In ΔABC, m∠ACB = 90°, CD ⊥ AB and m∠ACD = 45°. Find AC, if CD = 6 sqrt 3

Answers

Answer 1

Final answer:

Since ΔACD is an isosceles right triangle, the two legs AC and CD are equal. Given CD = 6 √ 3, AC is also 6 √ 3 units.

Explanation:

In triangle ΔABC, we are given that m∠ACB = 90°, meaning that ΔACB is a right-angled triangle. We are also given that CD is perpendicular to AB and that m∠ACD = 45°. Since CD is perpendicular to AB at D, triangle ΔACD is also a right-angled triangle with a 45° angle, which makes it an isosceles right triangle. In an isosceles right triangle, the lengths of the legs are equal. Therefore, AC will be equal to CD which is given as 6 √ 3.

The length of AC in triangle ΔACB can be found using Pythagoras' theorem, AC = √(AB² + BC²). But here we need only the length of AC in the right-angled ΔACD where AC equals CD.

Hence, AC = 6 √ 3 units.


Related Questions

a fast food restaurant sold 35 burgers with cheese if the ratio of burger sold the cheese compared to without cheese with 7 : 3, how many burgers did they sell in total?

Answers

let's start with 7:3
35 have cheese so change that to: 35:?

35÷7=5 so 7×5=35
so let's multiply 3×5=15
so the new ratio is 35:15 add those numbers together and you have 50 burgers sold in total.

hope this helps!

Please help me, ASAP!
A candy mixture is made from 6 pounds of sugar sticks of $10 per pound and 14 pounds of jelly beans of $8 per pound. Find the price of the candy mixture per pound.

Answers

Answer: The price per pound is $18


The function f(x) = –x2 − 2x + 15 is shown on the graph. What are the domain and range of the function? The domain is all real numbers. The range is {y|y < 16}. The domain is all real numbers. The range is {y|y ≤ 16}. The domain is {x|–5 < x < 3}. The range is {y|y < 16}. The domain is {x|–5 ≤ x ≤ 3}. The range is {y|y ≤ 16}. Mark this and return Save and Exit Next

Answers

Answer:

The domain is all real numbers. The range is {y|y ≤ 16}.

Step-by-step explanation:

The vertex of a parabola is given by

[tex](\frac{-b}{2a}, \frac{4ac-b^2}{4a})[/tex].

As a = -1, b = -2, c= 15 here, then the vertex is at (1,16).

As a is negative, it opens downward, so the range is  {y|y ≤ 16}.

Meanwhile, all parabolic functions have a domain of [tex]\mathbb{R}[/tex].

Solve x2 + 12x + 6 = 0 using the completing-the-square method.

A) x = negative six plus or minus the square root of thirty

B) x = six plus or minus the square root of thirty

C) x = negative six plus or minus the square root of six

D) x = six plus or minus the square root of six

Answers

Answer:

Option A is correct.

[tex]x = -6 \pm \sqrt{30}[/tex]

Explanation:

Given the expression: [tex]x^2+12x+6 = 0[/tex]

[tex]x^2+12x+6=0[/tex]  

Subtract 6 from both sides, we get

[tex]x^2+12x=-6[/tex]  

halve linear coefficient,then  square it, and add it to both sides

[tex]x^2+12x+36=30[/tex]

Now, the left side is a perfect square

[tex](x+6)^2=30[/tex]  

Now, take square root to both sides.

[tex]x+6=\sqrt{30}[/tex] 

Subtract 6 from both sides, we get;

[tex]x = -6 \pm \sqrt{30}[/tex]

So, the solutions are : [tex]x = -6 \pm \sqrt{30}[/tex]

Answer:

The correct answer is A

[tex]x=-6\pm \sqrt{30}[/tex]

Step-by-step explanation:

The given expression is

[tex]x^2+12x+6=0[/tex]

Add [tex]-6[/tex] to both sides

[tex]x^2+12x=-6[/tex]

Add [tex](\frac{12}{2} )^2=(6)^2[/tex] to both sides.


[tex]x^2+12x+(6)^2=-6+(6)^2[/tex]


We got a perfect square on the left hand side


[tex](x+6)^2=-6+36[/tex]

Simplify the left hand side to get,

[tex](x+6)^2=30[/tex]


Take square root of both sides


[tex](x+6)=\pm \sqrt{30}[/tex]

Solve for [tex]x[/tex].

[tex]x=-6\pm \sqrt{30}[/tex]






Factorize 21x^2 - 16-7x / 3x^2-4 = 5

Answers

Answer: [tex]\bold{(12x - 7 - i\sqrt{47})(12x - 7 + i\sqrt{47})=0}[/tex]

Step-by-step explanation:

[tex]\dfrac{21x^2-7x - 16}{3x^2-4}=5[/tex]

cross multiply:  21x² - 7x - 16 = 15x² - 20

set equal to 0:  6x² - 7x + 4 = 0

Use quadratic formula to find the roots:

a=6, b=-7, c=4

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

   [tex]=\dfrac{-(-7) \pm \sqrt{(-7)^2-4(6)(4)}}{2(6)}[/tex]

   [tex]=\dfrac{7 \pm \sqrt{49-96}}{12}[/tex]

   [tex]=\dfrac{7 \pm \sqrt{-47}}{12}[/tex]

   [tex]=\dfrac{7 \pm i\sqrt{47}}{12}[/tex]

[tex]x_1 =\dfrac{7 + i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 - i\sqrt{47})= 0[/tex]

[tex]x_2 =\dfrac{7 - i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 + i\sqrt{47})= 0[/tex]



A division of a ———ends?

Answers

The complete statement is a division of long form ends with zeroes as remainders

What is division and long division method? What is a expression? What is a mathematical equation?Division is the process of splitting a number or an amount into equal partsLong Division is a method for dividing large numbers, which breaks the division problem into multiple steps following a sequence.A mathematical expression is made up of terms (constants and variables) separated by mathematical operators. A mathematical equation is used to equate two expressions. A mathematical equation is used to equate two expressions. Equation modelling is the process of writing a mathematical verbal expression in the form of a mathematical expression for correct analysis, observations and results of the given problem.

We have the following statement -

A division of _____ ends?

The complete statement is -

A division of long division form ends with zeroes as remainders

Therefore, the complete statement is a division of long form ends with zeroes as remainders.

To solve more questions on Equations, Equation Modelling and Expressions visit the link below -

brainly.com/question/14441381

#SPJ2

solve the following system of equations by graphing y=2x+2y=x-1

Answers

y = 2x + 2

for x = 0 → y = 2(0) + 2 = 0 + 2 = 2 → (0, 2)

for x = -1 → y = 2(-1) + 2 = -2 + 2 = 0 → (-1, 0)

y = x - 1

for x = 0 → y = 0 - 1 = -1 → (0, -1)

for x = 1 → y = 1 - 1 = 0 → (1, 0)

Look at the picture.

Answer: (-3, -4) → x = -3 and y = -4.

All the members of a construction crew work at the same pace. Four of them working together are able to pour concrete foundations in 32 hours. How many hours would this job take if the number of workers

decreased 2 times

increased 2 times

increased 4 times

plz help plz WILL GIVE ALL POINTS

Answers

Answer:


Step-by-step explanation:

Please find attachment for step by step explanation.

If f(x)=2x^2-5and g(h)=3x+3 find f-g (x)

Answers

[tex](f-g)(x)=f(x)-g(x)\\\\\text{We have}\ f(x)=2x^2-5\ \text{and}\ g(x)=3x+3.\ \text{Substitute:}\\\\(f-g)(x)=(2x^2-5)-(3x+3)=2x^2-5-3x-3=2x^2-3x-8\\\\Answer:\ \boxed{(f-g)(x)=2x^2-3x-8}[/tex]

WILL GIVE BRAINLIEST! THIS IS 20PTS! Which mathematical property is demonstrated? If x = –3 and –3 = z, then x = z. A.) symmetric property of equality B.) transitive property of equality C.) closure property of multiplication D.) closure property of addition

Answers

Answer:

B.) transitive property of equality

Step-by-step explanation:

x = –3 and –3 = z, then x = z.

Symmetric property of equality: if a = b then b = a

Transitive property of equality:  if a = b and b = c, then a = c

Closure property of multiplication:  the set is closed under multiplication

Closure property of addition:  the set is closed under addition


3x + 5 equals 19 - 4x what does x equals to

Answers

Answer:

x = 2

Step-by-step explanation:

3x + 5 = 19 - 4x     subtract 5 from both sides

3x = 14 - 4x      add 4x to both sides

7x = 14    divide both sides by 7

x = 2

Answer:

x=2

Step-by-step explanation:

3x + 5 = 19 - 4x

Add 4x to each side

3x + 5 +4x= 19 - 4x+4x

7x+5 = 19

Subtract 5 from each side

7x+5-5 =19-5

7x =14

Divide each side by 7

7x/7 = 14/7

x = 2

What is the approximate area that is shaded red?




A.

42 in2



B.

54 in2



C.

66 in2



D.

396 in2


Answers

To find the area that is shaded red, you find the area of the rectangle and subtract it by the area of the triangle.


Area of a rectangle:

A = l × w             [ l = 11 in ; w = 6in ]    Plug these numbers into the equation

A = 11 · 6

A = 66 in²


Area of a triangle:

[tex]A=\frac{1}{2}bh[/tex]     [ b = 4 in ; h = 6 in ] Plug these #s into the equation

[tex]A = \frac{1}{2}(4)(6)[/tex]

[tex]A=\frac{24}{2}[/tex]

A = 12 in²


Area of rectangle - Area of triangle = Area of the shaded region

66 in² - 12 in ² = 54 in²


Your answer is B

The required red shaded region has the area of 54 in²

What is a rectangle?

A figure bounded by 4 sides in which the opposite sides are equal and all the internal angles are 90 ° is called a rectangle.

What is a triangle?

A figure bounded by 3 sides and all the internal angles add up to 180 ° is called a triangle.

What is a right angled triangle?A triangle in which one angle in 90° is called a right angled triangle.The side opposite to the right angle is called the hypotenuse which is the longest side of the triangle.Area of the right angled triangle can be found with the formula :

Area  = (1/2)(base)(height)

How to find the area of the red shaded region?In the given problem, there is a rectangle with in which there is a white colored right angled triangle.The required area will be (Area of the rectangle) - (Area of the triangle).

Area of the rectangle = (11 x 6) in² = 66 in²

Area of the right angled triangle = (1/2)(6 x 4)  in² = 12 in²

Area of the red shaded region = (66 - 12)  in² = 54 in²

Option B is correct.

Find more about "Rectangle" here : https://brainly.com/question/25292087

#SPJ2

Order each step and justification that is needed to solve the equation below. 2/3y+ 15=9

Answers

[ Answer ]

Y = -9

[ Explanation ]


Subtract 15 from both sides:

2/3y + 15 - 15 = 9 - 15


Simplify:

2/3y = -6


Multiply each side by 3:

3 * 2/3y = 3 (-6)


Simplify:

2y = -18


Divide both sides by 2:

2y / 2 = -18/2


y = -9


<> Arsenal <>


Using the simplification, it is proven that the y = -9 from the equation 2/3y + 15 = 9.

What is a system of equations?

A system of equations is two or more equations that can be solved to get a unique solution. the power of the equation must be in one degree.

Given that 2/3y + 15 = 9

Subtract 15 from both sides;

2/3y + 15 - 15 = 9 - 15

Now Simplify,

2/3y = -6

Multiply each side by 3,

3  (2/3y) = 3 (-6)

2y = -18

y = -9

Learn more about equations here;

brainly.com/question/10413253

#SPJ7

Grace starts with 100 milligrams of a radioactive substance. The amount of the substance decreases by 1/4 each week for a number of weeks, w. She writes the expression 100(1/4)w to find the amount of radioactive substance remaining after w weeks.

Answers

Answer:

True

Step-by-step explanation:

Each week the amount of radio active material is 100*(1/4)^x which is correct.

So at the end of 4 weeks she will have

amount = 100*(1/4)^x

amount = 100*(1/4)^4

amount = 100 * (1/256)

amount = 0.390625 grams after 4 weeks.

Answer:

Step-by-step explanation:

There is the answer.

will give brainliest

What is the simplified form of 72x16/50x36 ? Assume x ≠ 0.

Answers

Answer:

72 / 50 = 36/25

x^16 / x^36  

= x^-20



Answer:

[tex]\frac{36}{25x^{20} }[/tex]

Step-by-step explanation:

In order to simplify this function, we have to divide by the maximum common divisor:

[tex]\frac{72x^{16} }{50x^{36} }\\ 72/2=36\\50/2=25\\\frac{36}{25} \\(x^{16} )(x^{-36})=x^{-20}=\frac{1}{x^{20} } \\\frac{36}{25x^{20} }[/tex]

By doing this you can simplify the function into the simplified form.

5 pounds of chocolate cost $36.50. How much is each pound of Chocolate? (Please include Work)

Answers

Answer:

Each pound of chocolate costs $7.30

Step-by-step explanation:

if 5 pounds of chocolate costs $36.50 then you could simply divide the $36.50 by 5 to calculate the cost of 1 pound of chocolate.

So, 36.50 ÷ 5 = 7.30

Each pound of chocolate costs $7.30

Final answer:

To find the cost of each pound of chocolate, you divide the total cost by the total number of pounds. Given a total cost of $36.50 for 5 pounds of chocolate, the resulting calculation is $36.50 ÷ 5 = $7.30. Thus, each pound costs $7.30.

Explanation:

If you have 5 pounds of chocolate that cost $36.50 in total, and you need to find the cost of each pound of chocolate, you can determine this by dividing the total cost by the number of pounds. This is similar to how in our reference material, to compute the cost of each piece of fruit, you divided the total expense by the quantity of fruit.

In this case, you need to divide the total cost, which is $36.50, by the quantity, which is 5 pounds. So the calculation is $36.50 ÷ 5 = $7.30. Therefore, each pound of chocolate costs $7.30.

Learn more about Cost Per Pound here:

https://brainly.com/question/21145609

#SPJ11

-x+2 > 3 whats the answer plz its urgent thanks

Answers

The final answer is x< -1

If the Greatest Common Factor of L and M is 6, write the expression for the Least Common Multiple of these numbers.

Answers

Answer:

[tex]\frac{(L x M)}{6}[/tex]

Step-by-step explanation:

The greatest common factor is the greatest number that will divide two values. We have two values L and M. Each has numbers which multiply together to give the number. The highest value or most in common they share is 6. This is the GCF.

The least common multiple is the smallest positive number which is a multiple of the two. This means both L and M divide into it evenly.

We know L x M is a multiple because L and M will be factors of it. But we don't know its the least.

As an example if L= 42 and M = 60, they have GCF 6. We can multiply them to find a multiple 42 x 60 = 2520 but we don't know this is the smallest or least multiple we can find. If we divide by the GCF, 2520/6=420. Interestingly, 42 x 10 =420 and 60 x 7 =420. This means 420 is the least common multiple.

We can multiply (L x M) and then divide by the GCF of L & M to find the least common multiple.

[tex]\frac{(L x M)}{6}[/tex]

I need helpppppp please

Answers

the answer for the the first one is 7 the second one is 4x

Write the equation of a line that is perpendicular to the given line and that passes through the given point.

Answers

Answer:

y=5x+17

Step-by-step explanation:

perpendicular slope is 5

y-7=5(x+2) convert this equation into slope intercept and that's your answer


60 can be expressed as the sum of 5 consecutive numbers as follows:

60 = 10 + 11 + 12 + 13 + 14

The sum of the greatest and the smallest of these 5 consecutive numbers is 24.

90 can also be expressed as the sum of 5 consecutive numbers. What is the sum of the greatest and the smallest number of these 5 consecutive numbers?









A 36 B 46

C 54 D 84









please someone answer

Answers

Answer:

Let 5 consecutive no's be x,x+1,x+2,x+3,x+4

90 = x+ x+1+x+2+ x+3+x+4

90 = 5x+10

18 = x+2

x= 16

so smallest is 16

greatest = 16+4 = 20

sum = 16 +20 = 36


can you factories them

Answers

For each part A through D below, the idea is to find the common factor between the terms, which you'll then use the distributive property to pull out.

==================================

Part A

3x + 18 = 3(x+6)

Note how we pulled out a 3. If we distribute it back in, we end up with 3x+18 again. The other problems are done in a similar fashion

==================================

Part B

2x - 14 = 2(x - 7)

==================================

Part C

6x + 4 = 2(3x + 2)

==================================

Part D

9x - 15 = 3(3x - 5)

Cw 7.1 7.2 homework help

Answers

QUESTION 1

The given ratio is

[tex]40:15[/tex]


Let us write the ratio in terms of prime factors to obtain,


[tex] = {2}^{3} \times 5:3 \times 5[/tex]



We cancel out the common factor of

5 to get


[tex] = {2}^{3}:3 [/tex]

We simplify to get,

[tex] = 8:3[/tex]

[tex] \therefore 40:15 =8:3[/tex]


QUESTION 2

The given ratio is
[tex]49 : 7[/tex]

We factor each term in the ratio, it will now be

[tex] = 7 \times 7: 7[/tex]


If we cancel out the common factor of 7, the ratio will now be

[tex] = 7 : 1[/tex]


QUESTION 3



We want to simplify 80 inches over 10 days, which is,

[tex] \frac{80 \: inches}{10 \: days} [/tex]

We convert this into ratio to get,




[tex]80 \:inches:10 \: days[/tex]


We factor the terms in the ratio to obtain,

[tex] 8 \times 10\:inches:10 \: days[/tex]

We cancel out common factors to obtain,


[tex] 8 \:inches:1\: days[/tex]


QUESTION 4


3 ounces costs $2.70.

We can write this as,


[tex] \frac{3}{ 2.7 } [/tex]

We change the denominator to fraction,


[tex] = \frac{3}{ \frac{27}{10} } [/tex]



We change the first bar to a normal division sign to get,

[tex] = 3 \div \frac{27}{10} [/tex]



We now multiply by the reciprocal to get,

[tex] = 3 \times \frac{10}{27} [/tex]


[tex] = \frac{10}{9} [/tex]



We convert this back to ratio to get,

[tex]3ounce: 2.7 \: dollars= 10 \: ounce: 9 \: dollars[/tex]


QUESTION 5

[tex]10 \: ounce: 3.9 \: dollars[/tex]


We multiply each term in the ratio by 10, to get,


[tex]10 \times 10 \: ounce: 3.9 \times 10 \: dollars[/tex]


[tex]100\: ounce: 39 \: dollars[/tex]


QUESTION 6

[tex]12 \: boxes: 96 \: books[/tex]

If we factor each term, the ratio

[tex] = 12 \: boxes: 12 \times 8 \: books[/tex]

We cancel out the common factors and the ratio will be

[tex] = 1 \: box: 8 \: books[/tex]



QUESTION 7

The ratio of the sides of the triangle is

[tex]3:4:6[/tex]


The total ratio is
[tex] = 3 + 4 + 6 = 13[/tex]



The shortest sides corresponds to the least ratio which is 3,


The shortest side is
[tex] = \frac{3}{13} \times 104[/tex]
[tex] = 24 \: units[/tex]


The length of the medium side is



[tex] = \frac{4}{13} \times 104[/tex]

[tex] = 32 \: units[/tex]


The length of the longest side,

[tex] = \frac{6}{13} \times 104[/tex]

[tex] = 48 \: units[/tex]



QUESTION 8.



The ratio of the sides of the triangle is


[tex] 7 : 9: 12[/tex]



The total ratio is

[tex]7 + 9 + 12 = 28[/tex]

The shortest sides of the triangle corresponds to the least ratio which is 7,



The shortest side
[tex] = \frac{7}{28} \times 84[/tex]
[tex] = 21 \: units[/tex]


The length of the medium side is

[tex] = \frac{9}{28} \times 84[/tex]

[tex] = 27 \: units[/tex]


The length of the longest side is

[tex] = \frac{12}{28} \times 84[/tex]
[tex] = 36 \: units[/tex]



QUESTION 9.


The given ratio is

[tex]6:7:9[/tex]


The total ratio is

[tex] = 6 + 7 + 9 = 22[/tex]

The length of the shortest side is,


[tex] = \frac{6}{22} \times 77[/tex]


[tex]21 \: units[/tex]


The length of the medium side is

[tex] = \frac{7}{22} \times 77[/tex]

[tex] = 24.5 \: units[/tex]



The length of the shortest side is

[tex] = \frac{9}{22} \times 77[/tex]

[tex] = 31.5 \: units[/tex]


QUESTION 4

The given ratio is

[tex] 4:5:6[/tex]


The total ratio is
[tex] = 4 + 5 + 6 = 15[/tex]
The sum of the interior angles of the triangle is 180°.


The measure of the smallest angle is
[tex] = \frac{4}{15} \times 180 \degree[/tex]


[tex] = 48 \degree[/tex]
The measure of the medium angle is,

[tex] = \frac{5}{15} \times 180 \degree[/tex]

[tex] = 60 \degree[/tex]


The measure of the biggest angle is

[tex] = \frac{6}{15} \times 180 \degree[/tex]


[tex] = 72 \degree[/tex]



We could have also gotten this angle by subtracting the measure of the sum of smallest and the medium angle from 180°,

[tex] = 180 - (48 + 60)[/tex]


[tex] = 180 -108[/tex]



[tex] = 72 \degree[/tex]


QUESTION 11

The given ratio is

[tex]5:7:8[/tex]


The sum of the total ratio is

[tex] = 5 + 7 + 8 = 20[/tex]

The measure of the biggest angle corresponds to the biggest ratio which is 8.


The biggest angle is


[tex] = \frac{8}{20} \times 180 \degree[/tex]


[tex] = 72 \degree[/tex]



The measure of the smallest angle corresponds to 5,


[tex] = \frac{5}{20} \times 180 \degree[/tex]


[tex] = 45 \degree[/tex]

The measure of the third angle is
[tex] = \frac{7}{20} \times 180 \degree[/tex]


[tex] = 63 \degree[/tex]

A box of markers costs $4. Mr. Reed spent $92 on markers. The number of boxes, b, can be found by solving the equation 4b=92.

Answers

Answer: the answer is 23


Step-by-step explanation: since you are trying to find the number of boxes, b, the first thing you do is isolate it by dividing 4b by 4 this eliminates the 4, and because you did it on one side you have to do it on the other so you work would look like this 4b/4=92/4 you equation would look like this when done b=23


Final answer:

To find the number of boxes Mr. Reed bought, we solve the equation 4b = 92. This involves dividing 92 by 4 which results in 23 boxes of markers.

Explanation:

The subject of this question is Mathematics, particularly algebra. We need to solve the equation 4b = 92, where 'b' represents the number of boxes Mr.Reed bought.

Step 1: Write down the equation: 4b = 92.

Step 2: We solve for 'b' by dividing each side of the equation by 4. This gives us: b = 92/4.

Step 3: Doing the division, we find that 'b' is 23. Therefore, Mr. Reed purchased 23 boxes of markers with $92.

Learn more about Solving Algebraic Equations here:

https://brainly.com/question/33839116

#SPJ3

(03.02 LC)
Look at the figure below:

Triangle ABC with a segment joining vertex A to point D on side BC.

Which information is required to prove that angle ABD is congruent to angle ACD? (6 points)


Segment AC is congruent to segment AB.

Segment AD is congruent to segment AC.

Segment BD is congruent to segment AD.

Segment AB is congruent to segment BD.

Answers

Answer:

SEgment AC is congruent to segment AB

Step-by-step explanation:

given is a triangle ABC with a segment joining A to D on side BC.

To prove that ABD is congruent to ACD

Let us compare these two triangles.

AD = AD (reflexive) Thus one side is equal.

IF AB = AC, then by isosceles triangles property we have angle B = angle C

Thus we get two sides equal.  But this is a necessary condition not sufficient.

Because to prove congruence we need one more condition either CD = BD or Angle CAD = angle DAB

Thus if either AD is angle bisector, or D is mid point besides AC = AB we get

the two triangles are congruent.

(10 points)Julia exercises at the gym. For every
3 minutes she spends running, she spends
5 minutes lifting weights. Choose 2 answers♾

Answers

Answer:

The answer is B and E

Step-by-step explanation:

Julia runs 5 time and lifts 5 times in B. She also runs 10 times and lifts 10 times in E.


The velocity of a car increases from 2.0 m/s to 16.0 m/s in a time period of 3.5 s. What was the average acceleration?

Answers

The average acceleration of the car is 4 m/s²

The given parameters:

initial velocity of the car, u = 2 m/s

final velocity of the car, v = 16 m/s

time of motion of the car, t = 3.5 s

To find:

the average acceleration of the car

The average acceleration of the car is calculated as the change in velocity per change in time.

The formula for average acceleration is given below;

[tex]a = \frac{\Delta v}{\Delta t} = \frac{v- u}{t} = \frac{16 - 2}{3.5} = 4 \ m/s^2[/tex]

Thus, the average acceleration of the car is 4 m/s²

Learn more  here:https://brainly.com/question/17280180

Select the two binomials that are factors of this trinomial x^2+4x-32

Answers

Steps:

So to factor this expression, I'm going to be factoring by grouping. Firstly, what two terms have a sum of 4x and a product of -32x²? That's going to be 8x and -4x. Replace 4x with 8x - 4x:

[tex]x^2+8x-4x-32[/tex]

Now, factor x² + 8x and -4x - 32 separately. Make sure that they have the same quantity on the inside of the parentheses:

[tex]x(x+8)-4(x+8)[/tex]

Now you can rewrite the expression as:

[tex](x-4)(x+8)[/tex]

Answer:

In short, the two binomial factors are (x - 4) and (x + 8).

Answer:

x-4 and x+8

Step-by-step explanation:

Factoring a quadratic equation of the form x^2+bx+c:

Divide b into two numbers p and q, so that p+q = b and p*q = c

8 + (-4) = 4 = b

8 * (-4) = -32 = c

x^2+8x-4x-32

Factor by grouping

(x^2+8x)+ (-4x-32) =

x*(x+8) + -4* (x+8) = (x-4)(x+8)


X+2=x+4
A.The equation has no solution
B.The equation has one solution
C.The equation has infinitely many solutions

Answers

Answer:

A. The equation has no solution



This question has one solution

which expression is equivalent to (7x^2-4)(5x+7)

Answers

Expand to get 35x^3+49x^2-20x-28


Answer:

3x(3x + 2)

Step-by-step explanation:


Other Questions
What is the area of a rectangle with vertices at (1, 7) , (5, 3) , (3, 1) , and (1, 5) ?PLEASE HELPPPPPPPand explain What was the reason for most of the disputes between the settlers and the american indians The power in a lightbulb is given by the equation P- FR where /is the current flowing through the lightbulb and Ris the resistance of the lightbulb. What is the current in a circuit that has a resistance of 30.0 o and a power of 2.00 W? A.) 15.0 AB.) 3.87 AC.) 0.258 AD.) 0.067 A(PLEASE HELP NEED ANSWER ASAP) In at least 100 words, discuss the usage of contradiction and antithesis in "Life Without Go-Go Boots" by Barbara Kingsolver. Be sure to define the terms and quote text to support your reasoning. Click here to reference "Life Without Go-Go Boots." if 90 is 80 percent of the value what is the value How many moles are equal to 89.23 g of calcium oxide Which of the following statements about Daltons atomic theory is true?Daltons theory recognized that all matter is composed of atoms.Daltons theory recognized the existence of smaller particles within atoms.Daltons theory did not account for the similarities of atoms of the same element.Daltons theory stated that atoms could not combine with each other. how did the invention of the cotton gin change america's society and economy? .Select the correct answer from the drop-down menu. Find the polynomial. {5} is the solution set ofx^2-5x+25=0x^2+10x+25=0x^2-10x+25=0x^2+5x+25=0 At an auto race, a member of the pit crew stands beside the track. A car approaches him at 100 m/s and emits a sound at frequency 1100Hz. The air is still and the speed of sound is 340mls. What frequency will the pit crew member hear? A.1560Hz B.1420Hz C.1640Hz D.850Hz The light independent reactions could not take place without the high-energy products produced in the light dependent reactions. These high-energy products are ___________ and _____________.NADPHCarbon dioxidePGAATPPGALRuBP if lines m and n are parallel, and < 8 measures 110, which is the measure of < 7? a. 40b. 70c. 90d. 110 Each of the following was an effect of the climate change that occurred after the last Ice Age except __________. A. new grasslands developing B. human population increasing C. lands in East Africa drying up D. animals migrating to new fertile lands Identify the perimeter and area of an equilateral triangle with height 9 cm. Give your answer in simplest radical form. PLEASE HELP!! As Eqypt established trade with Kush, the two areas began to develop ___________ , in which they relied on one another for goods and shared ideas. The outer core of the earth is primarily made of A solid metal. B molten metal. C primarily water. D unknown materials Find the error with subject-verb agreement. Select the incorrect verb and type it correctly. In the 1998 movie Antz an army of ants attack a rival group of termites A lowly worker ant becomes a hero in the process initiating events that shake up the ant world an author's attitude toward his or her subject in a piece of writing is(A)Tone(B)Voice(C) Style(D)MoodJust found out it's tone Find the tenth term in each sequence. -1,2/3,7/3,4,17/3 Which expressions are equivalent to this expression?3(n+4)Select each correct answer.2n+12+n12+n+n+n 3n123n12 Steam Workshop Downloader