[tex]\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\\\ \begin{array}{ccccllll} &\stackrel{\stackrel{ratio}{of~the}}{Sides}&\stackrel{\stackrel{ratio}{of~the}}{Areas}&\stackrel{\stackrel{ratio}{of~the}}{Volumes}\\ \cline{2-4}&\\ \cfrac{\stackrel{similar}{shape}}{\stackrel{similar}{shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}~\hspace{6em} \cfrac{s}{s}=\cfrac{\sqrt{Area}}{\sqrt{Area}}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\bf \cfrac{small}{large}\qquad \qquad \stackrel{sides}{\cfrac{3}{7}} ~~ = ~~ \stackrel{areas}{\sqrt{\cfrac{A_1}{98}}}\implies \left( \cfrac{3}{7} \right)^2 = \cfrac{A_1}{98}\implies \cfrac{3^2}{7^2}= \cfrac{A_1}{98} \\\\\\ \cfrac{9}{49}= \cfrac{A_1}{98}\implies 882 = 49A_1\implies \cfrac{882}{49}=A_1\implies 18=A_1[/tex]
Answer:
The answer to your question is 18 in²
Step-by-step explanation:
Data
Big rectangle Small rectangle
Area = 98 in² Area = ?
Height = 7 in Height = 3 in
Process
1.- Calculate the base of the big rectangle
Area = base x height
solve for base
base = Area / height
substitution
base = 98 / 7
base = 14 ni
2.- Use proportions to find the base of the small rectangle
x / 3 = 14 / 7
Simplify
x = (14)(3) / 7
result
x = 6 in
3.- Calculate the area of the small rectangle
Area = 6 x 3
= 18 in²
[[ ANSWER PLS ]]
A parking space is in the shape of a parallelogram. The figure below is a model of the parking space. The measure of Angle B is 75°. What are the measures of the other 3 angles?
Answer:
Option 4
Step-by-step explanation:
B = D = 75
A = C = 180 - 75 = 105
In a parallelogram, opposite angles are equal and consecutive angles are supplementary. Given that Angle B is 75°, the other angles are 105° (Angle A), 75° (Angle D), and 105° (Angle C).
Explanation:The parking space is in the shape of a parallelogram. The properties of a parallelogram tell us that opposite angles are equal, and consecutive angles are supplementary (add up to 180 degrees). Given that the measure of Angle B is 75°, the angle opposite to it (Angle D) will also be 75° as they are opposite angles. This leaves us with Angles A and C. Since angles A and B are consecutive, Angle A is 180° - 75° = 105°. Similarly, since angles C and D are consecutive, Angle C is also 180° - 75° = 105°. Thus, the measures of the four angles in the parallelogram are 75°, 105°, 75°, and 105° respectively.
A study of the checkout lines at the Safeway Supermarket in the South Strand area revealed that between 4 and 7 P.M. on weekdays there is an average of four customers waiting in line. What is the probability that you visit Safeway today during this period and find?
a. No customers are waiting?
b. Four customers are waiting?
c. Four or fewer are waiting?
d. Four or more are waiting?
Answer:
(a) The probability of no customers are waiting in a line is 0.01832.
(b) The probability of 4 customers are waiting in a line is 0.19537.
(c) The probability of 4 or fewer customers are waiting in a line is 0.62885.
(d) The probability of 4 or more customers are waiting in a line during the visit is 0.56652.
Step-by-step explanation:
The number of customers waiting in a line between 4 PM and 7 PM (X) follows a Poisson distribution with parameter λ = 4.
The probability mass function of a Poisson distribution is:
[tex]P(X=x)=\frac{e^{-4}(4)^{x}}{x!} ;\ x=0, 1, 2,...[/tex]
(a)
Compute the probability that no customers are waiting in a line during the visit as follows:
[tex]P(X=0)=\frac{e^{-4}(4)^{0}}{0!}=\frac{0.01832\times1}{1}=0.01832[/tex]
Thus, the probability of no customers are waiting in a line is 0.01832.
(b)
Compute the probability that 4 customers are waiting in a line during the visit as follows:
[tex]P(X=4)=\frac{e^{-4}(4)^{4}}{4!}=\frac{0.01832\times256}{24}=0.19537[/tex]
Thus, the probability of 4 customers are waiting in a line is 0.19537.
(c)
Compute the probability that 4 or fewer customers are waiting in a line during the visit as follows:
P (X ≤ 4) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)
[tex]=\frac{e^{-4}(4)^{0}}{0!}+\frac{e^{-4}(4)^{1}}{1!}+\frac{e^{-4}(4)^{2}}{2!}+\frac{e^{-4}(4)^{3}}{3!}+\frac{e^{-4}(4)^{3}}{3!}+\frac{e^{-4}(4)^{4}}{4!}\\=0.01832+0.07326+0.14653+0.19537+0.19537\\=0.62885[/tex]
Thus, the probability of 4 or fewer customers are waiting in a line is 0.62885.
(d)
Compute the probability of 4 or more customers are waiting in a line during the visit as follows:
P (X ≥ 4) = 1 - P (X < 4)
= 1 - P (X = 0) - P (X = 1) - P (X = 2) - P (X = 3)
[tex]=1-\frac{e^{-4}(4)^{0}}{0!}+\frac{e^{-4}(4)^{1}}{1!}+\frac{e^{-4}(4)^{2}}{2!}+\frac{e^{-4}(4)^{3}}{3!}+\frac{e^{-4}(4)^{3}}{3!}\\=1-0.01832-0.07326-0.14653-0.19537\\=0.56652[/tex]
Thus, the probability of 4 or more customers are waiting in a line during the visit is 0.56652.
Let E be the event that a corn crop has an infestation of ear worms, and let B be the event that a corn crop has an infestation of corn borers. Suppose that P(E) = 0.24, P(B) = 0.16, and P(E and B) = 0.13. Find the probability that a corn crop has either an ear worm infestation, a corn borer infestation, or both.
Answer:
The probability that a corn crop has either an ear worm infestation, a corn borer infestation
P(EUB) = 0.27
Step-by-step explanation:
Explanation:-
Addition theorem on probability:-
If S is a sample space, and E , F are any events in S then
P(EUF) = P(E) +P(F) -P(E n F)
Let 'E' be the event that a corn crop has an infestation of ear worms
let 'B' be the event that a corn crop has an infestation of corn bores
P(EUB) = P(E) +P(B) -P(E n B)
given P(E) = 0.24 and P(B) = 0.16 and P(E n B) =0.13
P(EUB) = P(E) +P(B) -P(E n B)
P(EUB) = 0.24 + 0.16 - 0.13
= 0.27
The probability that a corn crop has either an ear worm infestation, a corn borer infestation
P(EUB)=0.27
The probability that a corn crop has either an ear worm infestation, a corn borer infestation, or both is 0.27.
Explanation:You are asked to find the probability that a corn crop has either an ear worm infestation, a corn borer infestation, or both. This situation relates to the basic rules of probability, specifically the rule for the probability of the union of two events.
The formula to find the probability of event E (ear worm infestation), event B (corn borer infestation) or both happening is: P(E or B) = P(E) + P(B) - P(E and B).
Plugging in the given values, we get: P(E or B) = 0.24 + 0.16 - 0.13 = 0.27.
Therefore, the probability that a corn crop has either an ear worm infestation, a corn borer infestation, or both is 0.27.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ11
Let p: A number is greater than 25. Let q: A number is less than 35. If p ∧ q is true, then what could the number be? Select two options. 24 28 32 36 40
Answer:
The correct answer are 28 and 32.
Step-by-step explanation:
Given p: A number is greater than 25, that is, the possible numbers are 26, 27, 28, 29, 30, 31, 32, 33, 34, .... and so on. And
q: A number is less than 35, that is the possible numbers are 34, 33, 32, 31, 30, 29, 28, 27, 26, .... and so on.
Now, p ∧ q is true when both p and q are true, this means that we have to find numbers that follow the criterion of both p and q.
So, p ∧ q = {26, 27, 28, 29, 30, 31, 32, 33, 34}. Therefore, the correct answers are 28 and 32.
Find the area of the shaded region. With steps
Answer: the area of the shaded region is 21.5 cm²
Step-by-step explanation:
The formula for determining the area of a circle is expressed as
Area = πr²
Where
r represents the radius of the circle.
π is a constant whose value is 3.14
From the information given,
Diameter of circle = 10 cm
Radius = diameter/2 = 10/2 = 5 cm
Area of circle = 3.14 × 5² = 78.5 cm²
The length of each side of the square is 10 cm. The area of the square would be
10² = 100 cm²
Therefore, the area of the shaded region would be
100 - 78.5 = 21.5 cm²
The function shown in the graph is
A) f(x) = x - 1
B) f(x) = 2x - 1
C) f(x) = x - 0.5
D) f(x) = 2x - 0.5
Answer:B
Step-by-step explanation:
if you substitute any convenient value of x into f(x)= 2x-1 you see that it holds true when looking for the corresponding value of y.
For example,if you substitute x=5 into function B you get:
f(5)= 2(5) -1 = 10- 1 =9
Now,if you go on x =5 on the graph and check the corresponding value of y you that this value it is indeed 9.
Answer:
B) f(x) = 2x - 1Step-by-step explanation:
Look at the picture.
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept → (0, b)
The formula of a slope:
[tex]m=\dfrac{\Delta y}{\Delta x}=\dfrac{rise}{run}[/tex]
We have:
[tex]rise=4\\run=2\\b=-1[/tex]
The slope:
[tex]m=\dfrac{4}{2}=2[/tex]
Substitute to the equation of a line:
[tex]y=2x+(-1)=2x-1[/tex]
A person has 8 friends, of whom 5 will be invited to a party. (a) How many choices are there if 2 of the friends are feuding and will not attend together? (b) How many choices if 2 of the friends will only attend together?
Answer:
THE ANSWER ISSS B
Step-by-step explanation:
please help with areas
Answer:
Step-by-step explanation:
7) The formula for determining the area of a parallelogram is expressed as
Area = base × height.
Length of base = Area/height
Therefore,
Length of base = 7/2 = 3.5 feet
8) The formula for determining the area of a trapezoid is expressed as
Area = 1/2(a + b)h
Where
a and b are the length of the bases
h is the height. Therefore
21 = 1/2(2 + 4)h
21 = 3h
h = 21/3 = 7 inches
9) Area = base × height.
Height = Area/Length of base
Height = 28/14 = 2 inches
10) a and b are 10 inches each.
Area = 1/2(a + b)h
Therefore,
35 = 1/2(10 + 10)h
35 = 10h
h = 35/10
h = 3 inches
On Kathleen's credit card statement get last balance was $89.70. She made a payment of $20, had new charges totaling $32.11, and pays a periodic rate of 1.23%. What was kathleens finance charge?
1.25
1.23
1.10
0.86
Answer:
Well, the first $100 gets charged $1.50
The next 146.07 gets charged 1% so that is 1.46
1.50 + 1.46 = 2.96
2.3 89.70 - 20 + 32.11 = 101.81. 1.23 percent of that is 1.25
The answer would be the third choice.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Read more on Brainly.com - https://brainly.com/question/2364291#readmore
Step-by-step explanation:
Answer:
110
Step-by-step explanation:
took the test
Which function is shown in the graph below?
A) y=(1/2)^x+3 -1
B) y=(1/2)^x-3 +1
C) y=(1/2)^x-1 +3
D) y=(1/2)^x+1 -3
Answer:
b just answered on edge
Step-by-step explanation:
y=(1/2)^x+3. -1
The function of the graph is [tex]y = (\frac12)^{x +3} -1[/tex]
The root expression of the graph is:
[tex]y = (\frac12)^x[/tex]
The graph is first shifted to the right by 3 units.
So, we have:
[tex]y = (\frac12)^{x +3}[/tex]
Next, the graph is shifted down by 1 unit.
So, we have:
[tex]y = (\frac12)^{x +3} -1[/tex]
Hence, the function of the graph is [tex]y = (\frac12)^{x +3} -1[/tex]
Read more about function transformation at:
https://brainly.com/question/4289712
The formula V =s3 where s repesents the lengthe of an edge can be use to find the value of a cud . What is the volume of a cud that has edges of 12 inch .
Answer:
1728 cubic inches
Step-by-step explanation:
Given that the formula
[tex]V=s^3[/tex],
where s represents the length of an edge that can be used to find the value of a cud.
Given that a cud has edge as 12 inches
Using the above formula we can find volume by substituting for s.
Here we substitute s =12 inches so that we get volume in cubic inches
Volume of the cud = [tex]12^3\\=12*12*12\\\\=1728[/tex]
1728 cubic inches
Hey diameter of a bowling ball is about 22 cm in diameter of a tennis ball is about 7 cm what is the approximate difference in volume between bowling ball and tennis ball
Answer:
Step-by-step explanation:
The bowling ball and the tennis ball are spherical in shape.
The formula for determining the volume of a sphere is expressed as
Volume = 4/3 × πr³
Where
r represents the radius of the sphere.
π is a constant whose value is 3.14
Considering the bowling ball,
Diameter = 22 cm
Radius = diameter/2 = 22/2 = 11 cm
Volume = 4/3 × 3.14 × 11³ = 5572.5cm³
Considering the Tennis ball,
Diameter = 7 cm
Radius = diameter/2 = 7/2 = 3.5 cm
Volume = 4/3 × 3.14 × 3.5³ = 179.5 cm³
the approximate difference in volume between bowling ball and tennis ball is
5572.5 - 179.5 = 5393 cm³
Aldo took out a loan for $2500 and was charged simple interest at an annual rate of 9.3%. The total interest he paid on the loan was $186. How long was the loan for, in days? Assume that there are 365 days in a year, and do not round any intermediate computations.
Answer: 291.6 days
Step-by-step explanation:
The formula for determining simple interest is expressed as
I = PRT/100
Where
I represents interest paid on the loan.
P represents the principal or amount taken as loan
R represents interest rate
T represents the duration of the loan in years.
Considering Henry's loan,
P = 2500
R = 9.3%
I = 186
186 = (2500 × 9.3 × T)/100
186 = 232.5 T
T = 186/231.6
T = 0.8 years
Assume that there are 365 days in a year, it would be
0.8 × 3645 = 291.6 days
find the length of ladder
Answer:
33 feet
Step-by-step explanation:
Use SOHCAHTOA to determine which trigonometric function to use:
sin(65)=30/x
sin(65)x=30
x=30/sin(65)
x=33.1
So the length of the ladder rounded to the nearest foot is 33 feet
what is the midpoint of the line segment with endpoints (-2, -2) and (4, 6)?
A (1,4)
B (2,2)
C (2,4)
D (1,2)
Option D: [tex](1,2)[/tex] is the midpoint of the line segment.
Explanation:
The endpoints of the line segment is [tex](-2,-2)[/tex] and [tex](4,6)[/tex]
We need to determine the midpoint of the line segment.
The midpoint of the line segment can be determined using the formula,
[tex]\text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)[/tex]
Substituting the coordinates [tex](-2,-2)[/tex] and [tex](4,6)[/tex] in the formula, we have,
[tex]\text { midpoint }=\left(\frac{-2+4}{2}, \frac{-2+6}{2}\right)[/tex]
Adding the numerator, we have,
[tex]\text { midpoint }=\left(\frac{2}{2}, \frac{4}{2}\right)[/tex]
Dividing, we have,
[tex]\text { midpoint }=\left(1, 2)[/tex]
Thus, the midpoint of the line segment is [tex](1,2)[/tex]
Hence, Option D is the correct answer.
What is the measure of DE?
A. 12
B. 16
C. 20
D. 10
Answer:
c
Step-by-step explanation:
In a return-standard deviation space, which of the following statements is(are) true for risk-averse investors? (The vertical and horizontal lines are referred to as the expected return-axis and the standard deviation-axis, respectively.) I) An investor's own indifference curves might intersect. II) Indifference curves have negative slopes. III) In a set of indifference curves, the highest offers the greatest utility. IV) Indifference curves of two investors might intersect.
Answer:
Option iii) and iv) are the correct option
Step-by-step explanation:
Correct option is - III and IV only
I) investors indifference curves are parallel they canno be intersect (False)
II) Indifference curve always be in a positive slope hence the statement is (False)
III) In a set of indifference curves, the higher the risk , the higher the return and as such the highest offers the greatest utility. (True)
IV) Indifference curve of investors with a same risk return trade off might intersect . (True)
Click through and select the graph that is not a direct variation.
PLEASE HELP
Answer:
The last one, the one which is not passing through the origin
Step-by-step explanation:
y = mx + c (generally)
For direct proportion, c has to be 0.
The last graph is the one which is not passing through the origin.
How to solve for the variation?Using the slope of a line, a positive slope tells us that the line is increasing.
From the left to the right of graph, it shows that a person is climbing. A negative slope tells us that there is a fall.
We have;
y = mx + c
For direct proportion, c has to be zero.
Therefore, we can conclude that the last graph is the one that's not passing through the origin.
Read more on direct variation here:
brainly.com/question/6499629
#SPJ3
Each month, Miss Patrick spends $60 on transportation to work, and earns $24.50 per hour.Each month, Mr. Shah spends $150 on lab equipment and earns $32.50 per month. How many hours do they have to work during the same amount
Answer:
3 hours for miss patrick 5 hours for mr shah
Step-by-step explanation:
Answer: they have to work for 11.25 hours.
Step-by-step explanation:
Let x represent the number of months for which they have to work to make the same amount.
Each month, Miss Patrick spends $60 on transportation to work, and earns $24.50 per hour. This means that if she works for x hours in a month, the total amount that she would have is
24.5x - 60
Each month, Mr. Shah spends $150 on lab equipment and earns $32.50 per month. This means that if he works for x hours in a month, the total amount that he would have is
32.5x - 150
For them to have the same amount, the number of months would be
32.5x - 150 = 24.5x - 60
32.5x - 24.5x = - 60 + 150
8x = 90
x = 90/8
x = 11.25 hours
what is the domain of y=3^x -2
Answer:
All real numbers
Step-by-step explanation:
The given exponential function is
[tex]y = {3}^{x} - 2[/tex]
This function is obtained by shifting, the parent function down by 2 units.
The parent function is
[tex]y = {3}^{x} [/tex]
The domain is the values of x for which the function is defined.
The exponential function is defined everywhere and the same applies to the transformed function.
Therefore the domain is all real numbers.
a group of 8 people went to the movies. tickets are $6 each for adults and $3 each for kids. together they pay $33 for the tickets. there are _______ adults in that group and _______ kids. can someone explain how to solve this in words for an essay.
Number of kids is 5 and number of adults is 3.
Step-by-step explanation:
Step 1: Let the number of adults be x. Then the number of kids is (8-x). Cost of tickets for adults = 6xCost of tickets for kids = 3(8-x) = 24 - 3x
Total cost = 33 = 6x + 24 - 3x = 3x + 24
⇒ 3x = 9
∴ x = 3
⇒ 8 - x = 8 - 3 = 5
∴ Number of kids is 5 and number of adults is 3.
Final answer:
To solve this problem, you can use a system of equations. The group consists of 3 adults and 5 kids.
Explanation:
To solve this problem, we can use a system of equations. Let's represent the number of adults as 'A' and the number of kids as 'K'. We know that there are 8 people in total, so we have the equation A + K = 8. We also know that the cost of tickets for adults is $6 and for kids is $3, and they paid a total of $33. This gives us the equation 6A + 3K = 33.
We can solve this system of equations by substitution or elimination. For simplicity, let's use substitution. From the first equation, we can rewrite K as K = 8 - A. Substituting this into the second equation, we get 6A + 3(8 - A) = 33.
Simplifying the equation, we get 6A + 24 - 3A = 33. Combining like terms, we have 3A + 24 = 33. Subtracting 24 from both sides, we get 3A = 9. Dividing both sides by 3, we find A = 3.
Now that we know there are 3 adults, we can plug this into the first equation to find K. A + K = 8, so 3 + K = 8. Subtracting 3 from both sides, we get K = 5. Therefore, there are 3 adults and 5 kids in the group.
The baseball infield at the right has an area of 90^2 square feet .what is the area of the infield?
Step-by-step explanation:
If the given baseball field is in the rectangle shape.
Then area of the field is : Side x Side
Let us assume the side of the field = k feet
So, the area of the filed = k x k
⇒ 90 = k²
⇒ k = 9.486 feet
If the baseball field is in rectangle shape. then the area of the field is
⇒ Area = Length x Breadth
⇒ 90 = L x B
So the blabbering above me is completely wrong and makes no sense whatsoever.
___________________________________________________________
Your answer would be 8100 square feet. your welcome.
___________________________________________________________
some cute copy and paste ☏ ♡ ☆⋆◦★◦⋆°*•°
. * . . ° . ● ° .
¸ . ★ ° :. . • ° . * :. ☆
° :. ° .☆ . ● .° °★
★ ★°★ . * . °☆ . ● . ★ ° . • ○ ● . ☆ ★ ° ☆ ¸. ¸ ★ . • ° . *
¸ . ★ ° :. :. . ¸ . ● ¸ ° ¸. * ● ¸ °☆
☆ °☆ . * ● ¸ . ★¸ .
. * . . ° . ● ° .
° :. ° . ☆ . . • . ● .° °★ Not sure how to copy and paste? Just right click your mouse and choose copy in options, to release repeat the process and just paste it. No mouse? Select the text with your computer pad and use ctrl c to release, ctrl v. On mobile? Press on your screen and select the text, use the option copy and paste wherever you would like!
Find the arc length of AB. Round your answer to the nearest hundredth.
!no absurd answers, please! : (
The arc length of AB = 8.37 meters.
Solution:
Given data:
Degree of AB (θ) = 60°
Radius of the circle = 8 m
The value of π = 3.14
Arc length formula:
[tex]$\text{Arc length}=2 \pi r\left(\frac{\theta}{360^\circ}\right)[/tex]
[tex]$=2 \times 3.14 \times 8 \left(\frac{60^\circ}{360^\circ}\right)[/tex]
[tex]$=2 \times 3.14 \times 8 \left(\frac{1}{6}\right)[/tex]
Arc length = 8.37 m
The arc length of AB = 8.37 meters.
Problems with the join and separate structures, with the start or initial amount unknown, tend to be the hardest for young students to understand and accurately solve. Identify the reason for they are more challenging for young children to use __________.A) Children can model the physical action.
B) Children can act out the situation.
C) Children cannot use counters for the initial amount.
D) Children cannot grasp a quantity represents two things at once.
Answer:C) Children cannot use counters for the initial amount.
Step-by-step explanation:Problem solving allows students to use mathematical concepts, skills and the relationships among them to solve problem situations with different levels of difficulties. Problem solving framework allows students to solve mathematical situations by assisting them to handle or approach problem solving systemically.
There are basically four structures they are
(1) Join
(2) Separate
(3) Part-Part-Whole
(4) Compare.
JOIN AND SEPARATE STRUCTURES INCLUDE ACTIONS THAT INCREASE OR DECREASE A QUANTITY.
The part-part whole does not involve an action but it has a relationship between a particular whole and its two separate parts.
The compare structure also does not involve an action,but it compares two unconnected and distinct sets.
A wedding planner uses 72 ivy stems for 18 centerpieces. When she arrives at the venue,she realizes she will only need 16 centerpieces.How many ivy stems should she use so that the ratio of ivy stems to centerpieces stays the same?
Answer:
64
Step-by-step explanation:
18/72 = 16/x
16 x 72= 1152
1152/18= 64
The ratio of stems to center pieces is 2/8 so it cchecks out.
Answer:
64
Step-by-step explanation:
creating a chart would be useful when doing this type of problem
Geometry 25 points. PLEASE help and show work ya boy be struggling
Answer:
6) x = 17 ft
7) 42 in
Step-by-step explanation:
6) length of the tangents are equal.
2x - 7 = 27
2x = 34
x = 17
7) if you draw a line from T passing through the centre of the circle, it will divide the triangle into two congruent triangles
Perimeter = 2(5+7+9) = 42 in
A plastic rod 1.5 m long is rubbed all over with wool, and acquires a charge of -9e-08 coulombs. We choose the center of the rod to be the origin of our coordinate system, with the x-axis extending to the right, the y-axis extending up, and the z-axis out of the page. In order to calculate the electric field at location A = < 0.7, 0, 0 > m, we divide the rod into 8 pieces, and approximate each piece as a point charge located at the center of the piece. 1. What is the length of one of these pieces? 2. What is the location of the center of piece number 2? 3. How much charge is on piece number 2?
Answer:
a) I = 0.1875 m
b) r_2 = 0.46875 m
c) q = -1.125*10^-8 C
Step-by-step explanation:
Given:
- The total Length of rod L = 1.5 m
- The total charge of the rod Q = -9 * 10^8 C
- Total section of a rod n = 8
Find:
1. What is the length of one of these pieces?
2. What is the location of the center of piece number 2?
3. How much charge is on piece number 2?
Solution:
- The entire rod is divided into 8 pieces, so the length of each piece would be:
l = L / n
l = 1.5 / 8
I = 0.1875 m
- The distance from center of entire rod and center of section 2 is 2.5 times the section length
r_2 = 2.5*l
r_2 = 2.5*(0.1875)
r_2 = 0.46875 m
- Assuming the charge on the rod is uniformly distributed. The the charge for each section of rod is given by q:
q = Q / n
q = -9 * 10^8 / 8
q = -1.125*10^-8 C
In a large corporate computer network, user log-ons to the system can be modeled as a Poisson RV with a mean of 25 log-ons per hour. (20pts) (a) What is the probability that there are no logons in an interval of 6 minutes? (b) What is the probability that the distance between two log-ons be more than one hour?
Answer:
F(t<0.1 ) = 0.91791
Step-by-step explanation:
Solution:
- Let X be an exponential RV denoting time t in hours from start of interval to until first log-on that arises from Poisson process with the rate λ = 25 log-ons/hr. Its cumulative density function is given by:
F(t) = 1 - e ^ ( - 25*t ) t > 0
A) In this case we are interested in the probability that it takes t = 6/60 = 0.1 hrs until the first log-on. F ( t < 0.1 hr ), we have:
F(t<0.1 ) = 1 - e ^ ( - 25*0.1 )
F(t<0.1 ) = 0.91791
The probabilities of events in a Poisson process can be calculated using the Poisson distribution for a given number of events in a specific time frame and the exponential distribution for the time between events.
Explanation:The probability of events occurring in a fixed interval of time in a Poisson process can be calculated using the Poisson distribution formula:
P(X = k) = (e-\(\lambda\)\(\lambda\)k)/k!, where \(\lambda\) is the average number of events per interval, and k is the number of events for which we want to find the probability.
For part a), we need to find the probability of no log-ons in an interval of 6 minutes. With a mean of 25 log-ons per hour, 6 minutes corresponds to \(\lambda\) = (25/60)*6. We calculate the probability for k = 0 using the Poisson Distribution.
For part b), the time between two log-ons follows an exponential distribution, which is continuous and has the probability density function f(x) = \(\lambda\)e-\(\lambda\)x. The probability that the time between two log-ons is more than one hour can be found using the complement of the cumulative distribution function for the exponential distribution.
In summary, by calculating the probabilities for part a) and b), we can use the characteristics of the Poisson and exponential distributions to find the desired probabilities.
The formula Upper V equals LWH is used to find the volume of a box. If the length of a box is increased 4 times, the width is increased 4 times, and the height is tripled, how does this affect the volume?
Answer:
the volume of the box increases 48 times compared to the 1st one.
Step-by-step explanation:
Volume of the box (1) = LWH
length of a box is increased 4 time = 4L width is increased 4 times = 4Wthe height is tripled = 3H=> The new volume of the box = 4L * 4W * 3H = 48LWH
So the volume of the box increases 48 times compared to the 1st one.
The body loses approximately _____ pints of water a day through sweat
Answer: 5-6 pints.
PLZ GIVE BRAINLEST :)
Answer:
Range from 6 to 21 pints
Step-by-step explanation:
Sweat rate is proportional to metabolic rate, and can thus amount to 3 to 4 liters per hour (6.34013-8.45351 pints) or as much as 10 liters (21.1338 pints) per day.