In the previous question, you calculated the amount of CO2 that was required to heat the air in your room. Which of the following are true statements?

Answers

Answer 1

Explanation:

In the previous question, you calculated the amount of CO2 that was required to heat the air in your room. Which of the following are true statements?

You didn't complete the above question, please complete the question and reupload, thanks for your anticipated cooperation.


Related Questions

A virus has a mass of ×9.010−12mg and an oil tanker has a mass of ×3.0107kg . Use this information to answer the questions below. Be sure your answers have the correct number of significant digits.What is the mass of one mole of viruses in grams?

Answers

Answer: Mass of one mole of viruses in grams is [tex]54\times 10^{8}[/tex]  

Explanation:

According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.

Given : One virus has mass of = [tex]9.0\times 10^{-12}mg=9.0\times 10^{-15}g[/tex]     [tex]1mg=10^{-3}g[/tex]

One mole of virus [tex]6.023\times 10^{23}[/tex] has mass of = [tex]\frac{9.0\times 10^{-15}}{1}\times 6.023\times 10^{23}=54\times 10^{8}g[/tex]  

Thus mass of one mole of viruses in grams is [tex]54\times 10^{8}[/tex]  

Final answer:

To find the mass of one mole of viruses in grams, convert the given mass of a virus from mg to grams and then multiply it by Avogadro's number, 6.022 × 10^23 particles/mol.

Explanation:

The mass of one mole of viruses can be calculated by converting the given mass of a virus to grams and then multiplying it by Avogadro's number, which represents the number of particles in one mole. Avogadro's number is approximately 6.022 × 10^23 particles per mole.

First, we convert the given mass of a virus from mg to grams:

9.010 × 10^-12 mg = 9.010 × 10^-15 g

Next, we multiply the mass of one virus by Avogadro's number:

9.010 × 10^-15 g × 6.022 × 10^23 particles/mol =

5.42 × 10^9 g

Therefore, the mass of one mole of viruses is approximately 5.42 × 10^9 grams.

Learn more about Mass of one mole of viruses in grams here:

https://brainly.com/question/14523093

#SPJ12

How many liters of HCl gas, measured at 30.0 °C and 745 torr, are required to prepare 1.25 L of a 3.20-M solution of hydrochloric acid?

Answers

Answer:

102 L

Explanation:

Data of the solution

Concentration: 3.20 MVolume: 1.25 L

The moles of HCl in the solution are:

1.25 L × 3.20 mol/L = 4.00 mol

The gas must contain 4.00 moles of HCl

Data of the gas

Temperature (T): 30.0 °C + 273.15 = 303.2 KPressure (P): 0.980 atm

745 torr × (1 atm/760 torr) = 0.980 atm

Moles (n): 4.00 mol

We can the volume (V) of HCl gas using the ideal gas equation.

P × V = n × R × T

V = n × R × T/P

V = 4.00 mol × (0.08206 atm.L/mol.K) × 303.2 K/ 0.980 atm

V = 102 L

Draw Lewis structures that obey the octet rule for the following species. Assign the formal charge to each central atom.a. POCI3b. 5042—c. Clott—d. PO43—e. SOZClZf. Xe04g. c103-h. N043—

Answers

Answer:

Explanation:

to begin, three steps are highlighted below which are used to write the Lewis structures of the given compounds, viz;

sum the variance of all the atom

use a pair of electrons to form a bond between each pair of bound atoms

lastly arrange the remaining electrons so as to satisfy the rule for hydrogen and the octet rule for the second-row elements.

the image below gives a step by step explanation as to answering this question.

i hope this was helpful, cheers.

Final answer:

Drawing Lewis structures entails representing the arrangement of electrons in a molecule, observing the octet rule, and assigning formal charges. The formal charge is the hypothetical charge an atom would possess if electrons in bonds are evenly distributed. The negative formal charges are preferably located on the most electronegative atoms in the molecule or ion when there are multiple possible structures.

Explanation:

Drawing Lewis structures and assigning formal charges requires an understanding of the octet rule and the nature of the molecules. Lewis structures depict the arrangement of electrons in a molecule, particularly illustrating the bonding between atoms and the lone pairs of electrons that may exist. The octet rule suggests that atoms are stable when their outermost (valence) shell is full, typically with eight electrons.

The formal charge on an atom in a molecule is the hypothetical charge the atom would have if we could redistribute the electrons in the bonds evenly between the atoms. We calculate formal charge as follows: Formal Charge = [# of valence electrons on atom] – [non-bonded electrons + number of bonds]. Lewis structures are most reliable when adjacent formal charges are zero or of the opposite sign, and if there are several possible structures for a molecule or ion, the one with the negative formal charges on the more electronegative atoms is often the most accurate.

Learn more about Lewis Structures and Formal Charges here:

https://brainly.com/question/29362180

#SPJ3

The heat of combustion of bituminous coal is 2.50  104 J/g. What quantity of the coal is required to produce the energy to convert 106.9 pounds of ice at 0.00°C to steam at 100.°C? specific heat (ice) = 2.10 J/g°C

Answers

This is an incomplete question, here is a complete question.

The heat of combustion of bituminous coal is 2.50 × 10² J/g. What quantity of the coal is required to produce the energy to convert 106.9 pounds of ice at 0.00 °C to steam at 100 °C?

Specific heat (ice) = 2.10 J/g°C

Specific heat (water) = 4.18 J/g°C

Heat of fusion = 333 J/g

Heat of vaporization = 2258 J/g

A) 5.84 kg

B) 0.646 kg

C) 0.811 kg

D) 4.38 kg

E) 1.46 kg

Answer : The correct option is, (A) 5.84 kg

Explanation :

The process involved in this problem are :

[tex](1):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(2):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(3):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)[/tex]

The expression used will be:

[tex]Q=[m\times \Delta H_{fusion}]+[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{vap}][/tex]

where,

[tex]Q[/tex] = heat required for the reaction = ?

m = mass of ice = 106.9 lb = 48489.024 g      (1 lb = 453.592 g)

[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = [tex]333J/g[/tex]

[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = [tex]2258J/g[/tex]

Now put all the given values in the above expression, we get:

[tex]Q=145903473.2J[/tex]

Now we have to calculate the quantity of the coal required.

[tex]m=\frac{Q}{\Delta H}[/tex]

[tex]m=\frac{145903473.2J}{2.50\times 10^4J/g}[/tex]

[tex]m=5836.138929g=5.84kg[/tex]      (1 g = 0.001 kg)

Thus, the quantity of the coal required is, 5.84 kg

Which would be most suitable for measuring 2.7 mL of ethanol for addition to a reaction with acidified dichromate?

A 10-mL graduated cylinder B 10-mL volumetric flask C 10-mL volumeric pipet D 10-mL beaker

Answers

Answer : The correct option is, (C) 10-mL volumeric pipet.

Explanation :

Graduated cylinder : It is a measuring cylinder that is used to measure the volume of a liquid. It has a narrow cylindrical shape. The marked line drawn on the graduated cylinder shows the amount of liquid that has been measured.

Pipet : It is a type of laboratory equipment that is used to measure the volume of a liquid. It is small glass tube and the marked line drawn on the pipet. It is used to accurately measure and transfer of volume of liquid from one container to another.

Volumetric flask : It is a type of laboratory tool that is also used for measuring the volume of liquid. It is used to make up a solution to a known volume. It measure volumes much more precisely than beakers.

Beaker : It is a type of laboratory equipment that has cylindrical shape and it is used for the mixing, stirring, and heating of chemicals.

As per question, we conclude that the pipet is most precise than other devices because in pipet the marking lines are more accurate. Thus, it can be used to measure volume to precision.

Hence, the correct option is, (C) 10-mL volumeric pipet.

A chemist determines by measurements that 0.0500 moles of oxygen gas participate in a chemical reaction.
Calculate the mass of oxygen gas that participates. Round your answer to significant digits.

Answers

Answer:

1.60 g

Explanation:

A chemist determines by measurements that 0.0500 moles of oxygen gas, that is, O₂, participate in a chemical reaction. The molar mass of oxygen is 32.00 g/mol. We can find the mass corresponding to 0.0500 moles using the following expression.

m = n × M

where

m is the mass

n are the moles

M is the molar mass

m = n × M

m = 0.0500 mol × 32.00 g/mol

m = 1.60 g

The flask contains 10.0 mL of HCl and a few drops of phenolphthalein indicator. The buret contains 0.140 M NaOH . It requires 24.7 mL of the NaOH solution to reach the end point of the titration. A buret filled with a titrant is held above a graduated cylinder containing an analyte solution. What is the initial concentration of HCl

Answers

Answer:

0.346 M

Explanation:

Let's consider the following neutralization reaction.

NaOH + HCl → NaCl + H₂O

24.7 mL of 0.140 M NaOH react. The reacting moles are:

24.7 × 10⁻³ L × 0.140 mol/L = 3.46 × 10⁻³ mol

The molar ratio of NaOH to HCl is 1:1. The moles of HCl that reacted are 3.46 × 10⁻³ moles.

3.46 × 10⁻³ moles of HCl are contained in 10.0 mL. The molarity of HCl is:

3.46 × 10⁻³ mol/ 10.0 × 10⁻³ L = 0.346 M

Statements describing requirements for suitable solvents for recrystallization are listed below. Sort these requirements as either true or false. The solvent should not dissolve the compound when cold. The solvent should either dissolve the impurities at all temperatures or not dissolve the impurities at all. The solvent should not dissolve the compound while hot. The solvent should chemically react with the compound. The solvent should dissolve the compound while cold. The solvent should not chemically react with the compound. The solvent should dissolve the compound while hot.

Answers

Answer:

True

True

False

False

False

True

True

Explanation:

The recrystallization is a purification process, in which a solid with impurities is dissolved in a hot solvent. The substance must be soluble in the hot solvent, so the impurities can leave the solid crystal. Then, the solution is cold, until the crystals are formed again, thus, the substance can't be soluble in the cold solvent, because if so, the recrystallization will not happen. The crystals are then separated.

Let's check the statements:

The solvent should not dissolve the compound when cold.

As explained above, this is true.

The solvent should either dissolve the impurities at all temperatures or not dissolve the impurities at all.

The impurities must be separated from the crystal, so if the solvent dissolves it has higher, it should dissolve it when it's cold because if it didn't happen, the impurities will recrystallize too. If the solvent doesn't solubilize it when it is hot, so, the impurities crystal will be formed first, and when the solvent is cold it can dissolve it because the impurities can enter the crystal compound again. So, it's true.

The solvent should not dissolve the compound while hot.

As explained above, the solvent must dissolve the compound while hot, so it's false.

The solvent should chemically react with the compound.

If the solvent reacts with the compound, a new substance will be formed, and the purification will not happen. So, it's false.

The solvent should dissolve the compound while cold.

As explained above, the compound must be solid in the cold solvent, so it's false.

The solvent should not chemically react with the compound.

As explained above, this is true.

The solvent should dissolve the compound while hot.

As explained above, this is true.

An unknown protein are dissolved in enough solvent to make of solution. The osmotic pressure of this solution is measured to be at .Calculate molar mass of a protein.

Answers

The question is incomplete, complete question is:

371 mg of an unknown protein are dissolved in enough solvent to make  5.00 mL of solution. The osmotic pressure of this solution is measured to be 0.118 atm  at 25°C .

Calculate the molar mass of the protein. Be sure your answer has the correct number of significant digits.

Answer:

The molar mass of unknown protein is 15,384.43 g/mol.

Explanation:

To calculate the molar mass of protein, we use the equation for osmotic pressure, which is:

[tex]\pi=icRT[/tex]

where,

[tex]\pi[/tex] = osmotic pressure of the solution = 0.118 atm

i = Van't hoff factor = 1 (for non-electrolytes)

c = concentration of solute = ?

R = Gas constant = [tex]0.0820\text{ L atm }mol^{-1}K^{-1}[/tex]

T = temperature of the solution = [tex]25^oC=[273+25]=298K[/tex]

Putting values in above equation, we get:

[tex]0.118 atm=1\times c\times 0.0821\text{ L.atm}mol^{-1}K^{-1}\times 298 K\\\\c=0.004823 mol/L[/tex]

[tex]concentration=\frac{Moles}{Volume (L)}[/tex]

[tex]0.004823 mol/L=\frac{n}{0.005 L}[/tex]

[tex]n=2.4115\times 10^{-5} mol[/tex]

To calculate the molecular mass of solute, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Moles of solute = [tex]2.4115\times 10^{-5} mol[/tex]

Given mass of solute = 371 mg = 0.371 g ( 1mg = 0.001 g)

Putting values in above equation, we get:

[tex]2.4115\times 10^{-5} mol=\frac{0.371 g}{\text{Molar mass of solute}}\\\\\text{Molar mass of solute}=15,384.43 g/mol[/tex]

Hence, the molar mass of unknown protein is 15,384.43 g/mol.

A process uses 63,400 SCF/h of natural gas. What is the annual cost of natural gas used in the process?

Answers

Explanation:

It is known that 1 SCF produces approximately 1000 Btu of thermal energy.

As it is not mentioned for how many hours the gas is used in this process. Therefore, we assume that the total number of hours natural gas used in this process are as follows.

        [tex]365 \times 24[/tex] = 8760 hours

Now, we will calculate the annual cost of natural gas used in the process as follows.

               [tex]8760 \times 63400[/tex]

              = 555384000 SCF

Hence, annual cost of natural gas used in this process = loss of thermal energy

This will be equal to,  [tex]555384000 \times 1000[/tex]

                           = 555,384,000,000 BTU

Thus, we can conclude that the annual cost of natural gas used in the process is 555,384,000,000 BTU.

Final answer:

To calculate the annual cost of natural gas used in the process, multiply the hourly usage by the number of hours in a year and the cost per SCF. The total gives you an approximate annual expenditure.

Explanation:

The exact annual cost of natural gas usage of the said process will depend on the current cost per SCF (standard cubic foot) of natural gas, which can fluctuate throughout the year based on economic conditions and demand. If you know the cost per SCF, you can calculate the annual cost by multiplying the hourly usage (63,400 SCF/h) by the number of hours in a year (8,760 hours), then multiply that result by the cost per SCF.

For instance, if natural gas cost $0.01 per SCF, your annual cost would be 63,400 SCF/hr * 8,760 hours * $0.01/SCF. This would give you an approximate annual expense for natural gas used in the process. However, it's prudent to cross-check this number with those in your bills and other related documents whenever practical.

Learn more about Annual cost calculation here:

https://brainly.com/question/34895359

#SPJ12

Among the hydrogen halides, the strongest bond is found in ________ and the longest bond is found in ________.

Answers

Answer:

hydrogen Flouride, hydrogen Tennesside

Explanation:

Final answer:

The strongest bond among hydrogen halides is found in hydrogen fluoride, while the longest bond is found in hydrogen iodide. This is due to the decreasing bond strength and increasing bond length with increasing size of the halide ion.

Explanation:

Among the hydrogen halides, the strongest bond is found in hydrogen fluoride (HF) and the longest bond is found in hydrogen iodide (HI). The bond strength in hydrogen halides typically decreases as the size of the halide ion increases, with fluorine being the smallest and therefore, the strongest. Conversely, the bond length increases with the size of the halide ion, hence why iodine, the largest halide, forms the longest bond with hydrogen.

Learn more about Hydrogen Halides here:

https://brainly.com/question/35456762

#SPJ3

A hospital pharmacist prepared thirty 100-mL epidural bags containing 0.125% of bupivacaine hydrochloride and 1 mg/mL of fentanyl citrate in 0.9% sodium chloride injection. How many (a) 30-mL vials of 0.5% bupivacaine hydrochloride, (b) 20-mL vials of 50 mg/mL of fentanyl citrate, and (c) 1-L bags of 0.9% sodium chloride were required?

Answers

Answer:

a) 25 vials

b) 3 vials

c) 3 bags

Explanation:

When a concentrated solution is diluted to form another solution, the new concentration can be calculated by:

C1V1 = C2V2

Where C is the concentration, V is the volume, 1 represents the initial solution, and 2 the final solution. The multiplication CV is constant because it represents the amount of matter in the solution which will not be changed.

a) Let's identify the volume (V1) needed when the concentrated solution has C1 = 0.5%, and the final solution has C2 = 0.125% and V2 = 100 mL

0.5*V1 = 0.125*100

0.5V1 = 12.5

V1 = 25 mL

Thus, this is the volume for 1 bag, for 30 bags, V = 30*25 = 750 mL. The vials needed is the volume divided by the volume of one vial:

750/30 = 25 vials.

b) Doing the same thing, now with C1 = 50 mg/mL, C2 = 1 mg/mL, and V2 = 100 mL:

50*V1 = 1*100

V1 = 2 mL

The volume for 30 bags is then 30*2 = 60 mL. The number of vials is:

60/20 = 3 vials.

c) In this case, the concentration of sodium chloride is the same in both solutions. Thus, the volume of it is the total volume of the bag (100 mL) less the volume of the other substances:

100 - 25 - 2 = 73 mL

The volume for 30 bags is 30*73 = 2190 mL. Thus, if the concentrated bag has 1 L = 1000 mL, the bags needed are:

2190/1000 = 2.19

Thus, 3 bags are needed (the 3rd bag will not be totally used!).

In a hospital laboratory, a 10.0 mL sample of gastric juice (predominantly HCl), obtained several hours after a meal, was titrated with 0.1 M NaOH to neutrality; 7.2 mL of NaOH was required. The patient’s stomach contained no ingested food or drink, thus assume that no buffers were present. What was the pH of the gastric juice?

Answers

Answer: 1.14

Explanation:

[tex]HCl+NaOH\rightarrow NaCl+H_2O[/tex]

To calculate the molarity of acid, we use the equation given by neutralization reaction:

[tex]n_1M_1V_1=n_2M_2V_2[/tex]

where,

[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is [tex]HCl[/tex]

are the n-factor, molarity and volume of base which is NaOH.

We are given:

[tex]n_1=1\\M_1=?\\V_1=10.0mL\\n_2=1\\M_2=0.1M\\V_2=7.2mL[/tex]

Putting values in above equation, we get:

[tex]1\times M_1\times 10.0=1\times 0.1\times 7.2\\\\M_1=0.072M[/tex]

To calculate pH of gastric juice:

molarity of [tex]H^+[/tex] = 0.072

[tex]pH=-log[H^+][/tex]

[tex]pH=-log(0.072)=1.14[/tex]

Thus the pH of the gastric juice is 1.14

The pH of the gastric juice is 1.14

We'll begin by calculating the molarity of the HCl needed for the reaction.

HCl + NaOH —> NaCl + H₂O

From the balanced equation above,

The mole ratio of the acid, HCl (nA) = 1

The mole ratio of the base, NaOH (nB) = 1

From the question given above,

Molarity of base, NaOH (Mb) = 0.1 M

Volume of base, NaOH (Vb) = 7.2 mL

Volume of acid, HCl (Va) = 10 mL

Molarity of acid, HCOOH (Ma) =?

MaVa / MbVb = nA/nB

(Ma × 10) / (0.1 × 7.2) = 1

(Ma × 10) / 0.72 = 1

Cross multiply

Ma × 10 = 0.72

Divide both side by 10

Ma = 0.72 / 10

Ma = 0.072 M

Next, we shall determine the concentration of the hydrogen ion in the solution

HCl (aq) —> H⁺(aq) + Cl¯(aq)

From the balanced equation above,

1 mole of HCl contains 1 mole of H⁺.

Therefore,

0.072 M HCl will also contain 0.072 M H⁺

Finally, we shall determine the pH.

Hydrogen ion concentration, [H⁺] = 0.072 M

pH =?

pH = –Log [H⁺]

pH = –Log 0.072

pH = 1.14

Thus, the pH of the gastric juice is 1.14

Learn more: https://brainly.com/question/12755239

Combustion of 1.000 g of an organic compound known to contain only carbon, hydrogen, and oxygen produces 2.360 g of carbon dioxide and 0.640 g of water. What is the empirical formula of the compound?

Answers

Answer:

The empirical formula is C3H4O

Explanation:

Step 1: Data given

Mass of the compound = 1.000 grams

The compound contains:

- Carbon

- hydrogen

- oxygen

The combustion of this compound gives:

2.360 grams of CO2

0.640 grams of H2O

Step 2: Calculate moles CO2

Moles CO2 = mass CO2 / molar mass CO2

Moles CO2 = 2.360 grams / 44.01 g/mol

Moles CO2 = 0.05362 moles

In CO2 we have 1 mol

This means for 1 mol CO2 we have 1 mol C

For 0.05362 moles CO2 we have 0.05362 moles C

We have 0.05362 moles of C in the compound  

Step 3: Calculate mass of C

Mass C = moles C * molar mass C

Mass C = 0.05362 moles * 12.0 g/mol

Mass C = 0.643 grams  

Step 4: Calculate moles of H2O  

Moles H2O = 0.640 grams / 18.02 g/mol

Moles H2O =  0.0355 moles H2O

For 1 mol H2O we have 2 moles of H

For 0.0355 moles H2O we have 2*0.0355 =  0.071 moles H  

Step 5: Calculate mass of H

Mass H = moles H * molar mass H

Mass H = 0.071 moles * 1.01 g/mol

Mass H = 0.072 grams

Step 6: Calculate mass of O

Mass of O = Mass of compound - mass of C - mass of H

Mass of O = 1.000 g - 0.643 - 0.072 = 0.285 grams

Step 7: Calculate moles of O

Moles O = 0.285 grams / 16.0 g/mol

Moles O = 0.0178 moles

Step 8: Calculate mol ratio

We divide by the smallest amount of moles

C:  0.05362 / 0.0178 = 3

H: 0.071 / 0.0178 = 4

O: 0.0178/0.0178 = 1

The empirical formula is C3H4O

The study of chemicals and bonds is called chemistry.

The correct answer is C3H4O

What is the empirical formula?The empirical formula of a chemical compound is the simplest whole-number ratio of atoms present in a compound.

All the data is given in the question, these data is as follows:-

Mass of the compound = 1.000 grams

The compound contains:

CarbonHydrogenOxygen

The combustion of this compound gives:

2.360 grams of CO20.640 grams of H2O

The formula to calculate the moles is as follows:-

[tex]Moles CO2 = \frac{mass}{molar mass}[/tex]

[tex]Moles \ CO2 = \frac{2.360} {44.01} Moles\ CO2 = 0.05362 moles [/tex]

In CO2 we have 1 mole, Which means for 1 mole CO2 we have 1 mole Carbon. For 0.05362 moles CO2, we have 0.05362 moles Carbon, We have 0.05362 moles of C in the compound  

lets calculate the mass of C

Mass C = moles C * molar mass C

Mass C = [tex]0.05362 moles * 12.0 g/mol[/tex]

Mass C = 0.643 grams  

The moles of H2O is as follows

Moles H2O = [tex]\frac{0.640}{18.02} [/tex]

Moles H2O = 0.0355 moles H2O

For 1 mole H2O, we have 2 moles of H. For 0.0355 moles H2O we have 2*0.0355 =  0.071 moles H  

let's Calculate the mass of H

Mass H = moles H * molar mass H

Mass H = 0.071 moles * 1.01 g/mol

Mass H = 0.072 grams

let's Calculate mass of O

Mass of O = Mass of compound - mass of C - mass of H

Mass of O = 1.000 g - 0.643 - 0.072 = 0.285 grams

let's Calculate moles of O

Moles O = 0.285 grams / 16.0 g/mol

Moles O = 0.0178 moles

The mole ratio is as follows:-

We divide by the smallest amount of moles

C:  0.05362 / 0.0178 = 3

H: 0.071 / 0.0178 = 4

O: 0.0178/0.0178 = 1

Hence, The empirical formula is C3H4O

For more information about the empirical formula, refer to the link:-

https://brainly.com/question/11588623

explain why it is a common laboratory procedure to heat analytical reagents and store them in a dessicated atmosphere (a sealed environment containing a dehumidifying agent) before use.

Answers

Explanation:

Most reagent forms are going to absorb water from the air; they're called "hygroscopic".  Water presence can have a drastic impact on the experiment being performed  For fact, it increases the reagent's molecular weight, meaning that anything involving a very specific molarity (the amount of molecules in the final solution) will not function properly.

Heating will help to eliminate water, although some chemicals don't react well to heat, so it shouldn't be used for all.  A dessicated environment is simply a means to  "dry."  That allows the reagent with little water in the air to attach with.

What is the product of the reaction of (S)-2-bromobutane with sodium methoxide in acetone?

Answers

Answer:

2-methoxybutane

Explanation:

This reaction is an example of Nucleophilic substitution reaction. Also, the reaction of (S)-2-bromobutane with sodium methoxide in acetone, is bimolecular nucleophilic substitution (SN2). The reaction equation is given below.

(S)-2-bromobutane + sodium methoxide (in acetone) → 2-methoxybutane

If a nitrogen-14 nuclide captures an alpha particle, a proton is produced along with:

a. neutrons.
b. boron-10.
c. oxygen-17.
d. fluorine-18.
e. carbon-17.

Answers

Answer: c. oxygen-17

Explanation:

The isotopic representation of an atom is: [tex]_Z^A\textrm{X}[/tex]

where,

Z = Atomic number of the atom

A = Mass number of the atom

X = Symbol of the atom

In a nuclear reaction, the total mass and total atomic number remains the same.

For the given nuclear reaction:

[tex]^{14}_{7}\textrm{N}+^4_2\textrm{He}\rightarrow ^A_Z\textrm{X}+^{1}_{1}\textrm{H}[/tex]

To calculate A:

Total mass on reactant side = total mass on product side

14 + 4= A + 1

A = 17

To calculate Z:

Total atomic number on reactant side = total atomic number on product side

7+ 2 = Z + 1

Z = 8

The isotopic symbol of element is [tex]_{17}^{8}\textrm{O}[/tex]

Thus a proton is produced along with oxygen-17.

A proton is produced along with:

c. oxygen-17

Isotopic representation of an atom:

[tex]^AX_Z[/tex]

where,

Z = Atomic number of the atom

A = Mass number of the atom

X = Symbol of the atom

In a nuclear reaction, the total mass and total atomic number remains the same.

For the given nuclear reaction:

[tex]^{14}N_7+^4He_2----- > ^AX_Z+^1H_1[/tex]

To calculate A:

Total mass on reactant side = total mass on product side

14 + 4= A + 1

A = 17

To calculate Z:

Total atomic number on reactant side = total atomic number on product side

7+ 2 = Z + 1

Z = 8

The isotopic symbol of element is: [tex]^8O_{17}[/tex]

Thus, A proton is produced along with oxygen-17

Find more information about Isotopic symbol here:

brainly.com/question/419606

Determine whether each of these processes is reversible or irreversible.Drag the appropriate items to their respective bins.Bins: Reversible and Irreversible1) solid melting infinitesimally slowly at its melting point2) a single swing of a real pendulum3) gas condensing infinitesimally slowly at its condensation point4) solid melting infinitesimally slowly above its melting point5) liquid freezing below its freezing point6) liquid freezing infinitesimally slowly at its freezing point7) a single swing of a frictionless pendulum8) liquid vaporizing infinitesimally slowly at its boiling point9) gas condensing below its condensation point10) liquid vaporizing above its boiling point

Answers

Answer:

Reversible Processes:

- solid melting infinitesimally slowly at its melting point

- gas condensing infinitesimally slowly at its condensation point

- a single swing of frictionless pendulum

- liquid vaporizing infinitesimally slowly at its boling point

- liquid freezing infinitesimally slowly at its freezing point

Irreversible Processes:

- a single swing of a real pendulum

- solid melting infinitesimally slowly above its melting point

- liquid freezing below its freezing point

- gas condensing below its condenation point

- liquid vaporizing above its boiling point

Explanation:

Hint to help solve: "spontaneous processes, such as a solid melting above its melting point, are not reversible according to the scientific definition. Certainly one could place the melted substance in a cold environment and it would freeze again, but the surroundings would not be restored to their original state before melting and, in fact, would be further altered in the cooling process" - Mastering Chem.

How many milliliters o a 0.2% solution o a skin test antigen must be used to prepare 4 mL o a solution containing 0.04 mg/mL o the antigen?

Answers

Answer:

0.08 mL

Explanation:

The solution of the skin test has a concentration of 0.2% (w/v), which means that there are 0.2 g of the antigen per 100 mL of the solution. If a new solution will be done using it, then this solution will be diluted, and the mass of the antigen added must be the same in the volume taken and at the diluted solution.

The mass is the concentration (in g/mL) multiplied by the volume of the solution (in mL), so, if m is the mass, C the concentration, V the volume, 1 the initial solution, and 2 the diluted:

m1 = m2

C1*V1 = C2*V2

Where

C1 = 0.2 g/100 mL = 0.002 g/mL

V1 = ?

C2 = 0.04 mg/mL = 0.00004 g/mL

V2 = 4 mL

0.002*V1 = 0.00004*4

V1 = 0.08 mL

Considering the definition of dilution, 0.08 mL of a 0.2% solution of a skin test antigen must be used to prepare 4 mL of a solution containing 0.04 mg/mL of the antigen.

First of all, you have to know that when it is desired to prepare a less concentrated solution from a more concentrated one, it is called dilution.

Dilution is the process of reducing the concentration of solute in solution, which is accomplished by simply adding more solvent to the solution at the same amount of solute.

In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume (and weight) of the solution increases.

A dilution is mathematically expressed as:

Ci×Vi = Cf×Vf

where

Ci: initial concentration Vi: initial volume Cf: final concentration Vf: final volume

In this case, you know:

Ci= 0.2% (w/v), which means that there are 0.2 g of the antigen per 100 mL of the solution. Then, the concentration is [tex]\frac{0.2g}{100mL}[/tex]= 0.002 [tex]\frac{g}{mL}[/tex] Vi= ? Cf= 0.04 [tex]\frac{mg}{mL}[/tex]= 0.00004 [tex]\frac{g}{mL}[/tex] (being 0.001 mg= 1 g) Vf= 4 mL  

Replacing in the definition of dilution:

0.002 [tex]\frac{g}{mL}[/tex] × Vi= 0.00004 [tex]\frac{g}{mL}[/tex]× 4 mL

Solving:

[tex]Vi=\frac{0.00004 \frac{g}{mL}x4 mL}{0.002\frac{g}{mL} }[/tex]

Vi= 0.08 mL

In summary, 0.08 mL of a 0.2% solution of a skin test antigen must be used to prepare 4 mL of a solution containing 0.04 mg/mL of the antigen.

Learn more about dilution:

brainly.com/question/20113402?referrer=searchResults brainly.com/question/22762236?referrer=searchResults

Predict the two most likely mechanisms for the reaction of 2-iodohexane with sodium ethoxide.


I. E2 + SN1

II. SN1 + SN2

III. E1 + E2

IV. E1 + SN1

Answers

Answer:

Option I. E2 and SN1

Explanation:

First, let's discard the options.

Option II cannot be because sodium ethoxide, although is a good nucleophyle, it's also a strong base, so it can take place a acid base reaction, and ethoxide act as base to substract an electrophyle from the iodohexane, therefore, it can go through a mechanism of elimination.

Option III cannot be either because the above explanation. Also a reaction in basic conditions can actually go through bimolecular reactions, so it has to be E2 only. E1 is in acidic conditions mostly and involves a carbocation, which in basic medium cannot be.

Because of the above explanation, option IV cannot be either.

Technically option 1 cannot be either because a reaction if it's bimolecular, then it has to be Sn2 and E2 only.

but it's the only option that has sense above all.

The mechanism is as follow:

The branch of science which deals with chemicals and bonds is called chemistry.

The correct option is A

The other option is wrong because of the following reason:-

Option II is wrong because sodium ethoxide, although it is a good nucleophile and also a strong base, so can take place in an acid-base reaction, and ethoxide acts as a base to subtract an electrophile from the isohexane, therefore, it can go through a mechanism of elimination. Option III cannot be either because of the above explanation. Also, a reaction in basic conditions can actually go through bimolecular reactions, so it has to be E2 only. E1 is in acidic conditions mostly and involves a carbocation, which in the basic medium cannot be.

Hence, the correct option is 1 that is E2 +SN1

For more information, refer to the link:-

https://brainly.com/question/19524691

You are asked to give a continuous Albuterol treatment in the ER, all that is available to you is the 2.5 mg in 0.5 mL\ Albuterol vials. The Dr. has asked for 12.5 mg to be delivered over a two-hour period. If the output flow of your continuous nebulizer is 10 mL per hour how much total solution would you need to deliver this treatment? How much Albuterol and how much normal saline would you have to add?

Answers

Answer:

Total 20 mL of solution is needed in which 2.5 m L will be of Albuterol solution and 17.5 mL will be of normal saline solution.

Explanation:

Amount of Albuterol in 1 vial = 2.5 mg/0.5 mL

Volume of dose in which 12.5 mg of Albuterol is present be x.

So,

[tex]\frac{2.5 mg}{0.5 mL}=\frac{12.5 mg}{x}[/tex]

x = 2.5 mL

Volume of  Albuterol solution is 2.5 mL.

If the output flow of your continuous nebulizer is 10 mL per hour.Then in 2 hours total volume of solution delivered = T

T = 10 × 2 mL = 20 mL

Volume of normal saline solution needed = y

T = x + y

y = T - x = 20 mL - 2.5 mL = 17.5 mL

Total 20 mL of solution is needed in which 2.5 mL will be of Albuterol solution and 17.5 mL will be of normal saline solution.

A buffer contains 0.020 mol of lactic acid (pKa = 3.86) and 0.100 mol sodium lactate per liter of aqueous solution.

a. Calculate the pH of this buffer.

b. Calculate the pH after 8.0 mL of 1.00 M NaOH is added to 1 liter of the buffer (assume the total volume will be 1008 mL).

Answers

Answer:

pH = 4.8

Explanation:

We will use the Henderson-Hasselbach equation to calculate the pH of the buffer:

pH = pKₐ + log [A⁻]/[HA]

From the information given:

pKₐ = 3.86

[A⁻] =  0.100 M

[HA] = 0.020 M

Plugging our values:

pH = 3.86 + log ( 0.100/0.020 ) = 4.6

For part b the same equation is utilized.

However we have to realize that the concentrations of the acid and its conjugate base have changed according to the neutralization reaction :

NaOH + lactic acid ⇒ sodium lactate + H₂O

# mol NaOH reacted = (8.0 mL x 1 L / 1000 mL ) x 1.00 M

= 8.0 x 10⁻³ mol

mol  sodium lactate produced = 8.0 x 10⁻³ mol   ( 1:1 )

number of moles mol lactic acid   originally = 1 L x 0.020 mol/L = 0.020 mol

new mol lactic acid after reaction = 0.020 - 8.0 x 10⁻³ =  0.012 mol

new mol sodium lactate after reaction = 0.100 mol/L x 1 L + 8.0 x 10⁻³ = 0.108

Here we do not need to calculate the new concentrations since molarity  is mol/V, and  the volumes cancel each other in the Henderson-Hasselbach equation because  they are in a ratio.

Now we are in position to determine the pH.

pH = 3.86 + log ( 0.108/0.012 ) = 4.8

This the usefulness of buffers, we are adding a 1.00 M  strong base NaOH, and the pH did not change that much (  a long as they are small additions within reason )

after your product alkyl ether is recrystallized and dried how do you test the purity

Answers

Answer: Use of Etherificarion followed by fractional distinction.

Explanation:

It is done by reacting a mixture of tetrahydrofurfuryl alcohol and up to about one equivalent of at least one low work function element, Reacting the said mixture with a halide; fractionally distilling said reacted mixture to yield the first distillate; reacting said first distillate with an excess amount of at least one low work function element; and, fractionally distilling said reacted first distillate to obtain the purified ether wherein said at least one low work function element is an elemental metal or a metal hydride which has a φ of less than about 3.0 eV.

PCl3(g) + Cl2(g) ⇋ PCl5(g) Kc = 91.0 at 400 K. What is the [Cl2] at equilibrium if the initial concentrations were 0.24 M for PCl3 and 1.50 M for Cl2 and 0.12 M PCl5.

Answers

Answer:

[Cl₂] in equilibrium is 1.26 M

Explanation:

This is the equilibrium:

PCl₃(g) + Cl₂(g) ⇋ PCl₅(g)

Kc = 91

So let's analyse, all the process:

                PCl₃(g)        +        Cl₂(g)     ⇋        PCl₅(g)

Initially     0.24 M                 1.50M                 0.12 M

React           x                           x                         x

Some amount of compound has reacted during the process.

In equilibrium we have

              0.24 - x                  1.50 - x                  0.12 + x

As initially we have moles of product, in equilibrium we have to sum them.

Let's make the expression for Kc

Kc = [PCl₅] / [Cl₂] . [PCl₃]

91 = (0.12 + x) / (0.24 - x) ( 1.50 - x)

91 = (0.12 + x) / (0.36 - 0.24x - 1.5x + x²)          

91 (0.36 - 0.24x - 1.5x + x²) = (0.12 + x)

32.76 - 158.34x + 91x² = 0.12 +x

32.64 - 159.34x + 91x² = 0

This a quadratic function:

a = 91; b= -159.34; c = 32.64

(-b +- √(b² - 4ac)) / 2a

Solution 1 = 1.5

Solution 2 = 0.23 (This is our value)

So [Cl₂] in equilibrium is 1.50 - 0.23 = 1.26 M

Provide an appropriate alkyne starting material A and intermediate product B. Omit byproducts. The number of carbon atoms in the starting material should be the same as in the final product.

Answers

Final answer:

An appropriate alkyne starting material A could be 2-butyne (C4H6). An intermediate product B could be but-2-en-1-yne (C4H4). Both the starting material and the intermediate product have the same number of carbon atoms.

Explanation:

An appropriate alkyne starting material A could be 2-butyne (C4H6).

An intermediate product B could be but-2-en-1-yne (C4H4).

Both the starting material and the intermediate product have the same number of carbon atoms.

A chemist measures the amount of fluorine gas produced during an experiment. He finds that 482. g of fluorine gas is produced.

Calculate the number of moles of fluorine gas produced.

Be sure your answer has the correct number of significant digits.

Answers

Answer: 25.37055324733817mol

Approximately 25.371mol

Explanation: Number of moles of a substance is the mass of that substance containing the same amount of fundamental units, for instance atom in 12.0g of 12°C

Therefore:

Number of moles= mass/ molecular mass

Where mass of fluorine given= 482g

Standard Molecular mass of fluorine= 18.9984032g/mol

Substituting value in equation

Mole= 482g/18.9984032g/mol = 25.37055324733817mol

Approximately : 25.371mol

Classify each of these compounds as a Brønsted-Lowry acid, a Brønsted-Lowry base, or neither.
Drag each item to the appropriate bin.
are these a Brønsted-Lowry acid or a Brønsted-Lowry base
H2SO4, HNO2, (CH3)3N, C3H7NH2, HF, NH3, NaBr, CCl4

Answers

Answer:

Brønsted-Lowry acid : H2SO4, HF, HNO2

Brønsted-Lowry Base : NH3, C3H7NH2, CH3)3N

Neither : NaBr, CCl4

Explanation:

Final answer:

H2SO4, HNO2, and HF are Brønsted-Lowry acids. (CH3)3N, C3H7NH2, and NH3 are Brønsted-Lowry bases. NaBr and CCl4 are neither.

Explanation:

In the Brønsted-Lowry definition, an acid is a substance that can donate a proton (H+) and a base is a substance that can accept a proton. Looking at your list:

H2SO4, HNO2, and HF are all Brønsted-Lowry acids because they can each donate a proton.(CH3)3N, C3H7NH2, and NH3 are Brønsted-Lowry bases because they can each accept a proton.

 NaBr and CCl4 are neither Brønsted-Lowry acids nor bases since they do not participate in proton donation or acceptance.  

Learn more about Brønsted-Lowry Acid and Base

https://brainly.com/question/22821256

#SPJ6

A virus has a mass of ×9.010−12mg and an oil tanker has a mass of ×3.0107kg . Use this information to answer the questions below. Be sure your answers have the correct number of significant digits.What is the mass of one mole of viruses in grams?How many moles of viruses have a mass equal to the mass of an oil tanker?

Answers

Answer:

5.426 x 10⁹ g

5.55 mol

Explanation:

This type of problems involve the use of proportions , and the use of conversion of units to solve them.

In the first part we have to determine the mass in grams of a mole of virus, so we have to convert the mass to grams and  multiply by avogadro´s number.

9.010x 10⁻¹² mg x  ( 1 g / 1000 mg ) = 9.010 x 10⁻¹⁵ g

mass of 1 mol viruses:

9.010 x 10⁻¹⁵ g/ virus x ( 6.022 x 10²³ virus/mol ) = 5.426 x 10⁹ g /mol

(Note we rounded to 4 significant figures since 9.010 has 4 significant figures.)

For the second part convert the mass of the oil tanker to grams, and make use of the previous result to determine the # of moles of viruses which have the same mass.

mass oil tanker = 3.01 x 10⁷ Kg x ( 1000 g /Kg ) = 3.01 x 10¹⁰ g

3.01 x 10¹⁰ g x ( 1 mol virus / 5.426 x 10⁹ g ) = 5.55 mol

( Note here we rounded to three significant figures since in the multiplication we have 3.01 with three significant figures. )

The result is amazing and it is due to the very small mass of the virus. Imagine only 5.55 mol of virus in the same mass as that of an oil tanker !!!

Final answer:

The mass of one mole of viruses is 5.42 grams, calculated by converting the mass of a single virus to grams and then multiplying by Avogadro's number. To equate to the mass of an oil tanker, there would be 5.54 × 10^9 moles of viruses.

Explanation:

To calculate the mass of one mole of viruses, we use the given mass of a single virus and Avogadro's number. Since we have the mass of one virus as 9.0 × 10-12 mg, we first convert this mass to grams by dividing by 1,000,000 (since there are 1,000,000 micrograms in a gram), giving us 9.0 × 10-18 g. Then, we multiply this mass by Avogadro's number (6.022 × 1023 particles/mole) to get the mass of one mole of viruses: 5.42 g.

To find out how many moles of viruses have a mass equal to that of the oil tanker, we first convert the mass of the oil tanker to grams (3.0 × 107 kg is equal to 3.0 × 1010 g because there are 1,000 kg in a tonne and 1,000 g in a kg). Now, we divide this mass by the mass of one mole of viruses (5.42 g/mole), giving us: 5.54 × 109 moles.

a.) If sodium is irradiated with light of 439 nm, what is themaximum possible kinetic energy of the emitted electrons?

b.) What is the maximum number of electrons that can be freedby a burst of light whose total energy is 1.00μJ?

Answers

Final answer:

This problem is about the Photoelectric Effect in quantum physics, calculating the maximum kinetic energy of emitted electrons and the maximum number of freed electrons due to light exposure.

Explanation:

The questions are related to the Photoelectric Effect, a fundamental concept in quantum physics.

a.) The relationship between the frequency of light and the maximum kinetic energy of emitted electrons is given by the formula: E = hf – W, where E is the maximum kinetic energy, h is Planck’s constant, f is the frequency of light, and W is the work function of the material. The frequency can be found from the speed of light divided by the given wavelength (439 nm).

b.) The maximum number of electrons freed by light depends on the energy of the photons and the material's work function. You can find this by dividing the total energy of the burst of light (1.00μJ) by the energy required to remove one electron.

Learn more about Photoelectric Effect here:

https://brainly.com/question/12732631

#SPJ3

Fe(s) + 2HCl(aq) --> FeCl2(aq) + H2(g)

When a student adds 30.0 mL of 1.00 M HCl to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

A) HCl is in excess, and 0.100 mol of HCl remains unreacted.

D) 0.22 L of H2 has been produced.

The correct answer is D. I can't figure out why A is wrong.

Answers

Option A states that 0.1 moles of HCl remain unreacted. This proves that option A is incorrect. The volume of hydrogen gas produced is 0.22 L. Thus option D is correct.

From the given reaction, 1 mole of Fe and 2 moles of HCl reacts to form 1 mole ferric chloride and 1-mole hydrogen gas.

The number of moles of HCl in 30 ml 1 M solution are:

Moles = molarity [tex]\times[/tex] volume (L)

Moles of HCl = 1 [tex]\times[/tex] 0.03

Moles of HCl = 0.030 moles.

The moles of 0.56 grams Fe powder are :

Moles = [tex]\rm \dfrac{weight}{molecular\;weight}[/tex]

Moles of Fe = [tex]\rm \dfrac{0.56}{56}[/tex] moles

Moles of Fe = 0.01 moles

For the reaction of 1 mole of Fe, 2 moles of HCL is required.

For the reaction of 0.01 moles of Fe, moles of HCl required = 0.01 [tex]\times[/tex] 2

Moles of HCL reacted = 0.02 moles

Total moles of HCL = 0.03 moles

Moles of HCl unreacted = 0.03 - 0.02

Moles of HCl unreacted = 0.01 moles

Option A states that 0.1 moles of HCl remain unreacted. This proves that option A is incorrect.

1 mole of Fe form 1 mole of Hydrogen gas.

0.01 moles of Fe form, 0.01 mole of Hydrogen gas.

From the ideal gas equation:

PV = nRT

1 [tex]\times[/tex] Volume = 0.01 [tex]\times[/tex] 0.0821 [tex]\times[/tex] 273

Volume of Hydrogen gas = 0.22 L.

The volume of hydrogen gas produced is 0.22 L. Thus option D is correct.

For more information about the chemical reaction, refer to the link:

https://brainly.com/question/1689737

Option D is correct since exactly 0.22 L of H₂ is produced, which matches the stoichiometric calculations for the reaction.

To determine why A is incorrect, we need to perform stoichiometric calculations based on the reaction: Fe(s) + 2HCl(aq) --> FeCl₂(aq) + H₂(g). First, calculate the moles of Fe and HCl:

Moles of Fe = 0.56 g / 55.85 g/mol = 0.0100 mol Moles of HCl = 30.0 mL * 1.00 M = 0.0300 mol

The balanced equation shows that 1 mole of Fe reacts with 2 moles of HCl. Therefore, 0.0100 mol of Fe will react with 0.0200 mol of HCl, leaving an excess of 0.0100 mol of HCl (0.0300 mol - 0.0200 mol). However, this contradicts option A which states 0.100 mol HCl remains unreacted.

Now, for option D: 0.0100 mol of Fe will produce 0.0100 mol of H₂. Using the ideal gas law at standard conditions (273 K and 1.0 atm), the volume of H₂ produced is:

V = nRT/P = (0.0100 mol) * (0.0821 L·atm/K·mol) * (273 K) / (1 atm) = 0.22 L

This confirms that D is correct.

The complete question is:

Fe(s) + 2HCl(aq) --> FeCl₂(aq) + H₂(g)

When a student adds 30.0 mL of 1.00 M HCl to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

A) HCl is in excess, and 0.100 mol of HCl remains unreacted.

D) 0.22 L of H₂ has been produced.

The correct question is:

To the reaction mixture having reaction as 25 Fe(s) + 2 HCI(aq) -> FeCl₂(aq) + H₂(g), When a student adds 30.0 mL of 1.00 M HCI to 0.56 g of powdered Fe, a reaction occurs according to the equation above. When the reaction is complete at 273 K and 1.0 atm, which of the following is true?

(A) HCI is in excess, and 0.100 mol of HCI remains unreacted.

(B) HCI is in excess, and 0.020 mol of HCI remains unreacted.

(C) 0.015 mol of FeCl₂ has been produced.

(D) 0.22 L of H₂ has been produced.

Other Questions
The parade for MartinLuther King Day went insquare around downtown.If the band marched 1,872yards before their first turnonto Market Street, howmany feet was the entireparade route? 2 One of the arguments the writer of theCounterpoint essays makes is that Boyne'sclever wordplay is inappropriate. Identify whatthe wordplay is and the experts' arguments. Howdo the experts help the author support his claim?Support your answer with textual evidence. how do I solve these three The mother of a 10-year-old child diagnosed with rubella asks what can be done to help her child feel better during her illness. What information can be provided? Which two sentences in the excerpt from Common Sense by Thomas Paine indicate that Great Britain protected the American colonies for mutual gain? Mom bought 8 apples we ate 1/4 of them. How many did we eat? which of the following control types would backup of server data provide in case of a system issue?A.)CorrectiveB.)DeterrentC.)PreventiveD.)Detective 16. A 7500 kg 18-wheeler traveling at 20 m/s exits onto the runaway truck ramp on the freeway.When it comes to a stop, it is 10 m higher than before.How much energy was dissipated by friction? Given a Fahrenheit value temperatureFahrenheit, write a statement that assigns temperatureCelsius with the equivalent Celsius value. While the equation is C "You must understand, sir, that a person is either with this court or he must be counted against it, there be no road between. This is a sharp time, now, a precise timewe live no longer in the dusky afternoon when evil mixed itself with good and befuddled the world. Now, by Gods grace, the shining sun is up, and them that fear not light will surely praise it." (Act 3) The ________ or more commonly known as the baseline, measures behavior before the researcher induces an environmental change. This data is collected until _________ (little or no variation in responding) is achieved Which of the following exposure factors will produce the greatest receptor exposure?A: 100 mA, 50 msB: 200 mA, 40 msC: 400 mA, 70 msD: 600 mA, 30 ms Sami and Dmitri have been friends for several years. They have developed shared rules of engagement and norms that guide interactions with each other. Sami and Dmitri are in which phase of the Intercultural Relationship Developmental Process: Ruth keeps account of her family's expenses. She keeps track of the entire family's needs and discusses with other family members about what products need to be bought. She realizes that the family requires a bigger refrigerator and discusses this with her parents. She collects information about refrigerators from various brands so that her parents can make an informed decision.a. innovatorb. influencerc. gatekeeperd. purchaser What are the answers to ll.2 on ixl Describe and compare the building blocks, general structires and biological functions of carbohydrates lipids proteins and nucleic acids at a movie theater, the size of popcorn bags decreased 20% . if the old bags held 15 cups of popcorn, how much do the new bags hold? Hunter-gatherer societies allocated resources by a combination of Individual decisions. Sharing customs. Organized hunting/gathering activity All of the above. The strength of the electric field at a certain distance from a point charge is represented by E. What is the strength of the electric field at twice the distance from the point charge?A) At twice the distance, the strength of the field is E/2.B) At twice the distance, the strength of the field is 2E.C) At twice the distance, the strength of the field is 4E.D) At twice the distance, the strength of the field remains equal to E.E) At twice the distance, the strength of the field is E/4. In the Meselson-Stahl experiment, which mode of replication was eliminated based on data derived after one generation of replication? a. conservative b. semiconservative c. dispersive d. none of the modes Steam Workshop Downloader