Answer:
The answer is B) No.
Explanation:
The equation balanced is:
2 FeCl₃ + 3 MgO → Fe₂O₃ + 3 MgCl₂
Equation balancing can be done by "trial and error" or by algebraic method.
In this way the equation is balanced on both sides having:
2 atoms of Fe, 6 of Cl, 3 of Mg and 3 of 0.
Final answer:
The chemical equation FeCl₃ + MgO → Fe₂O₃ + MgCl₂ is not balanced due to unequal numbers of iron, chlorine, and oxygen atoms on the reactant and product sides. The balanced equation would be 2FeCl₃ + 3MgO → Fe₂O₃ + 3MgCl₂.
Explanation:
The student's equation, FeCl₃ + MgO → Fe₂O₃ + MgCl₂, is not balanced. To determine whether a chemical equation is balanced, we must ensure that there are equal numbers of each type of atom on both the reactant and product sides. Let's count the atoms of each element in the reactants and products:
Fe (Iron): 1 atom in the reactants, 2 atoms in the products.Cl (Chlorine): 3 atoms in the reactants, 2 atoms in the products.Mg (Magnesium): 1 atom in the reactants, 1 atom in the products.O (Oxygen): 1 atom in the reactants, 3 atoms in the products.As we can see, the numbers do not match for iron and chlorine, as well as oxygen. Thus, the equation must be balanced by adjustion coefficients to equalize the number of atoms for each element on both sides. The balanced equation would be 2FeCl₃ + 3MgO → Fe₂O₃ + 3MgCl₂.
solar panels use which of the following energy sources to generate electricity?
Sunlight/light from the sun
Why are strong acids also strong electrolytes? Also, is every strong electrolyte a strong acid?
Answer:
Explanation:
An acid is a substance that interacts with water to produce excess hydroxonium ions in an aqueous solution.
An electrolyte is a compound which breaks up into ions when dissolved in water or when in molten form.
A strong acid is one that ionizes almost completely ion aqueous solution.
To make a strong electrolyte, there must be presence of ions from compounds that ionizes completely in aqueous solution or in molten form to give free mobile ions. This is why strong acids are very strong electrolytes too.
2. Other examples of strong electrolytes are mineral acids, caustic alkalis and salts because they also ionize completely in aqueous solutions. Any compoud that ionizes completely in aqueous solution will produce a strong electrolyte.
Strong acids are considered strong electrolytes because they completely ionize in solution, producing a high concentration of ions which makes them good conductors of electricity. However, not all strong electrolytes are strong acids; other substances like strong bases and salts can also be strong electrolytes.
Explanation:Strong acids, such as hydrochloric acid (HCl), are also strong electrolytes because they ionize completely in aqueous solution, meaning they release all their hydrogen ions (H*). This leads to a high concentration of ions, making them excellent conductors of electricity, which is the characteristic of a strong electrolyte. These acids are more likely to donate H* and react with other substances in solution.
However, not every strong electrolyte is a strong acid. A strong electrolyte only indicates that a substance can fully dissociate into ions in solution, enhancing its ability to conduct electricity. Other substances, like strong bases and salts, can also be strong electrolytes. For example, sodium hydroxide (NaOH) is a strong base and a strong electrolyte because it readily dissociates into Na+ and OH- ions in solution.
Learn more about Strong Acids and Electrolytes here:https://brainly.com/question/15196551
#SPJ6
Calculate the pH of KC2H3O2 solution. Ka for HC2H3O2 is 1.8x10-5
Answer:
The pH value comes out to be 9.03. We will get an alkaline solution by the hydrolysis of the salt of a weak acid and a strong base.
Explanation:
[tex]KC_{2}H_{3}O_{2}[/tex] is a salt of a weak acid acetic acid and a strong base KOH. This salt will hydrolyze in water to give an alkaline solution.
Assuming concentration (C) of the salt to be 0.2 M as it is not given.
[tex]K_{a}[/tex] of acetic acid = [tex]1.8\times 10^{-5}[/tex]
[tex]\textrm{pK}_{a} = -\textrm{ log}\left ( K_{a} \right ) \\\textrm{pK}_{a} = -\textrm{ log}\left ( 1.8\times 10^{-5} \right ) \\\textrm{pK}_{a} = 4.75[/tex]
The formula of pH on hydrolysis of salt of weak acid and strong base is given below
[tex]pH = \displaystyle \frac{1}{2}\left ( pK_{w}+pK_{a}+\textrm{log}C \right ) \\pH = \displaystyle \frac{1}{2} \left ( 14+4.75+\textrm{log}0.2 \right ) \\pH = 9.03[/tex]
The pH of solution comes out to be 9.03
To calculate the pH of a KC2H3O2 solution, determine the Kb of the acetate ion using the provided Ka for acetic acid and then calculate the concentration of hydroxide ions to finally find the pH of the solution through the formula pH = -log[H+].
Explanation:Calculating the pH of a KC2H3O2 SolutionTo calculate the pH of a potassium acetate (KC2H3O2) solution, we must first understand the relationship between the acid dissociation constant (Ka) of acetic acid (HC2H3O2) and the base dissociation constant (Kb) of its conjugate base, the acetate ion (C2H3O2-). Using the formula Kw = Ka × Kb, where Kw is the ion-product constant for water (1.0 × 10^-14 at 25°C), we can calculate Kb with the given Ka for acetic acid (1.8 × 10^-5).
First, solve for Kb:
Kb = Kw / Ka
Kb = (1.0 × 10^-14) / (1.8 × 10^-5)
Kb = 5.56 × 10^-10
Knowing the Kb value, we can then use the given concentration of the KC2H3O2 solution to find the hydroxide ion concentration [OH-] and subsequently the hydrogen ion concentration [H+]. The pH is then calculated using the formula pH = -log[H+]. The complete solution would include detailed calculations of [OH-], [H+], and pH, factoring in the initial concentration of the KC2H3O2 solution.
On sunny day the barometer reading was 765 mm Hg What is this measurement in atmospheres
Answer:
1.01atm
Explanation:
760mmHg = 1atm
765mm Hg = 765/760 = 1.01atm
Therefore, the barometer reading in atmosphere is 1.01atm
a wave has a wavelength of 1.2m andr a frequency of 3 Hz. what is the wave speed
Answer:
3.6m/s
Explanation:
The following data were obtained from the question:
Frequency = 3Hz
Wavelength = 1.2m
Velocity =?
Velocity = wavelength x frequency
Velocity = 1.2 x 3
Velocity = 3.6m/s
2) C_H,(g) + 30,(g) → 2 CO2(g) + 2 H2O(g)
a) 2.7 mol of C,H, is reacted with 6.3 mol of 0,, how many moles of water will be
made?
b) What is the limiting reactant?
c) What is the excess reactant?
Answer:
a. 2.7 mol of water
b CH2.
c. O2
Explanation:
The complete equation of the reaction should be:
2CH2(g) + 3O2(g) → 2 CO2(g) + 2 H2O(g)
a) how many moles of water will be made?
To make 2 molecules of water (H2O) we need 2 molecules of CH and 3 molecules of O2.
We have 2.7 mol of CH2, the possible yield of water produced if it all used up will be:
2.7 mol * 2/2= 2.7 mol
We have 6.3 mol of O2, the possible yield of water produced if it all used up will be:
6.3 mol * 2/3 = 4.2 mol
Since the maximum yield of CH2 lower, we can have 2.7 mol of water and have some excess oxygen at the end of the reaction.
b) What is the limiting reactant?
A limiting reactant is a reactant that will be used up in the reaction. This reactant has the lowest stoichiometric ratio compared to other reactants, which make them the one depleted out first. Since they depleted, the reaction will stop. Thus they limit the number of reactions and called limiting reactants. If you add the limiting reactant, the reaction will continue.
The limiting reactant in this reaction is the CH2. When producing water molecules, all 2.7 mol of CH2 will be used while we still have O2 left.
c) What is the excess reactant?
The excess reactant will have some remains after the reaction stop. That is because the excess reactant has more mass than needed for the reaction that will use all limiting reactants. Since we still have remains, adding excess reactant won't continue the reaction.
The excess reactant in this question is O2 since it still has remained after we make 2.7 mol of water. The O2 remaining, in this case, will be:
6.3 mol - 2.7mol * 3/2= 2.25 moles
what are the six scientific method in order?
conclusion, observation, experiment, problem, hypothesis, results..
A child has a toy balloon with a volume of 1.80 L. The temperature of the balloon when it was filled was 293 K at a pressure of 101.3 kPa. If the child were to let go of the balloon and it rose 3 kilometers into the sky where the pressure of 67.6 kPa and the temperature is 263 K, what would the new volume of the balloon be?
Answer:
2.42L
Explanation:
Given parameters:
V₁ = 1.8L
T₁ = 293K
P₁ = 101.3kPa
P₂ = 67.6kPa
T₂ = 263K
Unknown:
V₂ = ?
Solution:
To solve this problem, we are going to use the combined gas law to find the final volume of the gas. The combined gas law expression combines the equation of Boyle's law, Charles's law and Avogadro's law;
[tex]\frac{P_{1} V_{1} }{T_{1} } = \frac{P_{2} V_{2} }{T_{2} }[/tex]
All the units are in the appropriate form. We just substitute and solve for the unknown;
101.3 x 1.8 / 293 = 67.6 x V₂ / 263
V₂ = 2.42L
What change in volume results if 60 mL of a gas is cooled from 33 C to 5 C?
Answer:
Change in volume on changing temperature from 33[tex]^{\circ}C[/tex] to 5[tex]^{\circ}C[/tex] is 5.49 mL
Explanation:
Initial volume of gas = V = 60 mL
Assuming final volume of gas to be V' mL
Initial temperature = T = 33[tex]^{\circ}C[/tex] = 306 K
Final temperature = T' = 5[tex]^{\circ}C[/tex] = 278 K
The relationship between volume and temperature of gas at constant pressure is shown below
[tex]\displaystyle \frac{V}{V'}=\displaystyle \frac{T}{T'} \\\displaystyle \frac{60\textrm{ mL}}{V'} = \displaystyle \frac{306\textrm{ K}}{T} \\V' = 54.51 \textrm{ mL} \\\textrm{Change in volume} = \left ( V-V' \right ) \\\textrm{Change in volume} = \left ( 60-54.51 \right )\textrm{ mL} \\\textrm{Change in volume} = 5.49 \textrm{ mL}[/tex]
Change in volume on changing temperature = 5.49 mL
what is the amount of heat,in joules, required to increase the temperature of a 49.5-gram sample of wanted from 22c to 66c
Answer :
the amount of heat,in joules, required to increase the temperature of a 49.5-gram sample of wanted from 22°c to 66°c is 9.104 Joules.
Explanation:
The answer can be calculated using the formula
Q = mCрΔT
where
Q is the amount of heat required in joules to raise the temperature.
m is the mass of the sample in Kg.
Cp is the specific heat of the sample in J/Kg°C.
ΔT is the change in temperature required.
Here, m = 49.5-gram = 0.0495 kg
Cp = 4.18 J/Kg°C (for water)
T₁ = 22°C ; T₂ = 66°C
ΔT = 66 - 22 = 44
Substituting values in Q = mCрΔT
Q = (0.0495)(4.18)(44)
Q = 9.104 J
10. Blood which is flung off of swinging objects creates which type of spatter?
A. Arterial spray
B. Expirated
C. Cast-off
D. Void
Answer:
I'm pretty sure it's B
Explanation:
Blood flung off swinging objects creates a type of spatter known as cast-off, different from arterial spray, expirated blood patterns, or void patterns. Option C is correct.
Blood that is flung off of swinging objects creates a type of spatter known as cast-off. This typically occurs when blood on an object, such as a weapon, is flung into the surrounding area when the object is quickly swung or moved.
It can be distinguished from other types of spatter, such as arterial spray, which is characterized by the pulsating pattern of blood that spurts out with each heartbeat, or expirated blood patterns, which are caused by blood that is expelled from the mouth or nose from an internal injury. Void patterns occur when an object blocks the deposition of blood spatter onto a surface or object, creating a blank space within the bloodstained area.
Hence, C. is the correct option.
What are five main characteristics of a mineral
Explanation:
Minerals are naturalMinerals should be found in nature. Elements made laboratories are not actual minerals like masquerading as rubies or sapphires. All naturally available crystals are not minerals like opal and amber.
Minerals are inorganicMinerals are not under any class of organic compounds. Almost all known minerals come from inorganic processes. Some minerals originate from organic processes like pearls.
Minerals are solidsMinerals exist only as solids. Solids have a defined volume and shape, and they cannot be compressed any further. Minerals are rigid.
Definite chemical compositionEach mineral has a unique combination of atoms that cannot be found in other minerals. The strength of mineral can be defined by the type of bond a mineral has. Some minerals, like gold and diamond, have only one element in it.
Crystalline structureMinerals form crystals that have repeated arrangements of ions. Minerals have different shapes depending on the size of the ion. Crystals usually take six types of shapes.
Please answer for me
Answer:
1. Nitric Acid
2. Hydrochloric Acid
3. Acetic Acid
4. Hydrogen bromide
5. Nitrous Acid
Explanation:
1. H2SO4
2. HF
3. H3PO4
4. H2CO3
5. H2S
P.S. make the numbers smaller ok?
Chocolate Chip Cookie Recipe: 1 cup of flour 100 chocolate chips 1 cup sugar 1/2 cup milk Yields 10 cookies You and your sister want to bake chocolate chip cookies. You go to the store and buy 5 cups of flour, three bags of chips, each containing 100 chocolate chips, 6 cups of sugar, and a half gallon of milk. You want to make as many cookies as possible. What is your limiting reactant, the ingredient that would run out first?
The first ingredient to run out would be the chocolate chips.
Limiting ReactantsA limiting reactant is a reactant that determines the amount of product that would be formed in a reaction.
In this scenario, the ratio of flower to chocolate chips to sugar to milk for a 100 cookies is 1:100:1:0.5.
The ratio of the same ingredients bought in the store is 5:300:6:16
Note: 16 cups = a gallon
To the lowest ratio: 5:300:6:16 = 1:60:1.2:3.02
Since the ratio of flour to chocolate chips is 1:100, it means that the chocolate chips would be the first to run out first and thus, the limiting reactant.
More on limiting reactants can be found here: https://brainly.com/question/14225536?referrer=searchResults
0.349 M solution of CuOh is formed is the solution basic, acidic, or neutral?
Answer:
basic
Explanation:
A solution of copper (I)hydroxide is a base and it will form a basic solution no matter what.
A base is a compound the produces hydroxyl ions in aqueous solutions. Most known bases always have the OH⁻ group attached to them in a compound.
Copper(I) hydroxide is a an alkali as it can dissolve in water. It shares all the unique characteristics of a typical base and it will turn red litmus paper blue.
When is the color emitted from an atom
Answer:
Color is emitted from an atom when an electron jumps from a higher energy level to a lower energy level
Explanation:
According to Bohr's model of the atom, electrons are arranged into circular orbits, each orbit corresponding to a precise energy level.
In this model of the atom, electrons cannot be between two orbits: this means that the energy level of the atom are discrete, so they can only assume certain values.
As a result, when an electron jumps between two energy levels, it emits/absorbs a photon whose energy is equal to the difference in energy between the two levels.
In particular:
- If an electron jumps from a lower energy level to a higher energy level, it absorbs a photon
- If an electron jumps from a higher energy level to a lower energy level, it emits a photon
The energy of the emitted photon is equal to the difference in energy between the two levels, and it is related to the wavelength [tex]\lambda[/tex] of the photon by
[tex]E=\frac{hc}{\lambda}[/tex]
where h is the Planck's constant and c the speed of light.
For usual gases, the value of the energy E is such that the value of the wavelength [tex]\lambda[/tex] falls within the visible light range of the electronmagnetic spectrums, so we observe light emitted as different colors, depending on the wavelength.
Which structure of the cell controls what goes in and comes out of the cell? cell Which structure is a strong layer around plant cells? cell
Answer:
Cell membrane
Cellulose cell wall
Explanation:
The cell membrane is the structure that contains what goes in out of a cell. It is made up of double phospholipid layers.
This cell membrane is also known as the plasma membrane. It is found in both plants and animal cells.
They regulate the movement of materials in and out of the cell. They also provide structural support.
The cellulose cell well is a strong layer found in most plant cells. They are not found in animal cells. These structures are found just outside of the cell membrane in plants. They provide additional support for the cell They are rigid and not flexible.
Answer: 1: membrane 2: wall
Explanation: I got it wrong but it show me the answer
1 Mr. Chavez paid $14.32 total for 8 protein bars.
If each protein bar cost the same amount, how
much did one protein bar cost?
A $1.69 C $1.79
B $1.82 D $1.59
Answer:
Option C. $1.79
Explanation:
From the question, were told that the total cost of 8 protein bar is $14.32.
Therefore, the cost of 1 protein bar will be = $14.32/8 = $1.79
Changes in the environment that cause an organism to respond are called?
Answer:
Anything in the environment that causes a change is called a stimulus.
Explanation:
Answer:
Anything in the environment that causes a change is called a stimulus.
Explanation:
Organisms react to many stimuli, including light, temperature, odor, sound, gravity, heat, water, and pressure. The ability of living things to react to stimuli is known as irritability.
Which of the following statements about the periodic table is true
1.elements in the same column are similar in their properties
2.elements in the same row are similar in their properties
3.elements that start with the same letter are similar in their properties
4.elements that have the same atomic mass are similar in their properties
Answer: Elements in the same column are similar in their properties
Explanation: The columns on the periodic table are also know as group of the periodic table elements in the same group of the periodic table tends to have similar chemical properties because they all have the same number of valence electrons in their outermost shell. This plays an important roles in their reactivity and properties
Answer:
1. elements in the same column are similar in their properties
Explanation:
I got it right :)
I have attached all the problems, but really if you just do one so I understand how to do it, that would be great!
Perform the following heat calculations. You must show all work and include units on answers to receive full credit.
a. How much heat is required to raise the temperature of 10.0 g of iron from 25°C to 100.°C? The specific heat capacity of iron is 0.46 J/g°C.
b. The specific heat capacity of water is 4.184 J/g°C. How much heat is required to heat 500.0 g of water from 50.0°C to 100.°C?
c. A 45.4 g sample of lithium is cooled from 250.0°C to 25.0°C. The specific heat capacity of lithium is 3.56 J/g°C, what amount of heat is released?
d. How many kilojoules of heat are released when 0.72 mole of oxygen gas are used to combust methane?
CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O (ℓ) + 890kJ
e. How much heat is released when 1.4 mol of hydrogen fluoride are produced?
H2 (g) + F2 (g) → 2HF (g) + 536kJ
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
From the above formula all other questions can easily be solved from the same procedure.To find the amount of heat required or released, use the formula q = m × c × ΔT, applying the given values for mass, specific heat capacity, and temperature change.
Explanation:To solve the heat calculation problems, we use the formula q = m × c × ΔT, where q is the heat absorbed or released, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature (final temperature minus initial temperature).
For example, to calculate how much heat is required to raise the temperature of 10.0 g of iron from 25°C to 100.0°C, given that the specific heat capacity of iron is 0.46 J/g°C, we apply the formula: q = (10.0 g) × (0.46 J/g°C) × (100.0°C - 25°C). Calculating this gives q = 345 J, meaning 345 Joules of heat is required.
A barcode can be printed on a product to help identify the product. A barcode usually consists of several alternating vertical black and white lines of various widths. A barcode scanner is used to read the information stored in a barcode. The barcode scanner projects a beam of light on the barcode. The light that reflects from the barcode is decoded to give information about the product.
Which of the following processes enables the scanner to decode the information from the barcode?
A:The projected light from the scanner is absorbed by the black lines and reflected by the white lines of the barcode, which creates a pattern on the optical sensor of the scanner.
B:The projected light from the scanner is refracted by the lines on the barcode, which changes the speed of the light hitting the optical sensor of the scanner.
C:The projected light from the scanner interferes with the reflected light from the barcode, and this combined beam of light is recognized by the optical sensor of the scanner.
D:The projected light from the scanner is diffracted by the barcode, which creates a pattern on the optical sensor of the scanner.
Answer:
A
Explanation:
The barcode is being read by a laser that scans along the length of the sequence, reflecting more light from the white strips and less from the black strips. Hope this helps!
Answer:
The Answer is A
Explanation:
Had it before
what is a solution
A. Two liquids that do not mix with each other
B.The substance that is dissolved in another substance
C.The mixture of one substance dissolved in another
D. the substance that dissolves another substance
what are the number of molecules in 2.56 moles of water?
Answer:
1.54x10^24
Explanation:
To convert moles to molecules, multiply the number of moles by Avagadro's number (6.02x10^23).
2.56mol × 6.02x10^23 = 1.54x10^24
To find the number of molecules in 2.56 moles of water, we multiply the number of moles (2.56) by Avogadro's number (6.022 x 10²³), resulting in 1.54 x 10²⁴ molecules of water.
The question asks, what are the number of molecules in 2.56 moles of water? To answer this, we need to understand Avogadro's number, which is a fundamental concept in chemistry representing the number of units in one mole of any substance. Specifically, Avogadro's number is 6.022 x 10²³. Therefore, to find the number of molecules in 2.56 moles of water, we multiply the number of moles by Avogadro's number:
Number of molecules = 2.56 moles x 6.022 x 10²³ molecules/moleThis calculation gives us: 1.54 x 10²⁴ molecules of water in 2.56 moles.
Magnesium +Hydrogen Phospahate
Answer:
That makes Dimagnesium phosphate
Answer:
The reaction between Magnesium and Hydrogen Phosphate forms Magnesium Hydrogen Phosphate
Explanation:
When magnesium reacts with hydrogen phosphate it forms an ionic compound called Magnesium Hydrogen Phosphate or Dimagnesium Phosphate.
Magnesium Hydrogen Phosphate is an ionic compound with the formula HMgO4P.
Equation;
Mg + HPO4 ------> HMgO4P
Similarly we can use Magnesium Phosphate to demonstrate the reaction.
In chemistry, the sum of charges of the anion and the cation of any ionic compound is always equal to zero.
To determine the number of anion and cation required for the sum to be zero we simply use the criss-cross method. This involves taking the charge of one ion and making the absolute value of that charge to be the amount of the other ion.
Therefore, Magnesium having a charge of 2+; we will have two(2) Phosphate cations for it.
Also, Phosphate has a charge of 3-; so we have three(3) Magnesium cations.
Equation;
[tex]Mg^{2+} + (PO4)^{3-} ----> Mg3(PO4)2[/tex]
Which has a larger radius: a sodium atom or a sodium ion? Explain why.
Answer:
sodium atom
Explanation:
the sodium ion loses a valence shell when it ionizes. The sodium atom retains this valence shell which adds to its radius
3. Potassium chlorate, KC103, decomposes when heated to produce potassium
chloride and oxygen gas.
If 6.50 grams of KClO3 were heated in a test tube, how many grams of oxygen
gas should be given off?
Answer: oxygen=2.547g
Explanation:
Based on the question,it was observed that the reaction is reversible
2 moles of KClO3 gives 2 moles of KCl and three moles of O2
Molar mass for KClO3 is 245 g/mol
Molar mass for O2 is 96 g/mol
We are to find the mass of O2 and we Are given the mass KCLO3 is 6.50g
245g of KClO3 gives 96g of O2
6.50g of KClO3 gives xg of O2
Cross multiply
245x=624
X=624/245
X=2.547g
Therefore the gram of oxygen is 2.547g
When 6.50 grams of potassium chlorate (KClO3) are heated, approximately 2.54 grams of oxygen gas should be given off.
Explanation:When potassium chlorate (KClO3) is heated, it decomposes to produce potassium chloride (KCl) and oxygen gas (O2). The balanced chemical equation for this reaction is:
2KClO3(s) → 2KCl(s) + 3O2(g)
In order to determine the amount of oxygen gas produced, we need to calculate the theoretical yield of oxygen gas. This can be done using stoichiometry and the molar mass of KClO3.
First, calculate the molar mass of KClO3:
39.10 g/mol (K) + 35.45 g/mol (Cl) + 3(16.00 g/mol) (O) = 122.55 g/mol
Next, use the molar mass of KClO3 to convert grams of KClO3 to moles:
6.50 g KClO3 * (1 mol KClO3 / 122.55 g KClO3) = 0.053 mol KClO3
According to the balanced chemical equation, 2 moles of KClO3 produce 3 moles of O2. Therefore, the number of moles of O2 produced can be calculated as:
0.053 mol KClO3 * (3 mol O2 / 2 mol KClO3) = 0.0795 mol O2
Finally, convert moles of O2 to grams:
0.0795 mol O2 * (32.00 g/mol O2) = 2.54 g O2
Therefore, when 6.50 grams of KClO3 are heated, approximately 2.54 grams of oxygen gas should be given off.
Which of the following tend to possess the same number of outer electrons? A. all molecules with the same number of atoms B. all elements within the same group C. all molecules made up of the same elements D. all elements within the same period
Answer:
the answer would be "B"
Explanation:
Elements with the same number of valence electrons are found in the same column of the Periodic Table. All elements in the first column of the Periodic Table have 1 valence electron in an s orbital. These elements are known as Group 1A metals or alkali metals.
All elements within the same group tend to possess the same number of outer electrons and the correct option is option B.
What are Groups in Periodic table?The periodic table is organized into groups (vertical columns), periods (horizontal rows), and families (groups of elements that are similar). Elements in the same group have the same number of valence electrons.
Meanwhile, elements in the same period have the same number of occupied electron shells.
Elements are typically classified as either a metal or nonmetal.
Metal elements are usually good conductors of electricity and heat. The subgroups within the metals are based on the similar characteristics and chemical properties of these collections
Therefore, All elements within the same group tend to possess the same number of outer electrons and the correct option is option B.
Learn more about Groups in Periodic Table, here:
https://brainly.com/question/30858972
#SPJ3
The volume of 350 mL of gas at 25°C is decreased to 135mL at constant pressure. what is the final temperature of the gas?
The decrease in the volume of gas at constant pressure results in the final temperature of the gas is 115.05 K.
The Charles law states that with the gas constant pressure there has been a proportional relationship between the volume and temperature.
At constant pressure, the relationship between the temperature and volume can be given by:
[tex]\rm \dfrac{Initial\;volume}{\Initial\;Temperature}\;=\;\dfrac{Final\;Volume}{Final\;Temperature}[/tex]
For the given gas, the final temperature can be calculated as:
[tex]\rm \dfrac{350\;ml}{298.15\;K}\;=\;\dfrac{135\;ml}{Final\;temperature}[/tex]
1.173 = [tex]\rm \dfrac{135\;ml}{Final\;temperature}[/tex]
Final temperature = [tex]\rm \dfrac{135\;ml}{1.173\;K}[/tex]
Final temperature = 115.05 K.
The reduction in the volume of gas at constant pressure results in the final temperature of the gas is 115.05 K.
For more information about the volume of gas at constant pressure, refer to the link:
https://brainly.com/question/24691513
Using Charles's Law, we can calculate that the final temperature of the gas at constant pressure when its volume is decreased from 350 mL at 25°C to 135 mL is -157.95°C.
Explanation:The student is asking about the relationship between the volume and temperature of a gas held at constant pressure, which can be described using Charles's Law. According to this law, at constant pressure, the volume of a gas is directly proportional to its absolute temperature (measured in Kelvin). To find the final temperature when the volume of 350 mL of gas at 25°C is decreased to 135 mL, we can set up the proportion:
V1 / T1 = V2 / T2
where:
V1 is the initial volume (350 mL)T1 is the initial temperature (25°C or 298 K)V2 is the final volume (135 mL)T2 is the final temperature (in Kelvin)First, we need to convert the initial temperature from Celsius to Kelvin by adding 273.15 (T1 in Kelvin is 298.15 K). Then we can solve for T2:
(350 mL / 298 K) = (135 mL / T2)
Multiplying both sides by T2 and then by 298 K, we get:
T2 = (135 mL * 298 K) / 350 mL = 115.2 K
Converting back to Celsius, we subtract 273.15 from 115.2 K to get -157.95°C, which is the final temperature of the gas at constant pressure.
Mg+2N=??
complete and balance it
Answer:
mg3n2
Explanation:
Answer:
3Mg + N2 —> Mg3N2
Explanation:
The reaction between Mg and N2 is given below:
Mg + N2 —> Mg3N2
Now let us balance the equation:
There are 3 atoms of Mg on the right side and 1atom on the left side. It can be balance by putting 3 in front of Mg as shown below:
3Mg + N2 —> Mg3N2
Now the equation is balanced