potassium permanganate stock solution.

KNO3(s) --->ž K+(aq) + NO3-(aq)This reaction was carried out in a Styrofoam insulated calorimeter and the following data were recorded:Mass of solid KNO3 dissolved10.1 gMass of aqueous solution (c = 4.18 J/gºC)100. gT initial30.0ºCT final21.6ºCMolar mass of KNO3101 g/molIf the mass of KNO3 solid dissolved were doubled while all other experimental conditions were kept the same, what change would occur in delta T, J per reaction, J/g of KNO3, and kJ/mol KNO3?Larger delta T, larger J/reaction, larger J/g, no change kJ/molLarger delta T, no change J/reaction, no change J/g, no change kJ/molLarger delta T, larger J/reaction, no change J/g, no change kJ/molLarger delta T, larger J/reaction, larger J/g, larger kJ/mol

Answers

Answer:

Larger ΔT, larger J, no change J/g, no change kJ/mol is the correct answer.

Explanation:

When one sees data in this question one tends to think that to be solved we need  to perform calculations, and that is not the case here.

What we need is to remembember what are properties which depend on quantities (extensive properties) and the concepts and formulas for heat.

Δ Hrxn = - Q cal

Q cal = m x c x ΔT where

m = mass of water in the calorimeter

c= specific heat of water, and

ΔT = change in temperature

ΔT is directly proportional to Q

ΔH rxn is an extensive quantity dependent on the amount of KNO₃, as is J/ reaction.

J/g , kJ/mol are intensive properties the moment they are defined as the heat per gram, and heat per mol released or absorbed.

mass of KNO₃   ⇒ doubles heat of reaction ,  doubles ΔT

Therefore,

c) Larger ΔT, larger J, no change J/g, no change kJ/mol is the correct answer.

A Cu-30% Zn alloy tensile bar has a strain hardening coefficient of 0.50. The bar, which has an initial diameter of 1 cm and an initial gage length of 3 cm, fails at an engineering stress of 120 MPa. At the moment of fracture, the gage length is 3.5 cm and the diameter is 0.926 cm. No necking occurred. Calculate the true stress when the true strain is 0.05 cm/cm.

Answers

Answer:

79.74*10^6 Pa

Explanation:

Based on the parameters provided, we have:

ε[tex]_{t}[/tex] = ln([tex]l_{f}/l_{i}[/tex])

Where initial gauge length = 3 cm and the final gauge length is 3.5 cm. Therefore:

ε[tex]_{t}[/tex] = ln(3.5/3) = ln(1.167) = 0.154

Similarly,

σ[tex]_{E}[/tex] = F/[3.142*(di^2)/4]

Where σ[tex]_{E}[/tex] = 120*10^6 Pa and di = 1 cm = 0.01 m

Therefore,

F = 120*10^6 * 3.142*(0.01^2)/4 = 9426 N

σ[tex]_{t}[/tex] =  F/[3.142*(df^2)/4 = 9426/[3.142*(0.00926^2)/4 = 9426/6.74*10^-5 = 139.95*10^6 Pa

σ[tex]_{t}[/tex] = k*ε[tex]_{t} ^{0.5}[/tex] = 139.95*10^6

k = 139.95*10^6/(0.154)^0.5 = 356.63*10^6 Pa

Therefore, when ε[tex]_{t}[/tex] = 0.05 cm/cm

σ[tex]_{t}[/tex] = 356.63*10^6 (0.05)^0.5 = 79.74*10^6 Pa

The true stress when the true strain is 0.05 cm/cm is approximately 122.97 MPa.

The true stress at a true strain of 0.05 cm/cm for the Cu-30% Zn alloy tensile bar can be calculated using the relationship between true stress and true strain, which is given by the equation:

[tex]\[ \sigma_{true} = \sigma_{eng}(1 + \epsilon_{true}) \][/tex]

where [tex]\( \sigma_{true} \)[/tex] is the true stress, [tex]\( \sigma_{eng} \)[/tex] is the engineering stress at the moment of fracture, and [tex]\( \epsilon_{true} \)[/tex] is the true strain.

Given that the engineering stress at failure is 120 MPa, we can calculate the true stress at the given true strain of 0.05 cm/cm as follows:

Now, we can calculate the true stress using the given strain hardening coefficient [tex]\( n = 0.50 \)[/tex] and the true strain [tex]\( \epsilon_{true} = 0.05 \)[/tex]:

[tex]\[ \sigma_{true} = \sigma_{eng}(1 + \epsilon_{true})^n \][/tex]

[tex]\[ \sigma_{true} = 120 \text{ MPa} \times (1 + 0.05)^{0.50} \][/tex]

[tex]\[ \sigma_{true} = 120 \text{ MPa} \times (1.05)^{0.50} \][/tex]

[tex]\[ \sigma_{true} = 120 \text{ MPa} \times 1.0247 \][/tex]

[tex]\[ \sigma_{true} = 122.97 \text{ MPa} \][/tex]

A survey of online students found that 52.6 percent believed they benefitted most from:_______a. Interacting with other students on the discussion boards.b. Disagree with other students on the discussion boards.c. None of the above

Answers

Answer:

The answer is a): Interacting with other students on the discussion boards.

Explanation:

In a survey of online students who identified some tips that made them successful in online courses, and virtual university programs which targeted adults, 52.6 % of them believed that the greatest benefit they derived was due to their interaction with other students (especially classmates) on online discussion boards.

Final answer:

The question is related to the benefits of online learning in Education, specifically for college students. Without additional options, we draw on general benefits reported by students, including discussion board interactions, diverse content delivery methods, and online community support as valuable aspects of online education.

Explanation:

The subject of this question is Education, specifically focusing on the benefits of online learning environments for college students. To answer the student's question about what 52.6 percent of online students believed they benefitted most from, we need additional context or options other than those provided in the question. However, past surveys and research can offer insight into common benefits reported by students in online learning settings, such as:

Interacting with other students on the discussion boards.Having access to multiple modes of content delivery, such as screencasts and online resources, which can enhance understanding.Engaging in community-building activities and receiving support through online forums.

These activities not only help in understanding the subject matter but also in building a sense of community and improving technical skills. The prevalence of technology in education has made these aspects more accessible than ever before, changing the landscape of how students engage with peers and course materials.

Part A When a neuron responds to a particular neurotransmitter by opening gated ion channels, the neurotransmitter is serving as which part of the signal pathway? When a neuron responds to a particular neurotransmitter by opening gated ion channels, the neurotransmitter is serving as which part of the signal pathway? transducer receptor endocrine molecule signal molecule relay molecule

Answers

Answer:

Receptor

Explanation:

   Neurotransmitters are defined as chemical messengers that carry, stimulate and balance signals between neurons, or nerve cells and other cells in the body.

  After release, the neurotransmitter crosses the synaptic gap and binds to the receptor site on the other neuron, stimulating or inhibiting the receptor neuron depending on what the neurotransmitter is. Neurotransmitters act as a key and the receptor site acts as a block. It takes the right key to open specific locks. If the neurotransmitter is able to function at the receptor site, it will cause changes in the recipient cell.

 The "first-class" neurotransmitter receptors are ligand-activated ion channels, also known as ionotropic receptors. They undergo a change in shape when the neurotransmitter turns on, causing the channel to open. This can be an excitatory or inhibitory effect, depending on the ions that can pass through the channels and their concentrations inside and outside the cell.  Ligand-activated ion channels are large protein complexes. They have certain regions that are binding sites for neurotransmitters, as well as membrane segments to make up the channel.

Final answer:

The neurotransmitter serves as the ligand or signal molecule in the signal pathway when a neuron responds by opening gated ion channels.

Explanation:

Neurons play a crucial role in transmitting information within the nervous system, and the interaction between neurotransmitters and their corresponding receptors is a fundamental process in this communication. When a neuron responds to a particular neurotransmitter, it does so by recognizing the neurotransmitter as a ligand or signal molecule in the intricate signaling pathway that underlies neural function.

These neurotransmitters, which can be diverse chemical compounds like dopamine, serotonin, or acetylcholine, possess the remarkable ability to bind selectively to specific receptors on the surface of the neuron. This binding event is akin to a key fitting into a lock, and it initiates a cascade of events within the neuron.

One critical outcome of neurotransmitter binding is the opening of gated ion channels located on the neuron's membrane. These ion channels act as molecular gates, regulating the flow of ions (such as sodium, potassium, calcium, or chloride) into or out of the cell. This influx or efflux of ions results in the generation of an electrical signal, known as the action potential.

Learn more about Neurotransmitters here:

https://brainly.com/question/32902495

#SPJ11

`One way to make ammonia is to synthesize it directly from elemental nitrogen and hydrogen (though this isn't that easy). The equation for this reaction would be N2 + 3 H2 → 2 NH3. If you are able to stream in 7.0 g of N2, what would be the minimum amount of H2 in grams that would be required to completely react with this amount of N2?

A. 1.5 g
B. 0.5 g
C. 0.75 g
D. 3.0 g
E. none of the above

Answers

Answer:  A. 1.5 g

Explanation:

[tex]N_2+3H_2\rightarrow 2NH_3[/tex]

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

[tex]\text{Number of moles of nitrogen}=\frac{7.0g}{28g/mol}=0.25 moles[/tex]

According to stoichiometry:

1 mole of [tex]N_2[/tex] requires = 3 moles of [tex]H_2[/tex]

Thus 0.25 moles of [tex]N_2[/tex] will require =[tex]\frac{3}{1}\times 0.25=0.75moles[/tex] of [tex]H_2[/tex]

Mass of [tex]H_2[/tex] required =[tex]moles\times {\text {Molar mass}}=0.75mol\times 2g/mol=1.5g[/tex]

The minimum amount of [tex]H_2[/tex] in grams that would be required to completely react with this amount of [tex]N_2[/tex] is 1.5 grams.

Answer:

The correct answer is option A.

Explanation:

[tex]N_2 + 3 H_2\rightarrow 2 NH_3[/tex]

Moles of nitrogen gas = [tex]\frac{7.0 g}{28 g/mol}=0.25 mol[/tex]

According to reaction, 1 mole of nitrogen reacts with 3 moles of hydrogen gas.

Then 0.25 moles of nitrogen gas will react with:

[tex]\frac{3}{1}\times 0.25 mol=0.75 mol[/tex] of hydrogen gas.

Mass of 0.75 moles of hydrogen gas = 0.75 mol × 2 g/mol = 1.5 g

1.5 grams of hydrogen that would be required to completely react with this amount of nitrogen.

For the galvanic cell reaction, expressed below using shorthand notation, what half-reaction occurs at the cathode?

Zn(s) Zn2+(aq) Ni2+(aq) Ni(s)


A) Zn(s) → Zn2+(aq) + 2 e

B) Zn2+(aq) + 2 e- → Zn(s)

C) Ni(s) → Ni2+(aq) + 2 e

D) Ni2+(aq) + 2 e- → Ni(s)

Answers

Answer:

D

Explanation:

In considering the half cell reactions in electrochemical cells, we consider the standard electrode potential of the two half cells. The more negative electrode potential will be the anode and the less negative electrode potential will be the cathode. The electrode potentials of Ni2+(aq)/Ni(s) is -0.25V while that of Zn2+(aq)/Zn(s) is -0.76.

Hence the selected option is the cathodic half reaction equation

Final answer:

In the given galvanic cell reaction, the reduction half-reaction Ni2+(aq) + 2 e- → Ni(s) occurs at the cathode. Nickel ions are gaining electrons to become solid Nickel.

Explanation:

In a galvanic cell, the half-reaction that occurs at the cathode is the reduction reaction. Reduction is a chemical process where a species gains electrons. This stands as the acronym OIL RIG, which stands for Oxidation Is Loss (of electrons), Reduction Is Gain (of electrons). Given the provided shorthand notation for the galvanic cell, Option D: Ni2+(aq) + 2 e- → Ni(s) would be the half-reaction occurring at the cathode. This is because Nickel ions (Ni2+) are gaining electrons, thus going through a reduction process, to form solid Nickel (Ni).

Learn more about Galvanic Cell Reaction here:

https://brainly.com/question/29633745

#SPJ11

Picture (a) Picture (a) Dipole-dipole forces London dispersion forces Ion-dipole forces Hydrogen bonding Request Answer Part B Picture (b) Picture (b) Hydrogen bonding Dipole-dipole forces London dispersion forces Ion-dipole forces Request Answer Part C Picture (c) Picture (c) Ion-dipole forces Dipole-dipole forces Hydrogen bonding London dispersion forces Request Answer Part D Picture (d) Picture (d) Dipole-dipole forces Hydrogen bonding Ion-dipole forces London dispersion forces Request Answer Part E Predict which of the four interactions is the weakest Predict which of the four interactions is the weakest Forces on the picture (a). Forces on the picture (b). Forces on the picture (c). Forces on the picture (d).

Answers

Answer:

(a) Hydrogen bonding

(b) Dispersion forces

(c) Ion-dipole forces

(d) Dipole-dipole forces

Ion-dipole forces (c) are the strongest of the 4 interactions while dispersion forces are the weakest (b).

Explanation:

The picture is missing but I think is the one that I'm uploading.

Picture (a)

HF is a polar molecule with a high difference in electronegativity between H and F. As a consequence, the force between HF molecules is Hydrogen bonding.

Picture (b)

In picture (b) we have F₂ molecules, which are nonpolar due to their atoms having the same electronegativity. The forces between nonpolar molecules are dispersion forces.

Picture (c)

Na⁺ is an ion and H₂O a dipole. Therefore, they experience ion-dipole forces.

Picture (d)

SO₂ molecules are polar, that is, they form dipoles and experience dipole-dipole forces.

Ion-dipole forces (c) are the strongest of the 4 interactions while dispersion forces are the weakest (b).

Final answer:

The strength of intermolecular forces varies greatly, affecting physical properties of substances. London dispersion forces are the weakest followed by dipole-dipole interactions, hydrogen bonding, and ion-dipole forces being the strongest.

Explanation:

Understanding the nature and strength of intermolecular forces is essential to explain many physical properties of substances, such as boiling points, melting points, and solubilities. Intermolecular forces can be categorized into several types, including London dispersion forces, dipole-dipole interactions, hydrogen bonding, and ion-dipole forces.

London Dispersion Forces

London dispersion forces are the weakest intermolecular force and occur between all molecules, polar or nonpolar. They result from the instantaneous distribution of electrons in one molecule inducing a dipole in a neighboring molecule. These forces are significant in molecules with a high number of electrons and become stronger as molecular size increases.

Dipole-Dipole Interactions

Dipole-dipole interactions occur between polar molecules where positive ends of molecules are attracted to negative ends of other molecules. While stronger than London dispersion forces, they are not as strong as hydrogen bonds.

Hydrogen Bonding

Hydrogen bonding is a special type of dipole-dipole interaction that occurs when a hydrogen atom bonded to a highly electronegative atom, like oxygen, nitrogen, or fluorine, is attracted to an electronegative atom in another molecule. Hydrogen bonding is significantly stronger than both London dispersion forces and general dipole-dipole interactions, contributing to the unique properties of water and other substances.

Ion-Dipole Forces

Ion-dipole forces occur between an ion and a polar molecule and are significant in mixtures of ionic substances with polar solvents. These are stronger than hydrogen bonds and are crucial for the solubility of ionic compounds in water.

To rank these interactions from weakest to strongest: London dispersion forces, dipole-dipole interactions, hydrogen bonding, and ion-dipole forces.

Water is placed outside at 298 K overnight. Which statement best describes what would happen?a)298 K converts to -24.9 °C, so the water would freezeb)298 K converts to 24.9 °C, so the water would remain in its liquid statec)298 K converts to 24.9 °C, so the water would freeze

Answers

Answer: b)298 K converts to 24.9 °C, so the water would remain in its liquid state

Explanation: Kelvin is an absolute temperature scale, that means that 0K (zero Kelvin) is the lowest temperature possible and compare to Celsius scale the change of 1 degree is the same, but 0°C is the same as 273,1K

So, in order to convert Kelvin to Celsius you have to subtract 273,1

In this case, 298K - 273,1 = 24,9°C

This temperature is room temperature, so water is in liquid state.

A 0.500 g sample of TNT is burned in a bomb calorimeter containing 610 g of water at an initial temperature of 20.0 celcius. The heat capacity of the calorimeter is 420 J/C and the heat of combustion of TNT is 3374 kj/mol.

(a) Write and balance the chemical equation

(b) Using these data, calculate the final temperature of the water and calorimeter once the reaction is complete

Answers

Final answer:

The balanced chemical equation for the combustion of TNT is 2C7H5N3O6 + 21O2 → 14CO2 + 10H2O + 6N2. The final temperature of the water and calorimeter is approximately 20.002 °C.

Explanation:

(a) To write and balance the chemical equation, we need to know the products formed when TNT is burned. Since it is an explosive, it likely forms carbon dioxide (CO2) and water (H2O). The balanced equation would be:

2C7H5N3O6 + 21O2 → 14CO2 + 10H2O + 6N2

(b) To calculate the final temperature of the water and calorimeter, we can use the equation:

q = mcΔT

Where q is the heat absorbed by the water and calorimeter, m is the mass of the water and calorimeter, c is the specific heat capacity of water (4.18 J/g·°C), and ΔT is the change in temperature. Rearranging the equation, we can solve for ΔT:

ΔT = q / (mc)

Substituting the given values, we have:

q = (3374 kJ/mol × 0.500 g) / (227.1 g/mol) = 7.45 kJ

m = 610 g + 420 g = 1030 g

c = 4.18 J/g·°C

ΔT = (7.45 kJ / 1030 g) / (4.18 J/g·°C) ≈ 0.0018 °C

Therefore, the final temperature of the water and calorimeter would be approximately 20.0 °C + 0.0018 °C = 20.002 °C.

Learn more about Combustion of TNT here:

https://brainly.com/question/35084606

#SPJ12

Final answer:

The chemical equation for the combustion of TNT is balanced as 2C7H5N3O6 + 21O2 → 14CO2 + 5H2O + 6N2 + 2O2. Using the given data and the equation, we can calculate the heat released during the reaction. The final temperature of the water and calorimeter is found to be 20.0031 °C.

Explanation:

(a) Write and balance the chemical equation:

The balanced chemical equation for the combustion of TNT (trinitrotoluene) is:

2C7H5N3O6 + 21O2 → 14CO2 + 5H2O + 6N2 + 2O2

(b) Using the given data and the equation above, we can calculate the heat released during the reaction. The molar mass of TNT is 227.13 g/mol. Therefore, the number of moles of TNT used in the reaction is:

0.500 g / (227.13 g/mol) = 0.00220 mol (rounded to 4 decimal places)

The heat of combustion of TNT is 3374 kJ/mol. Therefore, the heat released in the reaction is:

0.00220 mol × 3374 kJ/mol = 7.4228 kJ (rounded to 4 decimal places)

To find the final temperature of the water and calorimeter, we can use the equation:

q = mCΔT

where q is the heat released, m is the mass of the water and calorimeter, C is the heat capacity of the calorimeter, and ΔT is the change in temperature. Rearranging this equation, we have:

ΔT = q / (mC)

Substituting the values, we have:

ΔT = 7.4228 kJ / ((610 g + 420 g) × (4.18 J/g·°C)) = 0.0031 °C (rounded to 4 decimal places)

The final temperature of the water and calorimeter is therefore 20.0 °C + 0.0031 °C = 20.0031 °C.

Learn more about temperature here:

https://brainly.com/question/35546325

#SPJ11

a. Simazine is an herbicide used on corn, fruit and nut crops, and Christmas trees. This herbicide binds to the electron transport chain in the thylakoid membrane of the chloroplasts. When simazine binds to the electron transport chain, electrons are no longer able to flow through the chain. Describe all of the processes of the light reactions disrupted when Simazine is present.

Answers

Answer:the thylakoid membrane usually has two photosystems that absorbs sunlight;the photosystems 11 and 1 .in the light reaction of photosynthesis,when light energy hits the photosystems,the electrons are boosted to higher energy and pass through the electron Transport chain by electron acceptor molecules until it is used in the formation of ATP and NADPH.

However when simazine is present,electrons can no longer be transferred from one electron acceptor to the other for the reduction of NADP+ to NADPH.

Also since no electron is being transferred,the PS II would not have a need to split water molecules ,which products are more electrons and protons which pass through the thylakoid lumen and creates a proton gradient needed for the production of ATP

Explanation:

Other Questions
Introduction to the triangle midsegment theoremCan someone help me with this problem What is the role of "back office" teams (accounting, legal, etc.) in creating buyer personas? a. Back office teams dont need to be involved in creating buyer personas, but they should understand and accept the finished personas. b. Back office teams often have key insights to offer during the creation process and should be invited to help create your buyer personas. c. Back office teams should own the buyer persona creation process because they are less biased than customer-facing teams. d. Back office teams shouldnt be involved with buyer personas at all because they dont interact with customers directly. One of the advantages if using the extemporaneous method of delivery is that it:____ A. Encourages precise choice of words B. Encourages conversational quality C. Requires only limited preparation D. Allows for better articulation Suppose the firm currently employs 500 workers at 40 hours per worker per week and that the following relationship holds. 9,000-15 ME 800 , MP, H M MPI 6,000 400 Prove that the firm is not at an equilibrium mix of workers and hours by showing there is a window of opportunity for it to reduce its total cost Suppose that a random sample of size 49 is to be selected from a population with mean 49 and standard deviation 6. What is the approximate probability that Xwll be more than 0.5 away from the population mean? a 0.4403 b) 0.6403 c) 0.8807 d) 0.0664 e) 0.5597 f) None of the above give the difference in meaning of tje pair of sentence ...Kwach even learnt how to teach & Even Kwach learnt how to teach Place the layers of the trachea in order from deep to superficial.a) mucosa, submucosa, hyaline cartilage, adventitiab) submucosa, mucosa, hyaline cartilage, adventitiac) adventitia, hyaline cartilage, submucosa, mucosad) adventitia, hyaline cartilage, mucosa, submucosae) hyaline cartilage, submucosa, mucosa, adventitia A 3.0-kilogram cart possesses 96 joules of kineticenergy. Calculate the speed of the car. Shakespeare wrote many plays that were based on existing works. For example, Macbeth, King Lear, Henry IV, Richard II all draw from Raphael Holinsheds historical work, Chronicles of England, Scotland, and Ireland. Julius Caesar, Antony and Cleopatra, Coriolanus, and Timon of Athens draw from Plutarchs Lives, a series of biographies about famous individuals and their virtues. What did these sources provide to Shakespeare? Now that digitized books may be bought online, James Gleick says that bookpublishing has reached a "shining moment" because:A. the printed book will become obsolete like the phonograph.B. printed books will become much more expensive.C. the printed book can now be appreciated as a physical object.D. books can always be replaced easily. What percent of 400 is 3? An employee earns $7.00 an hour for the first 35 hours worked in a week and $10.50 for any hour over 35. One week's paycheck (before deduction) was for $308.00. How many hours did the employee work Please help! This is for my little sister, she in 4th grade and I don't know this thing.From the poem "Mom and Me"Which line is a metaphor?Will give brainliest.Which lines from the poem create a metaphor?"And with daring and caring / Well do wonderful things.""A shining example / Of who I hope to be.""And wherever I may be / That is where her heart goes.""If one of lifes stop signs / Makes me slam on the brakes," Find the greatest common factor of 10, 30 and 45 The following shows a corn maze for participants to walk through. The participants can only go forward and when there is a fork in the path you may assume that people are equally likely to take any one of the paths. It costs $5.00 to enter the maze and each participant gets $10.00 if they come out in a prize area. 80 95 90 80 100 _ what goes on the blank to get a mean of 90 Explain how the law of superposition was used to determine your findings. In an attempt to expand viewership of the television show Mystery Science Theater 3000 in its early days, the producers encouraged viewers to make copies of the show on video tapes and give them to friends. The closing credits included the words "Keep circulating the tapes!" This is an example of: A student wants to restate some ideas she found in a journal article by a prominent expert in economics. She combines her own words with some of the expert's words, which she does not put in quotation marks. She references the article at the end her work. This is: An article in the Journal of Composite Materials (Vol 23, 1989, p. 1200) describes the effect of delamination on the natural frequency of beams made from composite laminates. Five such delaminated beams were subjected to loads, and the resulting frequencies were as follows (in Hz):230.66, 233.05, 232.58, 229.48, 232.58(a) Find a 90% two-sided CI on mean natural frequency. Round your answers to 2 decimal places..(b) Do the results of your calculations support the claim that mean natural frequency is 235 Hz? Steam Workshop Downloader