Is 50 degrees celsius hotter than 50 degrees fahrenheit?

Answers

Answer 1
50 degrees Celsius is half way between freezing and boiling so 50 degrees celsius is hotter then 50 degrees fahrenheit 
Answer 2
Final answer:

50 degrees Celsius is hotter than 50 degrees Fahrenheit because the Celsius scale rises at a faster rate of 1.8 times the Fahrenheit scale per degree, which measurably shows the greater warmth of 50°C compared to 50

Explanation:

Yes, 50 degrees Celsius is hotter than 50 degrees Fahrenheit. To understand why, let's look at how temperature is measured on both scales. On the Celsius scale, the freezing point of water is 0°C and the boiling point is 100°C, whereas on the Fahrenheit scale, the freezing point is 32°F and the boiling point is 212°F. This means that 100 Celsius degrees cover the same range as 180 Fahrenheit degrees.

The rate at which temperature increases per degree is faster on the Celsius scale compared to the Fahrenheit scale. Specifically, each degree on the Celsius scale corresponds to a 1.8 times larger temperature change than one degree on the Fahrenheit scale. Therefore, a temperature of 50°C is significantly warmer than 50°F. so, 50°C is equivalent to 122°F, a fact made evident by the conversion formula: °F = (°C × 9/5) + 32.


Related Questions

what is an equation for the number of $0.60 bagels that can be purchased with d dollars

Answers

The answer is 0.60d.
x+D=1
since d is dollar and the one is
x would be the cost and the d would be the dollar
 

Evaluate the expression. ​ (26÷13)⋅(−7)+14−4 ​ Enter your answer in the box

Answers

(2)*-7+14-4        -14+14-4               0-4            = -4

The value of the expression (26 ÷ 13) ⋅ (−7) + 14 − 4 ​will be negative four.

What is the value of the expression?

When the relevant factors and natural laws of a mathematical model are given values, the outcome of the calculation it describes is the expression's outcome.

PEMDAS rule means for the Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This rule is used to solve the equation in a proper and correct manner.

The expression is given below.

⇒ (26 ÷ 13) ⋅ (−7) + 14 − 4 ​

Simplify the expression, then the value of the expression will be

⇒ (26 ÷ 13) ⋅ (−7) + 14 − 4 ​

⇒ (2) ⋅ (−7) + 14 − 4 ​

⇒ −14 + 14 − 4 ​

⇒ − 4 ​

Then the value of the expression (26 ÷ 13) ⋅ (−7) + 14 − 4 ​will be negative four.

More about the value of expression link is given below.

https://brainly.com/question/23671908

#SPJ5

Please help!!!!!

The function graphed shows the total cost for a taxi cab ride for x miles.

Select from the drop-down menus to correctly identify the taxi cab ride information provided by the graph.


The slope is ________
a. 5
b. 3
c. 2.5
d. 0.2

The slope represents _______
a. the total cost of the taxi ride
b. total number of miles traveled
c. cost per mile traveled
d. the initial cost of the taxi ride

Answers

(0,3) and (2,8)
slope = (8-3)/(2-0) = 5/2 = 2.5

answer

The slope is ________
c. 2.5

The slope represents _______
c. cost per mile traveled

The slope of the line between cost of taxi and distance is 2.5 and it represents the cost of taxi per mile of distance travelled.

What is slope of line ?

Slope of line is the angle made by the line from positive x-axis in anticlockwise direction, it also denoted the steepness of the line.

The function graphed shows the total cost for a taxi cab ride for x miles the cost in taxi is shown in y axis and the distance covered by taxi in x axis. Now, to find put the slope we must two coordinates which  can be found out from the graph easy by observation as (0,3) and (2,8).

How using slope formula to find the slope of line :

[tex]\begin{aligned}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}&=\frac{8-3}{2-0}\\&=\frac{5}{2}\\&=2.5\end{aligned}[/tex]

It represents the cost of taxi per mile of distance travelled.

Therefore, the slope of the line between cost of taxi and distance is 2.5 and it represents the cost of taxi per mile of distance travelled.

check and know more about slope of line here :

https://brainly.com/question/3605446

#SPJ2

Average precipitation for the first 7 months of the year, the average precipitation in toledo, ohio, is 19.32 inches. if the average precipitation is normally distributed with a standard deviation of 2.44 inches, find these probabilities.

Answers

Part A:

The probability that a normally distributed data with a mean, μ and standard deviation, σ is greater than a given value, a is given by:

[tex]P(x\ \textgreater \ a)=1-P(x\ \textless \ a)=1-P\left(z\ \textless \ \frac{a-\mu}{\sigma}\right)[/tex]

Given that the average precipitation in Toledo, Ohio for the past 7 months is 19.32 inches with a standard deviation of 2.44 inches, the probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months is given by:

[tex]P(x\ \textgreater \ 18)=1-P(x\ \textless \ 18) \\ \\ =1-P\left(z\ \textless \ \frac{18-19.32}{2.44}\right) \\ \\ =1-P(z\ \textless \ -0.5410) \\ \\ =1-0.29426=\bold{0.7057} [/tex]



Part B:

The probability that an n randomly selected samples of a normally distributed data with a mean, μ and standard deviation, σ is greater than a given value, a is given by:

[tex]P(x\ \textgreater \ a)=1-P(x\ \textless \ a)=1-P\left(z\ \textless \ \frac{a-\mu}{\frac{\sigma}{\sqrt{n}}}\right)[/tex]

Given that the average precipitation in Toledo, Ohio for the past 7 months is 19.32 inches with a standard deviation of 2.44 inches, the probability that 5 randomly selected years will have precipitation greater than 18 inches for the first 7 months is given by:

[tex]P(x\ \textgreater \ 18)=1-P(x\ \textless \ 18) \\ \\ =1-P\left(z\ \textless \ \frac{18-19.32}{\frac{2.44}{\sqrt{5}}}\right) \\ \\ =1-P(z\ \textless \ -1.210) \\ \\ =1-0.1132=\bold{0.8868}[/tex]

Using the normal distribution and the central limit theorem, it is found that there is a:

a) 0.7054 = 70.54% probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months.b) 0.8869 = 88.69% probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months.

Normal Probability Distribution

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

It measures how many standard deviations the measure is from the mean.  After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

In this problem:

The mean is of 19.32 inches, hence [tex]\mu = 19.32[/tex].The standard deviation is of 2.44 inches, hence [tex]\sigma = 2.44[/tex].

Item a:

The probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months is 1 subtracted by the p-value of Z when X = 18, hence:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{18 - 19.32}{2.44}[/tex]

[tex]Z = -0.54[/tex]

[tex]Z = -0.54[/tex] has a p-value of 0.2946.

1 - 0.2946 = 0.7054.

0.7054 = 70.54% probability that a randomly selected year will have precipitation greater than 18 inches for the first 7 months.

Item b:

Now, we want the probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months, hence:

[tex]n = 5, s = \frac{2.44}{\sqrt{5}}[/tex]

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{18 - 19.32}{\frac{2.44}{\sqrt{5}}}[/tex]

[tex]Z = -1.21[/tex]

[tex]Z = -1.21[/tex] has a p-value of 0.1131.

1 - 0.1131 = 0.8869.

0.8869 = 88.69% probability that five randomly selected years will have an average precipitation greater than 18 inches for the first 7 months.

To learn more about the normal distribution and the central limit theorem, you can take a look at https://brainly.com/question/24663213

Write the expression(4x-2)·6(2x 7) in the standard form of a quadratic expression, ax² bx c what are the values of the couiffeciant?

Answers

I have found that the right expression is (4x-2)*6(2x-7).

So, I will apply distributive property step by step:

1) (4x - 2) (12x - 35)

2) 4*12x^2 - 4*35x - 2*12x + 2*35 = 48x^2 - 140x - 24x + 70 = 48x^2 - 164x + 70

3) Compare with ax^2 + bx + c

=> a = 48, b = - 164, c = 70

Answer: a = 48, b = -164, c = 70


What does negative 2 over 3 > −1 indicate about the positions of negative 2 over 3 and −1 on the number line?

Answers

Answer:

Step-by-step explanation:

SOMEONE PLEASE HELP!
A store allows customers to fill their own bags of candy. Troy decides he only wants chocolate-covered pretzels and gumdrops. Chocolate-covered pretzels sell for $0.89 per pound, and gumdrops sell for $0.65 per pound. Troy’s bag weighs 1.8 pounds and it cost $1.29.



A. 0.5 pounds of pretzels; 1.3 pounds of gumdrops
B. 0.9 pounds of pretzels; 0.9 pounds of gumdrops
C. 1.3 pounds of pretzels; 0.5 pounds of gumdrops
D. 0.8 pounds of pretzels; 1 pound of gumdrops

Answers

A

just plug in the prices of the candy .5 times the price of pretzels and 1.3 times the price of gumdrops

Find the product: 5(−3)(−2)

PLEASE HELP ASAP!

Answers

(-3)(-2) = 6
6(5) = 30

30 is your answer

hope this helps
30 is the answer for you

Find the difference quotient and simplify your answer. f(x) = 7x − x2, f(7 + h) − f(7) h , h ≠ 0

Answers

whatever is inside of the ( ), simply plug that digit into the x-values for f(x)
So: f(x) = 7x - x^2, and f(7+h) - f(7)
= [7(7+h) - (7+h)^2] - [7(7) - (7)^2]
= [49+7h - 49+14h+h^2] - [49-49]
= 49-49 + 7h+14h + h^2 = h^2 + 21h =
h (h+21), h (h+21) = 0
h=0... But it stated h cannot = 0
So h+21 = 0, h = -21
Final answer:

The difference quotient for the function f(x) = 7x - x² is (7h - h²) / h.

Explanation:

The difference quotient is used to find the rate at which a function changes over a small interval. To find the difference quotient for the given function f(x) = 7x − x², we substitute f(7 + h) and f(7) into the formula: [f(7 + h) - f(7)] / h. Simplifying the expression, we get [(7(7 + h) - (7 + h)²) - (7(7) - 7²)] / h. Expanding and simplifying further, we have [(49 + 7h - h²) - (49 - 49)] / h, which becomes (7h - h²) / h.

Learn more about difference quotient here:

https://brainly.com/question/35589801

#SPJ5

Divide 42 in a ratio of 1:2:3?

Answers

Ratio 1:2:3 means we have x, 2x and 3x as the three parts

x+2x+3x = 42
6x = 42
6x/6 = 42/6
x = 7

Since x = 7, this means 2x = 2*7 = 14 and 3x = 3*7 = 21

Dividing 42 into the ratio of 1:2:3 means we have 7:14:21 as the answer

If we divide all three parts of 7:14:21 by the GCF 7, we reduce it down to 1:2:3

As a check, 
7+14+21 = 21+21 = 42
so it works out

List -0.3 , 0.5 ,0.55 ,-0.35 from least to greatest

Answers

-0.35, -0.3, 0.5, 0.55

is your answer

hope this helps
the correct answer is-0.35,-0.3,0.55,0.5

what is the sale tax on item that costs $33.50. if the sale tax is 0.06 on every $1?

Answers

Your answer will be 2.01 dollers

Seascapes rent small fishing boats for a day-long fishing trips. each boat can carry only 1200 lb of people and gear for safety reasons. Assume the average weight of a person is 150 lb. each group will require 200 pounds of gear for the boat plus 10 lb of gear for each person.

A) create any quality describing the restrictions on the number of people that can possibly fit in a rented boat.

B) several groups of people wish to rent a boat Group one has 4 people group two has 5 people group three has 8 people. Determine which of the groups, if any, can safely run a boat what is the maximum number of people that may rent a boat.

Answers

A. We are given that each person weighs 150 lb, each gear per person weighs 10 lb, and a total of 200 pounds of gear for the boat itself.

Since each person only carries one gear, therefore total weight per person in 160 lb (weight of person + weight of gear).

So let us say that x is the number of persons, the inequality equation is:

 

160 x + 200 ≤ 1200

 

 

B. There are three groups that wish to rent the boat.

> Solve the inequality equation when x = 4

160 (4) + 200 ≤ 1200

840 ≤ 1200           (TRUE)

 

> Solve the inequality equation when x = 5

160 (5) + 200 ≤ 1200

1000 ≤ 1200         (TRUE)

 

> Solve the inequality equation when x = 8

160 (8) + 200 ≤ 1200

1480 ≤ 1200         (FALSE)

 

So only the 4 people group and 5 people group can safely run the boat.

 

 

C. Find the maximum number of people that may safely use the boat, solve for x:

 

160 x + 200 ≤ 1200

160 x ≤ 1000

x ≤ 6.25

 

Therefore the maximum number of people that can safely use the boat is 6 people.

A mathematical inequality is created to determine that a maximum of 6 people can rent a boat based on the safety weight limit of 1200 lb. Of the groups provided, only groups with 4 or 5 people can safely rent the boat, while the group with 8 people cannot due to exceeding the weight limit.

To determine the restrictions on the number of people that can possibly fit in a rented boat given the safety weight limit, we start by creating an inequality. Let p represent the number of people, then the total weight of the people is 150 lb times p, and the total gear weight is 200 lb for the boat plus 10 lb per person. The inequality can be represented as:

150p + 10p + 200 \<= 1200

Simplifying the inequality gives us:

160p \<= 1000

Dividing both sides by 160:

p \<= 1000 / 160

p \<= 6.25

Since we cannot have a fraction of a person, the maximum number of people allowed is 6.

For part B, we evaluate if the groups mentioned can safely rent a boat:

Group 1 (4 people): 150(4) + 10(4) + 200 = 840 lb \<= 1200 lb - they can rent.

Group 2 (5 people): 150(5) + 10(5) + 200 = 1000 lb \<= 1200 lb - they can rent.

Group 3 (8 people): 150(8) + 10(8) + 200 = 1480 lb > 1200 lb - they cannot rent as it exceeds the limit.

The maximum number of people who may rent a boat based on the given restrictions and average weights is 6 people.

Write your answer in standard form with integer coefficients.
2x + 3y = 30 ; (2,-5)

Answers

Well I dont know if I'm correct but i think its 4+-15=30 Im just saying

List the members of these sets.
a.{x | x is a real number such that x2 = 1}
b.{x | x is a positive integer less than 12}
c.{x | x is the square of an integer and x < 100}
d.{x | x is an integer such that x2 = 2}

Answers

a.{x | x is a real number such that x^2 = 1}

x^2 = 1 => x = +/- 1

=> {-1, 1} <------ answer

b.{x | x is a positive integer less than 12}

1 ≤ x < 12 => {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} <------ answer

c.{x | x is the square of an integer and x < 100}

x = n^2 < 100 => n^2 - 100 < 0

=> (n - 10) (n + 10) < 0

=> a) n - 10 > 0 and n + 10 < 0  => n > 10 and n < - 10 which is not possible

b) n - 10 < 0 and n + 10 > 0 => n < 10 and n > - 10 => - 10 < n < 10

=> n = { - 9, - 8, - 7, - 6, - 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

=> x = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81} <---- answer

d.{x | x is an integer such that x^2 = 2}

x =  {∅ } because x is √2 which is not an interger but an irrational number

=> Answer: { ∅ }

The sets are:

a) {-1, 1}b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}c) {1, 4, 9, 16, 25, 36, 49, 64, 81}d) {∅}.

How to find the elements of each set?

We need to find all the values of x that meet the given restrictions for each set.

a) Here we know that x is a real number and we must have:

x^2  = 1

Solving for x:

x = ±√1 = ±1

Then this set is:

{-1, 1}

b) Here x is a positive integer smaller than 12, this is just:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

c) In this case x is a square number, and it must be smaller than 100, so let's find all the square values smaller than 100.

1^2 = 12^2 = 43^2 = 94^2 = 165^2 = 256^2 = 367^2  = 498^2 =  649*9 = 8110*10 = 100  (from this onwards, the squares don't meet the criteria).

Then this set is:

{1, 4, 9, 16, 25, 36, 49, 64, 81}

d) Here x must be an integer, such that x^2 = 2

Solving the equation we get:

x = ±√2

But √2 is an irrational number, so there is no integer number that meets this restriction, this means that we have an empty set, this is written as:

{∅}.

If you want to learn more about sets, you can read:

https://brainly.com/question/1563195

Solve for x.

−32>−5+9x



Enter your answer, as an inequality, in the box

Answers

The solution to the inequality -32 > -5 + 9x is x > -3.

To solve the inequality -32 > -5 + 9x, we'll isolate the variable x by first getting rid of the constant term (-5) on the right side.

1. Add 5 to both sides:

  -32 + 5 > 9x

  -27 > 9x

2. Divide both sides by 9 to solve for x:

  -27/9 > x

  -3 > x

Therefore, x is greater than -3. In interval notation, this can be written as (-∞, -3). In inequality notation, it's expressed as x > -3.

We started by isolating the variable x by adding 5 to both sides, then divided by 9 to solve for x. Remember, when dividing or multiplying by a negative number, the direction of the inequality sign flips. Thus, the final solution is x > -3.

Two consecutive integers have a sum of 81 . find the integers.

Answers

let the first one be x, the second one is then x+1
x+(x+1)=81
2x=80
x=40
the two consecutive integers are: 40, 41

Find 3 solutions for 2x+y=10

Answers

2×4+2=10
2×3+4=10
2×2+4=10
3 possible solutions to the equation 2x+y=10 are shown below:

X= 3, Y=4
(3*2+4=10)

X= 1, Y=8
(1*2+8=10)

X=4, Y=2
(4*2+2=10)

Hope this helps! :)

At a certain college, there are 600 freshman, 400 sophomores, 300 juniors, and 200 seniors. if one student is selected at random, what is the probability that the student is a sophomore?

Answers

The total number of sample space in this item is calculated by adding up all the number of students given. That is,

   S = 600 + 400 + 300 + 200 = 1500

The probability is calculated with the equation below.

    P = n / S

where P is the probability,
          n is the number of sophomores, and 
          S is the total number of students

Substituting,
    
  P = 400 / 1500 = 4/15

ANSWER: 4/15

.help me thanks much

Answers

(16x^1/6y^-2)^3/2 / (x^-1/6y^6)^3/2

=(4^2)^3/2 (x^1/6)^3/2 (y^-2)^3/2 / (x^-1/6)^3/2(y^6)^3/2
= 4^3   x^1/4 y^-3  / x^-1/4 y ^9
= 64 x^(1/4 +1/4) y^(-3-9)
= 64 x^1/2 y^-12
= 64 x^1/2 / y^12

answer is D.64 x^1/2 / y^12

Find the next two terms in the sequence. 0,1,4,9. . . A.13,18 B,16,25 C.13,17 D.16,23

Answers

A. 13,18 is the answer for this question. Because the next terms added by 3..

Answer:

16 & 25

Step-by-step explanation:

had the same question (;

Write the equation of the piecewise function ƒ that is represented by its graph.

Answers

check the picture below.

the hole, of course means, that point is not part of the range.

and the closed hole, means it is part of that range.

[tex]\bf f(x)= \begin{cases} \sqrt{x},&x\ \textless \ 4\\ x^2,&x\ge 4 \end{cases}[/tex]

Piecewise function with 3 pieces: [tex]x^2+1, 4x-8, 2[/tex]

The piecewise function ƒ that is represented by the graph in the image is:

ƒ(x) =

[tex]x^2+1, & \text{if } 0 \le x < 4 \\[/tex]

[tex]4x-8, & \text{if } 4 \le x < 5 \\[/tex]

[tex]5^2+1 = 26, & \text{if } x = 5[/tex]

This is because the graph of the function consists of three distinct pieces:

For 0≤x<4, the graph is a parabola with vertex at (0,1) and opening upwards. This suggests that the function is of the form [tex]ax^{2} +bx+c.[/tex]

We can find the values of a, b, and c by substituting the points (0,1), (1,1), and (4,16) into the equation.

This gives us the system of equations:

\begin{cases}

[tex]a \cdot 0^2 + b \cdot 0 + c = 1[/tex]

[tex]a \cdot 1^2 + b \cdot 1 + c = 1 \\[/tex]

[tex]a \cdot 4^2 + b \cdot 4 + c = 16[/tex]

\end{cases}

Solving this system gives us a=1, b=0, and c=1, so the equation of the function for this interval is [tex]x^{2} +1[/tex].  

For 4≤x<5, the graph is a line with slope 4 and y-intercept −8.

This suggests that the function is of the form mx+b.

We can find the values of m and b by substituting the points (4,2) and (5,25) into the equation.

This gives us the system of equations:

\begin{cases}

[tex]4m+b = 2 \\[/tex]

5m+b = 25

\end{cases}

Solving this system gives us m=4 and b=−8, so the equation of the function for this interval is 4x−8.

For x=5, the graph is a horizontal line at y=26.

This suggests that the function is of the form c.

We can find the value of c by simply looking at the graph.

This gives us c=26, so the equation of the function for this interval is 26.

Therefore, the complete piecewise function is:

ƒ(x) =

\begin{cases}

[tex]x^2+1, & \text{if } 0 \le x < 4 \\[/tex]

[tex]4x-8, & \text{if } 4 \le x < 5 \\[/tex]

[tex]5^2+1 = 26, & \text{if } x = 5[/tex]

\end{cases}

For similar question on Piecewise function.  

https://brainly.com/question/28225631

#SPJ3

A stack of two hundred fifty cards is placed next to a ruler, and the height of stack is measured to be 5 8 58 inches.

Answers

─────█─▄▀█──█▀▄─█─────
────▐▌──────────▐▌────
────█▌▀▄──▄▄──▄▀▐█────
───▐██──▀▀──▀▀──██▌───
──▄████▄──▐▌──▄████▄──

plz don't be mad I need points

Simplify an expression

Answers

Answer:

[tex]\frac{20+2k}{3k+12}[/tex]

Step-by-step explanation:

Since there is no equals sign here, we are not solving this.  The only way to simplify is to get a common denominator and write the expression as a single expression.  We can begin by noting that the second term has a k in the numerator and in the denominator, and those cancel each other out.  That is the first simplification we can perform.  That leaves us with:

[tex]\frac{4}{k+4}+\frac{2}{3}[/tex]

In the first term, the denominator is k + 4, in the second term it is just 3.  Therefore, the common denominator is 3(k+4).  We are missing the 3 in the denominator of the first term, so we will multiply in 3/3 by that term.  We are missing a (k + 4) in the second term, so we will multiply in (k + 4)/(k + 4) by that term:

[tex](\frac{3}{3})(\frac{4}{k+4})+(\frac{k+4}{k+4})(\frac{2}{3})[/tex]

Multiplying fractions requires that I multiply straight across the top and straight across the bottom.  That gives me:

[tex]\frac{12}{3k+12}+\frac{2k+8}{3k+12}[/tex]

Now that the denominators are the same, I can put everything on top of that single denominator:

[tex]\frac{12+2k+8}{3k+12}[/tex]

Th final simplification requires that I combine like terms:

[tex]\frac{20+2k}{3k+12}[/tex]

5 x 2 x (-4) + 6 divided by 2

43
-37
-23
-17

Answers

There is a certain order that we follow in doing any mathematical operation:
First we get rid of any operation within brackets, then we do multiplication and divisions and finally we do additions and subtractions.

We need to evaluate: 5x2x(-4) + 6:
So since we have no operations within brackets, then we will do the multiplications first (in their order) then the addition:
5x2x(-4)+6 = 10x(-4)+6 = -40+6 = -34

Now, we need to divide -34 by 2:
-34/2 = -17

The answer is: -17

Hugo’s friends bought used books at the yard sale Sonia paid 2.25 John paid 6.00 and Keisha paid 3.75 how many books did each friend buy

Answers

Well, if each book only costs 0.25, then
Sonia bought 9 books
John bought 24 books
Keisha bought 15 books
If each book costs 0.75, then
Sonia bought 3 books
John bought 8 books
Keisha bought 5 books

Answer:

Sonia , John and Keisha bought 3,8 and 5 books respectively.

Step-by-step explanation:

given ,

Sonia paid 2.25 to buy book in yard sale

John paid 6 to buy book in yard sale

Keisha paid 3.75 to buy book in yard sale

cost of 1 book is equal to 0.75 cent

books bought each of them will be equal to

Sonia = [tex]\dfrac{2.25}{0.75}[/tex] = 3 books

John =  [tex]\dfrac{6}{0.75}[/tex] = 8 books

Keisha =  [tex]\dfrac{3.75}{0.75}[/tex] = 5 books

Hence, Sonia , John and Keisha bought 3,8 and 5 books respectively.

Suppose that there is a positive correlation between the variables k and I. If l is 75when k is 7, which of these is most likely to be the value of l when k is 14.

Answers

positive correlation varies jointly

I = ck
75 = c(7)
75/7 = c
10.71 = c

I = (10.71)k
I = (10.71)(14)
I = 150

Answer:

l = 150

Step-by-step explanation:

The numbers k and have a positive correlation, to know the correlation between these two variables we have to use the values they give us:

When l = 75 the k = 7

The correlation between the two numbers is division. So this can be written as:

correlation: I = 75/7 k

So if we substitute k=14

l = 75/7 * 14

l = 150

We can also get this number by rule of three:

75/7 = x/14

75/7 *14 = l

1050/7 = l

150 = l

(60 POINTS! I NEED HELP NOW PLEASE!)


Given a polynomial function f(x), describe the effects on the y-intercept, regions where the graph is increasing and decreasing, and the end behavior when the following changes are made. Make sure to account for even and odd functions.

-When f(x) becomes f(x) -3

-When f(x) becomes -2 * f(x)

Answers

Think of f(x) as the y value If you add 2 to y you move the function up by 2 units. The shape stays the same, where it is increasing and decreasing stays the same. It's just an upward shift. If f(x) is an even function, this means f(-x) = f(x), so what I just described applies If f(x) is an odd function, this means f(-x) = -f(x), so what I just described applies as as well When you multiply f(x) by -1/2, you invert the function f(x) so that positive values become negative and negative become positive. This means where f(x) was maximum, it's now a minimum and vice-versa If f(x) is even, then what I've just described applies If f(x) is odd, then what I've just described applies Hope this helps.

The regular price of a jacket is $42.75. during a sale, the jacket was marked 12% off. what was the price of the jacket during the sale? (1 point) $5.13 $30.75 $37.62 $42.63

Answers

$37.62

.12x42.75=5.13

42.75-5.13=37.62

4x-3y+6z=18,-x+5y+4z=48,6x-2y+5z=0 what are x,y,and z?

Answers

-1x+5y+4z=48
4x-3y+6z=18
6x-2y+5z=0
multiply the first equation by 4 and add the results to the second equation:
-1x+5y+4z=48
17y+22z=210
6x-2y+5z=0
multiply the first equation by 6 and add the results to the third equation:
-1x+5y+4z=48
17y+22z=210
28y+29z=288
multiply the second equation by -28/17 and add the result to the third equation:
-1x+5y+4z=48
17y+22z=210
-123/17z=-984/17
solve for z
-123/17z=-984/17
z=8
then solve for y
17y+22z=210
17y+22*8=210
y=2
solve for x substituting y=2 and z=8 into the first equation:
4x-3(2)+6(8)=18
x=-6
so the solutions are x=-6, y=2, z=8
Other Questions
What about the what the naval officer says is ironic? in lord of the flies? Define the term hidden job market. then list three strategies A _____ is a search engine that combines internet technology with traditional library methods of cataloguing and assessing data. A certain breed of mouse was introduced onto a small island with an initial population of 320 mice, and scientists estimate that the mouse population is doubling every year. (a) find a function that models the number of mice m after t years. Which type of software is created and updated by a worldwide community of programmers and is available for free? Se implicit differentiation to find an equation of the tangent line to the curve at the given point.7x2 + xy + 7y2 = 15, (1, 1) (ellipse) Cholesterol is one example of this type of organic compound. minerals with the silicon-oxygen structure shown in Figure 2-1 are classified into what group?A. Sulfates B. oxides C. carbonatesD. silicates The man in the picture, Padre Miguel Hidalgo, is noted forstopping the rebellion in a town called Dolores.beginning the Mexican independence movement.defeating the Spanish colonial government.collaborating with criollos and peninsulares. A scatter plot is used to visualize the association between two quantitative variables tru false The ________ is a narrow band of ________ that is/are visible to the human eye HELLLLLLLLLLLLLLLLLLLLLLLLPWhich accurately describes the involvement of the Catholic Church in medieval European governments?The Catholic Church forced European lords and barons to spare extra lands for peasant farmers.The rules and rituals of the Church guided the administration of government in Europe.The rules and rituals of the Church opposed feudalism, sparking numerous European wars. The Catholic Church forced European kings to adopt the governmental practices of the Vandals and Visigoths. Which of the following enzymes serve as catalysts in metabolism?I.amylaseII.lactaseIII.pepsinIV.polymerase what might happen in a market economy if private property rights were removed? A cord is used to vertically lower an initially stationary block of mass m kg at a constant downward acceleration of g/4. the block has fallen a distanced. (use any variable or symbol stated above as necessary.) (a) find the work done by the cord's force on the block. wf = 3mgd 4 incorrect: your answer is incorrect. (b) find the work done by the weight of the block. wg = (c) find the kinetic energy of the block. k = (d) find the speed of the block. v = If EG=25 and point F is 2/5 of the way between E and G, find the value FG. The drawing is not to scale.a. 12.5b. 10c. 20d. 15d. 7 My uncle is the one who bought me a puppy for my birthday. a. noun clause b. adjective clause c. adverb clause The pine tree in George's front yard is 8.83 meters tall. What is that number rounded to the nearest tenth? How many carbon atoms are in 12.01 grams of pure carbon? Write 2.1111111 as a mixed number Steam Workshop Downloader