ireally need help
Most substances _______ in temperature and _______ when heat is added to them.

A.

decrease; contract

B.

increase; expand

C.

increase; contract

D.

decrease; expand

Answers

Answer 1
B is the correct answer to this question
Answer 2
The answer is B. Increase; ExpandExplanation: Most substances increase in temperature and expand when heat is added to them. When heat is removed from a substance, the substance will decrease in temperature and contract. These patterns occur in solids, liquids, and especially gases.

Related Questions

A rectangular field measures 6.0 m by 8.0 m. What is the area of the field in square centimeters (cm 2 )? Use the formula: Area = length × width.

A: 4.8 × 10 4 cm 2


B: 4.8 × 10 5 cm 2


C: 4.8 × 10 3 cm 2



Answers

Final answer:

The area of a rectangular field measuring 6.0 m by 8.0 m is 480,000 cm², which is 4.8 × 10⁵ cm² in scientific notation. So the correct option is B.

Explanation:

To calculate the area of a rectangular field in square centimeters, you would use the formula Area = length × width. First, we must ensure that both dimensions are in the same units, so we convert the dimensions from meters to centimeters. There are 100 centimeters in a meter, so:

6.0 m = 600 cm8.0 m = 800 cm

Next, we calculate the area using the converted measurements:

Area = 600 cm × 800 cm = 480,000 cm²

Therefore, the area of the field in square centimeters is 480,000 cm², which can be expressed in scientific notation as 4.8 × 105 cm2, making option B the correct answer.

An automobile gasoline tank holds 23 kg of gasoline. When the gasoline burns, 86 kg of oxygen is consumed, and carbon dioxide and water are produced.

Answers

Question:

What is the total combined mass of carbon dioxide and water that is produced?

Answer:

109 kg

Explanation:

When 23 kg of gasoline burns by consuming 86 kg oxygen, they produce carbon dioxide and water. To find the total combined mass of carbon dioxide and water, we will use mass conversation law.

According to mass conversation law, the mass of the product is equal to the mass of reagent.

Mass of reagent = Mass of product

In this reaction,

Gasoline + O2 → CO2 + H2O

23 kg + 86 kg → ?

23 kg + 86 kg =  109 kg

Combined mass of carbon dioxide and water will be 109 kg.

Final answer:

To estimate the CO₂ produced from 40 L of gasoline, we multiply the mass of the gasoline (calculated using the density of 0.75 kg/L) by three, resulting in approximately 90 kg of CO₂, which is comparable to human mass.

Explanation:

Based on the provided combustion reaction 2 C8H18 + 25 O2 → 16 CO₂ + 18 H₂O + energy, we can calculate the mass of CO₂ produced from consuming a 40 L tank of gasoline. First, we determine the mass of gasoline using the given density (0.75 kg/L), which is 40 L × 0.75 kg/L = 30 kg of gasoline. Now, using the factor-of-three ratio of CO₂ mass to input fuel mass, we multiply the gasoline mass by three to estimate the CO₂ mass produced. Hence, 30 kg × 3 = 90 kg of CO₂ are produced after burning 40 L of gasoline. If we compare this to the typical human mass, which is roughly between 50-100 kg, one can see that the mass of CO₂ produced is remarkably similar to or even exceeds the mass of an average human.

Directions: Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to the ground. Think about the amounts of potential and kinetic energy the bowling ball has:
• as sits on top of a building that is 40 meters tall.
• as it is half way through a fall off a building that is 40 meters tall and travelling 19.8 meters per second.
• as it is just about to hit the ground from a fall off a building that is 40 meters tall and travelling 28 meters per second.

1. Does the bowling ball have more potential energy or kinetic energy as it sit on top of the building? Why?

Answers

Answer:

Potential

Explanation:

The higher the elevation is the higher the potential energy levels are also the ball is not moving so it is not using kinetic energy.

!!!HELP ASAP!!! According to Le Châtelier's principle, how will a pressure increase affect a
system that includes matter in the gas phase and another phase?
A. The system will remain unchanged.
B. The total number of gas molecules will decrease.
C. The equilibrium reactions will slow down.
D. The total number of gas molecules will increase.

Answers

Answer: b. the total number of gas molecules will decrease.

Explanation:

According to principle, how will a pressure increase affect a system that includes matter in the gas phase and another phase that means the total number of gas molecules will decrease.

What is Principle?

This principle shows that when we alter a system in equilibrium, it will seek to acquire a new state that cancels out this disturbance. Thus, there is a shift in equilibrium, that is, a search for a new equilibrium situation, favoring one of the reaction directions.

principle concerns the response of systems in equilibrium when subjected to a perturbation. Simply put, the principle says that a system in equilibrium when disturbed tends to adjust itself in order to remove the disturbance and restore equilibrium.

See more about principle at brainly.com/question/2001993

#SPJ2

The table below shows properties of the element gold (Au).

Property Gold's
Characteristics
Color yellow
Density 19.32 g/mL
Electronegativity 2.54
Ionization Potential 9.225
Boiling Point 2807°C
Melting Point 1064.58°C


A physical property of gold is _______.
A.
density of 19.32 g/mL
B.
melting point of 1064.58°C
C.
boiling point of 2807°C
D.
all of these

Answers

Answer:

D = All of these

Explanation:

Physical properties:

Physical properties involve those properties which includes the state of matter.

For example,

Melting point, boiling point, freezing point, density, smell, color

In given example,

The density of gold is 19.32 g/mL

Melting point is 1064.58°C

Boiling point is 2807°C

All these are physical properties.

Chemical properties:

Chemical properties includes those properties which involves the chemical reaction

For example.

Flammability, reactivity, acidity, heat of combustion, toxicity etc.

The reaction of gold with oxygen:

Chemical equation,

3Au + O₂  →  Au₂O₃

What is the molality of a solution made by dissolving 137.9g of sucrose in 414.1g of water? The density of the solution is 1.104g/ml.

Answers

Answer:

Molality of solution = 0.973 m

Explanation:

Molality : It is defined as the moles of the solute per Kg mass of solvent.It is not temperature dependent.

Solute = Substance which is present in less quantity in the solution is called the solute. Here , Sucrose is the solute.

Solvent = Substance which is present in more quantity is the solvent. Here water is solvent.

[tex]Molality=\frac{moles\ of\ solute}{mass\ of\ solvent}[/tex]

Density = It is defined as the mass per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Mass of Solute = 137.9 g

[tex]Moles=\frac{mass}{Molar\ mass}[/tex]

Molar mass of sucrose =

[tex]C_{12}H_{22}O_{11}[/tex]= 12(mass of C)+22(mass of H)+11(mass of O)

= 12(12)+22(1)+11(16)

= 144+22+176

= 342 g/mol

[tex]Moles=\frac{mass}{Molar\ mass}[/tex]

[tex]Moles=\frac{137.9}{342}[/tex]

[tex]Moles=0.403[/tex]

Moles = 0.403 moles

Mass of Solvent = 414.1 g  (water)

[tex]Molality=\frac{moles\ of\ solute}{mass\ of\ solvent(g)}(1000)[/tex]

[tex]Molality =\frac{0.403}{414.1}\times 1000[/tex]

Molality = 0.973 m

Which best decribes a similarity between power plants that use water as an energy source

Answers

B.

Both use kinetic energy to produce electricity is a similarity between power plants that use water as an energy source and those that use wind as an energy source.

Explanation:

Kinetic energy Is the intrinsic energy that an object or substance possesses due to its motion. All power plants that use water as an energy source utilize the kinetic energy of water to produce electricity. For example, hydro-power plants use the kinetic energy of water flowing due to gravity. Tidal power plants utilize the kinetic energy of water flowing due to tidal changes and geothermal powerplants utilize the energy of steam-water ejecting underground through fissures.

Learn More:

For more on harnessing the power of water to produce electricity check out;

https://brainly.com/question/2684879

#LearnWithBrainly

chemistry questions?

Answers

Answer:

its to hard

Explanation:

Answer:

its to hard

Explanation:

A reaction is shown below. Reaction : 2 upper H subscript 2 upper O subscript 2 (l) right arrow with upper M n upper O subscript 2 (s) above it, 2 upper H subscript 2 upper O (l) plus upper O subscript 2 (g). What can be concluded about this reaction?
A homogeneous catalyst is being used in the reaction.
A heterogeneous catalyst is being used in the reaction.
A catalyst is not being used in this reaction.
An enzyme is being used in this reaction.

Answers

Answer:

heterogeneous catalyst

Explanation:

The reaction equation:

                        MnO₂[tex]_{s}[/tex]

         H₂O₂[tex]_{l}[/tex]         →             2H₂[tex]_{g}[/tex]     +   2O₂[tex]_{g}[/tex]

A catalyst is any species that speeds up the rate of chemical reactions. It does not get used up in the reaction but helps facilitate the rate by which two species combines.

In this reaction, MnO₂ is the catalyst used in this reaction.

The catalyst still remains at the end of the reaction.

  Now, we know that from the subscript, the reactant is in liquid phase, the products are in gaseous phase and the catalyst is in solid phase.

A catalyst in a reaction in a different phase with the reactants is called a heterogeneous catalyst.

Answer:

The answer is B. A heterogeneous catalyst is being used in the reaction.

Explanation:

What type of reaction is 2NaN3(s) +2Na(s) + 3N2(g)

Answers

The answer is thermal decomposition

Final answer:

The reaction is a decomposition reaction where sodium azide decomposes into sodium and nitrogen gas.

Explanation:

The type of reaction represented is a decomposition reaction. This is a chemical reaction where a single compound breaks down into two or more elements or simpler compounds. Sodium azide (NaN3) decomposes into sodium metal (Na) and nitrogen gas (N2). One mole of sodium azide (NaN3) has a molar mass of approximately 65 g/mol.

Therefore, if 23.4 g of sodium azide is used, the moles of nitrogen gas produced can be calculated using the molar mass and the stoichiometry of the reaction. At standard temperature and pressure (STP), one mole of any gas occupies approximately 22.4 liters. By using the stoichiometry of the balanced equation, one can determine the volume of nitrogen gas produced at STP from a given amount of sodium azide.

The data below refer to the following reaction: 2NO(g) + I2(g) 2NOI(g) Concentration (M) [NO] [I2] [NOI] Initial 2.0 4.0 1.0 Equilibrium 1.0 — — Find the concentration of I2 when the system reaches equilibrium.

Answers

Answer:

3.5 mol·L⁻¹  

Explanation:

1. Set up an ICE table.

[tex]\begin{array}{cccccc}\text{2NO} & + & \text{I}_{2} &\, \rightleftharpoons \, & \text{2NOI} & & \\ 2.0 & & 4.0 & & 1.0 & & \\ -2x & & -x & & +2x & & \\ 2.0-2x & & 4.0-x & & 1.0+2x & & \\\end{array}[/tex]

2. Solve for x

The equilibrium concentration of NO is 1.0 mol·L⁻¹, so

       1.0 = 2.0 - 2x

2x + 1.0 = 2.0

        2x =  1.0

          x = 0.5

3. Calculate the equilibrium concentration of I₂

[I₂] = 4.0 - x = 4.0 - 0.5 = 3.5 mol·L⁻¹

The concentration of I₂ at equilibrium is calculated to be 3.5 M by using the initial concentration of NO to determine the stoichiometric change in I₂ concentration based on the reaction 2NO(g) + I₂(g) → 2NOI(g).

To find the concentration of I₂ at equilibrium for the reaction 2NO(g) + I₂(g) → 2NOI(g), we use the initial and equilibrium concentrations of NO to determine the change in concentration of I₂. Given the stoichiometry of the reaction, for every 1 mole decrease in NO, there is a 0.5 mole decrease in I₂. The initial concentration of NO is 2.0 M, and at equilibrium, it is 1.0 M, which means there has been a 1.0 M decrease (2.0 M - 1.0 M). The I₂ concentration at equilibrium can be found by subtracting half of this change from the initial I₂ concentration. Since initially the concentration of I₂ is 4.0 M, the equilibrium concentration is calculated as 4.0 M - (1.0 M / 2) = 3.5 M.

You want to test how the mass of a reactant affects the speed of a reaction.
Which of the following is an example of a controlled experiment to test this?

Answers

Final answer:

To test how mass of a reactant affects speed of a reaction, set up an experiment using a consistent reactant, like hydrochloric acid, and alter the mass of another reactant, like sodium bicarbonate. By keeping all other variables constant, you can measure how the varying mass affects the speed of the reaction indicated by when bubbling ceases.

Explanation:

To test how the mass of a reactant affects the speed of a reaction, an experiment could be set up in the following way: Obtain a substance that reacts with a certain reactant. This could be an acid-base reaction or a redox reaction. Let's say the reaction is between hydrochloric acid (HCl) and sodium bicarbonate (NaHCO3) which produces carbon dioxide gas.

Maintain controlled conditions: all other variables such as temperature, pressure, and volume of HCl should be kept constant. The only changing factor would be the mass of the sodium bicarbonate.

Measure the time it takes for the reaction to complete for various masses of NaHCO3. You do this by observing when the bubbling (indicative of CO2 production) stops. You would likely see that increasing the mass of the reactant (NaHCO3) increases the speed of the reaction.

Learn more about Effect of Reactant Mass on Reaction Speed here:

https://brainly.com/question/14680580

#SPJ12

Final answer:

The correct option is D.

The best experimental design for testing how the mass of a reactant affects the speed of reaction would be 'The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured', while maintaining other factors like temperature and concentration of other reactants constant. This method is known as the method of initial rates.

Explanation:

The best example of a controlled experiment to test how the mass of a reactant affects the speed of a chemical reaction would be option D: The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured. This method is known as the method of initial rates, often employed in chemistry to measure reaction rates using different initial reactant concentrations. It is crucial to vary only one aspect while keeping others constant (temperature, concentration of other reactants etc.) to accurately determine the effect one factor has on the reaction speed.

The temperature of the reactants and concentration of the reactants also significantly impacts the rate of a chemical reaction. Higher the temperature, or the concentration, faster the reactions typically occur. However, these other factors need to be controlled in this experiment to singularly test the effect of mass of one reactant.

Learn more about Chemical Reaction Speed here:

https://brainly.com/question/20435712

#SPJ6

The complete question is given below:

You want to test how the mass of a reactant affects the speed of a reaction.

Which of the following is an example of a controlled experiment to test this?

A. The mass of one reactant and the temperature of the reaction mixture are increased until the reaction is finished.

B. The mass of all the reactants is varied, and the time it takes the reaction to finish is measured.

C. The mass of all of the reactants is kept the same, and the mixtures are allowed to react for different lengths of time.

D. The mass of one reactant at a time is varied, and the time it takes the reaction to finish is measured.

Match each SI unit to the quantity it measures mass temperature time electric current

Answers

Final answer:

Each SI unit measures a specific fundamental quantity: kilograms (kg) for mass, kelvin (K) for temperature, seconds (s) for time, and amperes (A) for electric current.

Explanation:

The student has asked to match each SI unit to the quantity it measures among mass, temperature, time, and electric current. Here are the matches:

Mass is measured in kilograms (kg).Temperature is measured in kelvin (K).Time is measured in seconds (s).Electric current is measured in amperes (A).

These four units are part of the metric system, which uses powers of 10 to relate quantities over various ranges of nature. All other physical quantities, such as force and charge, are derived from these fundamental units.

Must be 5 paragraphs please have everything down

Answers

There is much more to living than having a heartbeat. There is much more to life than breathing and the blood flowing through your veins. But not everyone knows this; not everyone sees it this way. You may be living, but are you alive? You are so lucky to be living on this earth, and there are so many people who do not have the clarity of vision to realize that. A human needs the same basic need that every other living form on the planet needs, nourishment, environment and reproduction. A human that can't survive in the natural world must construct an artificial world in which to survive. Humans are multicellular. Multicellular organisms can be much larger and more complex. This is because the cells of the organism have specialised into many different types of cells such as nerve cells, blood cells, muscle cells all performing different functions.

An organism can be associated with complete living things such as animals, plants, fungi or microorganisms commonly defined as, any complex thing with properties normally associated with living things. Fortunately, biologists have developed a list of eight characteristics shared by all living things. Characteristics are traits or qualities. Those characteristics are cellular organization, reproduction, metabolism, homeostasis, heredity, response to stimuli, growth and development, and adaptation through evolution. Physical growth is an increase in size. Development is growth in function and capability. Both processes highly depend on genetic, nutritional, and environmental factors. As children develop physiologically and emotionally, it is useful to define certain age-based groups.

Trees in a forest, fish in a river, horseflies on a farm, lemurs in the jungle, reeds in a pond, worms in the soil — all these plants and animals are made of the building blocks we call cells. Like these examples, many living things consist of vast numbers of cells working in concert with one another. Other forms of life, however, are made of only a single cell, such as the many species of bacteria and protozoa. Cells, whether living on their own or as part of a multicellular organism, are usually too small to be seen without a light microscope. The cell is the structural and functional unit of all living organisms, and is sometimes called the "building block of life." Some organisms, such as bacteria, are unicellular, consisting of a single cell.
Cells are of two types: eukaryotic, which contain a nucleus, and prokaryotic, which do not. Prokaryotes are single-celled organisms, while eukaryotes can be either single-celled or multicellular.

Core organelles are found in virtually all eukaryotic cells. They carry out essential functions that are necessary for the survival of cells – harvesting energy, making new proteins, getting rid of waste and so on. Core components include the nucleus, mitochondria, endoplasmic reticulum and several others. All preforming there own individual and unique tasks. With the most important part of an animal cell are the nucleus vacuoles, and mitochondria all of which are enclosed within the cell membrane and immersed in cytoplasm.

REVIEW QUESTIONS:
I know a decent amount before we started writing this task, the steps I took to create this final product what that of combining all of my knowledge of cells and explaining to the best of my abilities. I could of done this assessment better by going into more detail with every sub category of the question asked. I think I did really well in describing all of the questions asked.


what is the molar mass of hydrogen dioxide?

Answers

Answer:                  34.0147 g/mol

Explanation:

Answer:34.02g/mol

Explanation:H2O2

2x1.01 + 2x16 grams/mols

2.02 + 32 =34 .2g/mol

what mineral property is illustrated by this photograph?​

Answers

Hardness, lustre, and colour.

These Rocks shown in photographs are made of different types of minerals which have properties as follows:

The color of the rock is grey, brown and yellow after it is ground into a powder its color is streak.

The lustre of the rock tells how shiny the rocks are.

Other properties include hardness, texture, shape, and size.

When a liquid evaporates - does it take energy from its surroundings or does it give off energy to its surroundings?

Answers

Answer:

yes it doese

Explanation:

Which half reaction correctly describes the oxidation that is taking place? Z n (s) right arrow upper Z n superscript 2 plus (a q) plus e superscript minus. Upper Z n (s) right arrow upper Z n superscript 2 plus (a q) plus 2 e superscript minus. Upper C u superscript 2 plus (a q) plus 2 e superscript minus right arrow upper C u (s). Upper C u superscript 2 plus (a q) plus e superscript minus right arrow upper C u (s).

Answers

The  half reaction that correctly describes the oxidation that is taking place in electrochemical cell containing Zn-Cu couple .

Explanation::

Electrochemical cell

It is the cell that converts the chemical energy in to electric energy .The reaction staking place in it are spontaneous that is occur by itself .

In it the oxidation and reduction both occur .

The one with high electrode potential looses electrons that is it shows : oxidation

Th one with lower electrode potential gains electrons that is  it shows :Reduction .

In this galvanic cell (Zn-Cu couple )

The oxidation occurs at anode that is :

Zn-2e---->Zn²⁺

The reduction occurs at cathode :

Cu²⁺  + 2e--->Cu

Answer:

The correct answer is option B ;)

Explanation:

Which of the following is the name of the process scientists use to gain
knowledge about the physical world?

Answers

Answer:

The Scientific Method.

ANSWER ASAP REALLY NEED IT RN

Answers

Answer:

1. b

2. a

3. d

4. d

Explanation:

Convert 4.57X-3m to the equivalent length in nanometers

Answers

Answer:

                       4.57 × 10⁶  nanometers  

Explanation:

                    In this problem we are asked to convert between two units i.e. a meter into nanometer. In sciences, the different units are used for a same quantity (achieved by multiplying conversion factors) to get rid of very small values and get a readable and  intelligible values.

For Example:

In given statement the value of small distance is 4.5 × 10⁻³ meter the real number form of this number is 0.00457. Hence, this number can be converted to a very large number by multiplying it with 10⁹ or 1000000000. Hence,

                         4.5 × 10⁻³  × 1.0 × 10⁹  =  4.57 × 10⁶

Or,

                 4.5 × 10⁻³  meters  =  4.57 × 10⁶  nanometers    

Although the quantity is the same for same units but the number has changed.          

assuming oxygen behaves like an ideal gas, what volume in liters would 3.50 moles of oxygen gas occupy at STP?

Answers

Answer:

78.4L

Explanation:

1 mole of any gas is found to occupy 22.4L at stp. This also indicates that 1mole of oxygen occupy 22.4L.

Therefore,

3.50 moles of oxygen Will occupy = 3.5x22.4 = 78.4L

Final answer:

At Standard Temperature and Pressure (STP), one mole of an ideal gas occupies around 22.4 liters. Accordingly, 3.50 moles of oxygen would occupy a volume of 78.4 liters.

Explanation:

The question is inquiring about the volume an ideal gas, in this case oxygen, would occupy at Standard Temperature and Pressure (STP) given its quantity in moles. It's well established in chemistry that at STP, which is defined as a temperature of 273.15 K and a pressure of 1 atm, one mole of any ideal gas occupies approximately 22.4 liters. This is often known as the standard molar volume. Therefore, to calculate the volume that 3.50 moles of oxygen would occupy, multiply the number of moles (3.50) by the volume of one mole (22.4 L/mole) which results in a volume of 78.4 liters.

Learn more about Standard Molar Volume here:

https://brainly.com/question/2416240

#SPJ3

lactic acid, which consists of C, H, and O, has long been thought to be responsible for muscle soreness following strenuous exercise. Determine the empirical formula of lactic acid given that combustion of a 10.0 g sample produces 14.7 g carbon dioxide and 6.00 g water. If the molar mass of lactic acid is 90g/mol, what is the molecular formula

Answers

Final answer:

To find the empirical formula of lactic acid, we calculate the moles of C, H, and O from the products of combustion and determine the simplest whole number ratio. The molecular formula is then found by establishing the integer multiple of the empirical formula that matches the given molar mass of lactic acid.

Explanation:

To determine the empirical formula of lactic acid from the given combustion data, we use the mass of products to find the quantity of each element in the original compound. Starting with carbon, 14.7 g of CO2 is produced from the combustion of lactic acid. Using the molar mass of CO2 (44 g/mol), we calculate that there are 0.334 moles of carbon in the 10.0 g of lactic acid.

For hydrogen, 6.00 g of water means there are 0.333 moles of water, which equates to 0.667 moles of hydrogen, since each water molecule contains two hydrogen atoms. Oxygen is a bit more complicated because it's part of both CO2 and H2O. After accounting for the oxygen in CO2 and H2O, we calculate the remainder to be part of the lactic acid. The molar ratios of C:H:O give us the empirical formula, which can be determined by dividing each mole quantity by the smallest amount to find the simplest whole number ratio.

Given a molar mass of 90 g/mol for lactic acid, we can use the empirical formula mass to determine the number of empirical units in the molecular formula. The molecular formula can be found by multiplying the empirical formula by an integer factor that converts the empirical formula mass to the actual molar mass.

Why is it easier for liquid water to evaporate on mars than on earth

Answers

Answer:

Because there is a lesser if not absent atmospheric pressure on Mars relative to earth

Explanation:

On earth the liquid water will experience atmospheric downward pressure due to the earth's atmosphere which will require it to evaporate at a vapour pressure that is greater than the atmospheric pressure. This is not the case for Mars which lacks an atmosphere due to its weak gravitional pull, water will therefore evaporate easily on mars than on earth

NEEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
The biosphere includes all of the fish that are in the ocean. Even though the ocean is part of the hydroshere.


True


False

Answers

True because the biosphere contains

life such as animals and plants Hint the word “bio”

A 125G sample of water was heated to 100.0°C and then I borrow platinum 20.0°C is dropped into the beaker the temperature of the platinum in the beaker quickly rose 235.0°C the specific heat of platinum is 0.13 j/g°C. The specific heat of water is 4.184 J/g°C. What is the mass of platinum

Answers

Answer:

mass of platinum = 2526.12 g

Explanation:

Given data:

Mass of water = 125 g

Initial temperature of water= 100.0°C

Initial temperature of Pt = 20.0°C

Final temperature = 235°C

Specific heat of Pt = 0.13 j/g°C

Specific heat of water = 4.184 j/g°C

Mass of platinum = ?

Solution:

Formula:

Q = m.c. ΔT

Q = amount of heat absorbed or released

m = mass of given substance

c = specific heat capacity of substance

ΔT = change in temperature

ΔT = T2 - T1

Q(w) = Q(Pt)

m.c.  (T2 - T1)   =   m.c.   (T2 - T1)

125 g × 4.184 j/g°C ×  (235°C - 100.0°C)  = m × 0.13 j/g°C ×  (235°C - 20°C)

125 g × 4.184 j/g°C × 135°C  = m × 0.13 j/g°C × 215°C

70605 j = m×27.95 j/g

m = 70605 j /27.95 j/g

m = 2526.12 g

Final answer:

To find the mass of platinum dropped into hot water, you would apply the conservation of energy principle and use the specific heat values for both substances. However, the provided temperatures suggest an error in the question, as platinum would not heat to a temperature higher than the water's temperature.

Explanation:

The question involves finding the mass of platinum, which was dropped into hot water, by using the concept of heat transfer between the metal and water. According to the law of conservation of energy, the heat lost by the water is equal to the heat gained by the platinum. To solve for the mass of the platinum, we use the formula q = mcΔT, where 'q' is the heat transfer, 'm' is the mass, 'c' is the specific heat, and 'ΔT' is the change in temperature.

However, the given information seems to contain a mistake, as platinum will not naturally heat up to 235.0°C when dropped into water that is at 100.0°C. There must be an error in the given temperatures. Assuming we had the correct temperature details and using the given specific heats for water (4.184 J/g°C) and platinum (0.13 J/g°C), we could set up the heat transfer equations and solve for the unknown mass of platinum.

what is the mola dirt of a salt solution made by dissolving 250.0 grams of NaCl in 775 mL of solution?

Answers

Answer:

                     Molarity  =  5.52 mol.L⁻¹

Explanation:

             Molarity is the amount of solute dissolved per unit volume of solution. It is expressed as,

                         Molarity  =  Moles / Volume of Solution    ----- (1)

Data Given;

                  Mass  =  250.0 g

                  Volume  =  775 mL  =  0.775 L

First calculate Moles for given mass as,

                   Moles  =  Mass / M.mass

                   Moles  =  250.0 g / 58.44 g.mol⁻¹

                   Moles  =  4.277 mol

Now, putting value of Moles and Volume in eq. 1,

                        Molarity  =  4.277 mol ÷ 0.775 L

                        Molarity  =  5.52 mol.L⁻¹


Igneous rocks can be formed from magma that solidifies deep beneath the Earth’s surface. When the magma solidifies slowly, it results in rocks with large crystals and a coarse texture. When it cools quickly, it creates more smooth and shiny rock with fine grains.

Sedimentary rocks are made from the weathering and erosion of pre-existing rocks. If the sediment is buried deeply, it becomes compacted and cemented. Sedimentary rocks also form from organic material and often contain fossils.

Metamorphic rock is a result of a transformation of a pre-existing rock subjected to high heat and pressure. This causes the minerals in the rock to become unstable so they either reorient themselves into layers, giving them a striped look or recrystallize into larger crystals.
Based on the reading, how would you classify this rock?


A) Sedimentary rock because of its layers.
B) Metamorphic rock because of its stripes.
C) Igneous rock because it has large crystals.
D) Sedimentary because of the presence of fossils.

Answers

Final answer:

A rock with a striped pattern is classified as a metamorphic rock because its characteristics indicate that it has been transformed under high heat and pressure, realigning its mineral structure.

Explanation:

When classifying a rock with stripes, it suggests a transformation under high heat and pressure which typically results in the reorientation of minerals within the rock. This description fits the formation process of metamorphic rocks. Therefore, any rock with a striped pattern is likely a metamorphic rock, as igneous rocks form from the cooling of magma or lava and would not have stripes, and sedimentary rocks are characterized by layers formed from deposited sediment and can sometimes contain fossils.

Final answer:

The rock in question should be classified as metamorphic due to its striped look, which is a result of high heat and pressure reorienting minerals within the rock, characteristic of metamorphism.

Explanation:

You would classify this rock as metamorphic because it has a striped look, which is indicative of the foliation process that occurs when a pre-existing rock is transformed due to high heat and pressure. This reorientation of minerals within the rock often gives it a layered or striped appearance, a characteristic feature of metamorphic rocks. Sedimentary rocks, while they also have layers, are formed from particles of pre-existing rocks or organic material that have been compacted and cemented together.

These can sometimes contain fossils, but it is the presence of distinct stripes from the reorientation of minerals that suggests a metamorphic origin in the case you've mentioned. Igneous rocks with large crystals are formed from magma that solidifies slowly beneath the Earth's surface, but these do not have the striped appearance associated with metamorphic rocks.

Need help balancing equations all 20 to 40 please attach work

Answers

Because start in the beginning of a long story in the year of 1990 it was a really beautiful day of summer in the big beach of santa monica

Answer: Solution attached.

Each equation is now balanced.

Explanation:

You conduct an experiment in which you measure the temperature (T) and volume (V) of a mysterious sphere of gas at several different temperatures.
The sphere can expand or shrink to any volume without changing the pressure of the gas inside.
As a result of your experiment, you find that the volume (V) of the gas divided by its temperature (T) is always equal to 1.75.
What would the volume (V) of the gas be at a temperature of 300K? (assume the unit for volume is liters)
Show your work and answer the question with a clear statement. Show each step of your calculations for full points. After showing your calculations, answer the question with a clear statement.

Answers

Answer:

[tex]\large\boxed{\text{The volume of the gas at a temperature of 300K is 575 liters}}[/tex]

Explanation:

You already know the relation between the volume (V) of the gas and its temperature (T):

           [tex]V/T=1.75[/tex]

The units of V is liters and of T is Kelvin (K).

Thus, the units of the constant 1.75 is liters/K.

Hence, to find the volume (V) of the gas at a temperature (T) of 300 K, you just must solve for V and substitute the temperature to compute V:

Multiply both sides by T:

         [tex]V=1.75T[/tex]

Substitute T with 300K:

          [tex]V=1.75liters/K\times 300K=575liters[/tex]

Other Questions
In year 8, Mondo Magazines began selling one- and two-year subscriptions to its publications. Subscriptions are collected in advance and credited to sales. An analysis of the recorded sales activity revealed the following:____________ Eukaryotes that are not closely related and that do not share many anatomical similarities can still be placed together on the same phylogenetic tree by comparing their ______.A. homologous genes that are highly conservedB. homologous genes that are poorly conservedC. mitochondrial genomesD. plasmids what is 2 3/4 - 1/3 and how did you get that answer When you have a nice steak dinner at a local restaurant, literally thousands of people engage in actions that make your dinner possible. Identify at least 10 people who were involved in your steak dinner and briefly describe their role. 2. Janet baby-sat for 28 hours over two weeks. She earned $5.00 an hour. What was her grosspay? Los hijos de mis hijos son mis? The decibel level of an orchestra is 90 db, and the violin section achieves a level of 80 dB. How does the sound intensity from the full orchestra compare to that from the violin section alone? As people products and ideas diffused throughout North America there was NO impact on the many cultural levels of art and musicTrue False A coffee shop offers 2 types of coffee: regular and decaffeinated; 3 typesof flavoring: vanilla, hazelnut, and caramel; and 2 choices of topping: withor without whipped cream. How many possible choices are there?12 choices16 choices14 choices18 choices TV stations in the U.S. normally broadcast horizontally-polarized signals. Is this TV antenna mounted correctly, or should it be rotated? Which statements best describe the process of radioactive decay? Check all that apply. Solid silver chloride, AgCI(s), decomposes to its elements when exposed to sunlight Write a balanced equation for this reaction with correct formulas for the products. What is the coefficient in front of AgCI(s) when the equation is properly balanced? 01 03 02 04 The field of ____ gives us information about how the four developmental forces interact with each other. Tiny Tim is 5 feet tall expression 0.5m + 60 can be used to calculate his height in inches if he grows an average of 0.5 inch each month. Using that expression, calculate tiny Tims height in 6 months.A. 63 inchesB. 56 inchesC. 5 feet 6 inchesD. 53 inches A manager asks an employee, "Should we distribute tickets to the concert on a first-come-first-served basis or through a lottery?" The manager's question is best classified as which one of the following fundamental economic questions? a. How to produce? b. For whom to produce? c. What to produce? A vehicle of mass 1,500 kg is traveling at a speed of 50 km/hr. What is the kinetic energy stored in its mass? Calculate the energy that can be recovered by slowing the vehicle to a speed of 10 km/hr. Check My Work The strategic planning process begins with _______. a. SWOT analysis b. finance objectives c. business-unit strategies d. organizational mission and goals what historical individual made a treaty to stop a 1790s war from developing with Great Britain. Sound is more effectively transmitted into a stethoscope by direct contact than through the air, and it is further intensified by being concentrated on the smaller area of the eardrum. It is reasonable to assume that sound is transmitted into a stethoscope 100 times as effectively compared with transmission though the air. What, then, is the gain in decibels produced by a stethoscope that has a sound gathering area of 15.0 cm2, and concentrates the sound onto two eardrums with a total area of 1.00 cm2 with an efficiency of 37.0%? The liquid in one container drops 100 F, while the same liquid in a different container drops 100C. How does the change in thermal energy in the two compare? Explain your answer. Steam Workshop Downloader