Answer: In total Katy earned $190
Katy earn $190 in all on Friday, Saturday, and Sunday.
What is Algebra?Algebra is the study of abstract symbols, while logic is the manipulation of all those ideas.
The acronym PEMDAS is; Parenthesis, Exponent, Multiplication, Division, Addition, and Subtraction. This approach is used to answer the problem correctly and completely.
Given that Katy earns $10 per hour. She worked 4 hours on Friday, 9 hours on Saturday, and 6 hours on Sunday.
Therefore, total time = 4+9+6=19
Then 19 x 10 = 190
so, she made $190
Hence, Katy earn $190 in all on Friday, Saturday, and Sunday.
More about the Algebra link is given below.
brainly.com/question/953809
#SPJ5
"One baseball game has 9innings. During the season there are 45 innings that are at home and 45 innings that are away. If 36 of the innings for the season have been played how many games remain?
Answer:
6 baseball games remain in the season.
Step-by-step explanation:
Let the number of baseball games remaining be 'x'.
Given:
Number of innings in 1 baseball game = 9
Number of innings to be played at home = 45
Number of innings to be played away from home = 45
Total number of innings played in the given season = 36
Now, total number of innings to be played in a season is equal to the sum of the innings played at home and away from home.
So, Total number of innings = 45 + 45 = 90 innings.
Now, out of 90 innings, 36 innings are already played.
So, the number of innings that remain is given as:
Innings remaining = Total innings - Innings already over
Innings remaining = 90 - 36 = 54
Now, 9 innings is equivalent to 1 baseball game.
So, 54 innings is equivalent to 'x' baseball games.
Setting up a proportion and solving by cross multiplication, we get:
[tex]\frac{9}{1}=\frac{54}{x}\\\\9x=54\\\\x=\frac{54}{9}=6[/tex]
Therefore, 6 baseball games remain in the season.
You're playing the slots and "win" twenty-five bucks! You're stoked. During the past ten weeks, you've won another fifty bucks. But you've dropped two bucks in the slot machines every day for ten weeks. What are we talking about here?
Answer: You loss is 65bucks.
Step-by-step explanation:
First, you win 25 bucks.
Next, the past 10 weeks 50 bucks.
For 10 weeks, you lost 2 bucks everyday:
10 × 7= 70days × 2= 140bucks.
In total you won) 25 + 50= 75 bucks.
You dropped 140bucks in total.
140- 75= 65 bucks.
Therefore, You lost 65bucks.
This question deals with Mathematics, specifically the concept of profit and loss. Despite winning a total of $75 over 10 weeks at the slots, you lose $2 everyday, totaling to $140 in losses over the ten weeks. Hence, you end up with a net loss of $65.
Explanation:The subject of this question is related to Mathematics and more specifically on the concept of profit and loss. Here you have won a total of $75 over 10 weeks, but each day you play slot machines you lose $2. Given that a week has 7 days, you’ve lost $2 * 7 days/week * 10 weeks = $140 over the course of 10 weeks. So, despite seeming to 'win' at the slot machine, when we subtract the total loss from total gain, $75 - $140, we find that you've actually ended up with a net loss of $65.
Learn more about Profit and Loss here:https://brainly.com/question/31452402
#SPJ3
Jim received a $2000 loan from his bank. The loan accrues 3% interest every 3 months. How much will Jim owe the bank after 4 years? Round to the nearest cent
Answer:
$2253.98
Step-by-step explanation:
Jim received a $2000 loan from his bank. The loan accrues 3% interest every 3 months.
[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]
P=2000
r= 3%=0.03 and t= 4 years
interest every 3 months so n= 4
[tex]A=2000(1+\frac{.03}{4} )^{4 \cdot 4}[/tex]
[tex]A=2000(1+\frac{.03}{4} )^{16}\\A=2000(1.0075)^{16}\\\\A=2253.98[/tex]
Compound interest is the addition of interest. The interest that is needed to be paid by Jim in the 4 years of tenure is $2253.98.
What is compound interest?Compound interest is the addition of interest on the interest of the principal amount. It is given by the formula,
[tex]A = P(1+ \dfrac{r}{n})^{nt}[/tex]
We know that the Principal amount received by Jim is $2000, while the interest that Jim needs to pay is 3% quarterly, therefore, he needs to pay the interest 4 times a year. Thus, the value of n is 4.
Now, we know all the values therefore, substitute the values in the formula of compound interest,
[tex]A = P(1+ \dfrac{r}{n})^{nt}[/tex]
[tex]A = 2000(1+ \dfrac{3}{4})^{4 \times 4}\\\\A = \$2,253.98[/tex]
Hence, the interest that is needed to be paid by Jim in the 4 years of tenure is $2253.98.
Learn more about Compound Interest:
https://brainly.com/question/25857212
Brian has an unlimited number of cents (pennies), nickels, and dimes. in how many different ways can he pay 1414cents¢ for a chocolate mint?
Answer:
The answer is 470 191 764
Step-by-step explanation:
Let's see how we got the figure. First, we need to check our data, or the information supplied.
Data:
There are unlimited pennies, nickels, and dimes. Therefore, it means that Brian can use any one of those to buy his chocolate. Second, there is 1414 coins. These coins come in three different forms mentioned in the first point: pennies, nickels, and dimes.Thus, we have 3 types of coins.We need to use a number of combinations so that none of the combinations is repeated. A formula for n distinct objects taken at different times will be: nCr = C(n,r) = n!/r!(n-r)!n = 1414 coins, r is the types of coins = 3Therefore, the formula will be:nCr = 1414!/ 3! (1414-3)!
= 470 191 764
It therefore means that Brian can combine all the 1414 coins in 470 191 764 ways. This makes sense as reflected by the large number of coins he has.
△CDE maps to △STU with the transformations (x, y) arrowright (x − 2, y − 2) arrowright (3x, 3y) arrowright (x, −y). If CD = a + 1, DE = 2a − 1, ST = 2b + 3 and TU = b + 6, find the values of a and b. The value of a is and the value of b is .
Answer: The value of a is 2 and the value of b is 3.
Step-by-step explanation:
Given : △CDE maps to △STU with the transformations (x, y) → (x − 2, y − 2) →(3x, 3y)
The first transformation is a translation ,so there will be no change in the length of the sides ∵ translation is a rigid motion.
The second transformation is a dilation ,so there will be a change in the length of the sides by scale factor of 3. ∵ dilation is not a rigid motion.
Basically , by combining both transformation:
Length of Side in △STU = 3 x (Corresponding side in △CDE )
⇒ ST = 3CD and TU = 3 DE
If CD = a + 1, DE = 2a − 1, ST = 2b + 3 and TU = b + 6 , then
2b + 3=3(a + 1) and b + 6 = 3(2a − 1)
⇒ 2b + 3=3a+3 and b + 6 = 6a-3
⇒ 3a-2b=0 (i) and b = 6a-9 (ii)
Put value of b from (ii) in (i) , we get
3a-2(6a-9)=0
⇒ 3a-12a+18=0
⇒ -9a=-18
⇒ a= 2
Put value of a in (ii) , we get
b= 6(2)-9
=12-9=3
Hence, the value of a is 2 and the value of b is 3.
Answer:
a = 4 , b = 6
Step-by-step explanation: I did the same question
PLEASE HELPPP!!! QUESTION AND ANSWERS IN PICTURE !!!
Answer:option D is the correct answer
Step-by-step explanation:
The given triangle is a right angle triangle.
From the given right angle triangle,
The hypotenuse of the right angle triangle is 8
With m∠60 as the reference angle,
The adjacent side of the right angle triangle is 4
The opposite side of the right angle triangle is 4√3
To determine Cos 60, we would apply
the cosine trigonometric ratio.
Cos θ = adjacent side/hypotenuse. Therefore,
Cos 60 = 4/8 = 1/2
To determine Tan 60, we would apply the Tangent trigonometric ratio.
Tan θ = opposite side/adjacent side. Therefore,
Tan 60 = 4√3/4
Tan 60 = √3
Which relation is a function?
A bacteria culture initially contains cells and grows at a rate proportional to its size. After an hour the population has increased to . (a) Find an expression for the number of bacteria after
hours.(b) Find the number of bacteria after 3 hours.(c) Find the rate of growth after 3 hours.(d) When will the population reach 10,000?
Answer:
Step-by-step explanation:
given that a bacteria culture initially contains cells and grows at a rate proportional to its size.
If P be the size then growth rate
[tex]P'=kP[/tex] where k is constant of proportionality
separate the variables as
[tex]\frac{dP}{P} =kdt\\ln P =kt+C\\P = Ae^{kt}[/tex]
If after 1 hour population is B (say)
[tex]B=Ae^{k} \\\\k = ln B - ln A[/tex]
then k = ln B - ln A
Using this
P(t) = [tex]Ae^{(lnB-lnA)t}[/tex]
b) P(e) = [tex]Ae^{(lnB-lnA)3}[/tex]
c) Rate of growth = [tex](ln B- ln A)Ae^{(lnB-lnA)3}[/tex]
Unless you give B value, d cannot be solved
What is the value of 7 ^−3 ^ −1 for = −2 and = 4?
a. −224
b. 7/4096
c. 7(−8)^−4
d. −7/32
Answer:
d. −7/32
Step-by-step explanation:
The expression that we have to evaluate in this problem is:
[tex]7x^{-3}y^{-1}[/tex]
We have to evaluate this expression for:
x = -2
y = 4
We start by rewriting the expression by rewriting it using the following:
[tex]a^{-n}=\frac{1}{a^n}[/tex]
So the expression can be rewritten as
[tex]7x^{-3}y^{-1}=\frac{7}{x^3 y}[/tex]
Now we observe that:
[tex](-2)^3=(-2)(-2)(-2)=-8[/tex]
Therefore, by substituting x = -2 and y = 4 into the expression, we find:
[tex]\frac{7}{(-2)^3\cdot 4}=\frac{7}{-8\cdot 4}=-\frac{7}{32}[/tex]
Evaluate the expression. 8!-6!
8! - 6!
Evaluate the factorials.
40320 - 720
Subtract.
39600.
The expression (8!) - (6!) is equal to 39600.
⭐ Answered by Hyperrspace (Ace) ⭐
⭐ Brainliest would be appreciated, I'm trying to reach genius! ⭐
⭐ If you have questions, leave a comment, I'm happy to help! ⭐
After the expression has been evaluated, looking at the main value of 8! − 6!, it becomes 39,600. Therefore 8! − 6! = 39,600.
How do we evaluate the expression?To evaluate the expression 8!−6!, we first need to determine the value of 8! and the value of 6!, and then subtract the two results.
8! (read as "8 factorial") means:
8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320
6! (read as "6 factorial") means:
6 × 5 × 4 × 3 × 2 × 1 = 720
subtract 6! from 8!:
8!−6! = 40,320 − 720 = 39,600
Therefore 8! − 6! = 39,600.
Find more exercises with regard to evaluating expression;
https://brainly.com/question/29040058
#SPJ3
Need help doing this
Answer:
A. -2
B. -10
Step-by-step explanation:
The slope of a perpendicular line will be the negative reciprocal of the slope of the given line:
-1/(1/2) = -2 . . . . slope of the perpendicular line
__
The y-intercept will let the given point satisfy the equation ...
y = -2x +b
2 = -2(-6) +b
-10 = b . . . . . . . subtract 12. This is the y-intercept.
_____
The graph shows the two lines and the points they go through.
A flat, square roof needs a square patch in the corner to seal a leak. The side length of the roof is (x 1 12) ft and the side length of the patch is x ft. What is theareaofthegoodpartoftheroof?
Answer:
Area of good part of roof =
[tex]A(x) = (24x + 144)~ft[/tex]
Step-by-step explanation:
We are given the following in the question:
Length of square roof =
[tex](x+12)~ft[/tex]
Length of square patch =
[tex]x~ft[/tex]
Area of square =
[tex]A = (\text{Side})^2[/tex]
We have to find the area of good part of roof.
Area of good part of roof =
Area of roof - Area of patch
[tex]A(x) = (x+12)^2 - (x)^2 \\A(x) = (x+12+x)(x+12-x)\\A(x) = (2x+12)12\\A(x) = (24x + 144)~ft[/tex]
is the required area of roof.
PLEASE GIVE ME ANSWER! I NEED AN ANSWER RIGHT NOW BEFORE MY SCHOOL ENDS..
Answer:
Step-by-step explanation:
Triangle ABC is a right angle triangle.
From the given right angle triangle,
AC represents the hypotenuse of the right angle triangle.
With m∠A as the reference angle,
AB represents the adjacent side of the right angle triangle.
BC represents the opposite side of the right angle triangle.
To determine m∠A, we would apply
the cosine trigonometric ratio.
Cos θ = adjacent side/hypotenuse. Therefore,
Cos A = 13/15 = 0.8667
A = Cos^-1(0.8667)
A = 29.92
The width of a box is two inches less than twice the height. The length is 4 inches less than three times the height. The volume is 2240 cubic inches. What are the dimensions of the box
Answer:
Dimensions are 8 Inches by 14 inches by 20 inches
Step-by-step explanation:
The volume of the box is 2240. This means:
lbh = 2240
Where b is the width.
Width is two inches less than twice the height
b = 2h - 2
length is 4 inches less than 3 times the height
l = 3h - 4
Substituting these parameters into the lbh equation will yield the following:
h * (3h - 4) * (2h - 2) = 2240
h[6h^2-14h+8] = 2240
6h^3 -14h^2 + 8h - 2240= 0
Solving this cubic equation will yield one of the values to be 8. The other two values are complex numbers.
b = 2h - 2
l = 3h - 4
b = 2(8) - 2 = 14
l = 3(8) - 4 = 20
PLEASE HELPPP!!! QUESTION AND ANSWERS IN PICTUR
Answer:
[tex] \frac{24}{26} = \frac{12}{13} \\ [/tex]
Answer:
A
Step-by-step explanation:
Sin(C) = opposite/hypotenuse
Hypotenuse is the length opposite to the right angle, AC for this triangle
Opposite is the length opposite to the angle, AB in this case
Sin(C) = AB/AC
= 24/26 = 12/13
The Garcia family is driving from San Diego, California, to bar harbor, Maine. In 5 day,they have traveled 2,045 miles. At this rate,how long will it take them to travel from San Diego to bar harbor?
By first calculating the Garcia family's travel rate of 409 miles per day, we can estimate it will take them approximately 9 days to travel from San Diego, California to Bar Harbor, Maine.
Explanation:The subject of this question is Mathematics, and it involves understanding and applying the concept of rate – the speed at which something happens over a particular period of time. In this case, we have the Garcia family traveling from San Diego, California, to Bar Harbor, Maine. They have traveled 2,045 miles in 5 days.
To find out how long it will take them to travel the entire way, we first need to calculate the rate at which they are traveling. We do that by dividing the total distance they have traveled by the total number of days it took them to travel that distance: 2045 miles / 5 days = 409 miles per day.
The distance from San Diego to Bar Harbor is about 3,305 miles. So, if they continue to travel at a rate of 409 miles per day: 3305 miles / 409 miles per day = about 8.08 days. Since they can't travel a fraction of a day, we'll round that up to 9 days. So it will take them approximately 9 days to travel from San Diego to Bar Harbor at their current rate.
Learn more about Calculating travel time here:https://brainly.com/question/30639898
#SPJ12
Sara got a 70%, 64%, and 83% on her first three tests. What must she get on her 4th test if she wants to get a final average of 75%?
Show your work, please.
We set up the equation (70+64+83+x)/4=75
Multiply by 4 on both sides: 70+64+83+x=300
Combine like terms on left side: 217+x=300
Subtract 217 from both sides: x=83
So Sara must get at least an 83% in order to maintain a final average of 75%
Hope this helped!
Answer: she must score 83% on her 4th test if she wants to get a final average of 75%
Step-by-step explanation:
The formula for determining average is expressed as.
Average = sum of the score/ number of tests.
Sara got a 70%, 64%, and 83% on her first three tests. Her former average would be
(70 + 64 + 83) 217/3 = 72.3℅
Let x represent the score that she needs to get on her 4th test if she wants to get a final average of 75%.
Therefore,
(x + 217)/4 = 75
Cross multiplying by 4, it becomes
x + 217 = 300
x = 300 - 217
x = 83%
On tax free weekend, Alyssa bought 3 pairs of blue jeans for $92.31. The cost of the jeans is proportional to the number of pairs of jeans bought. What is the constant of proportionality in terms of dollars per pair of jeans?
The constant of proportionality, which is the cost per pair of jeans, is found by dividing the total cost by the number of pairs. For Alyssa's purchase of 3 pairs of jeans for $92.31, the constant of proportionality is $30.77 per pair.
Explanation:To determine the constant of proportionality for the jeans Alyssa bought, we need to divide the total cost by the number of pairs of jeans she purchased. Since Alyssa bought 3 pairs of jeans for $92.31, we calculate the constant of proportionality as follows:
Therefore, the constant of proportionality is $30.77 per pair of jeans.
Final answer:
The constant of proportionality, or the cost per pair of blue jeans, is $30.77 calculated by dividing the total cost of $92.31 by the number of blue jeans, which is 3.
Explanation:
The student has asked how to find the constant of proportionality, which in this context is the cost per pair of blue jeans when buying multiple pairs. If Alyssa bought 3 pairs of blue jeans for a total of $92.31 on tax free weekend, we can calculate the cost per pair by dividing the total cost by the number of pairs. The constant of proportionality would be: $92.31 / 3 = $30.77 per pair of jeans.
Riley needs to rent a car while on vacation. The rental company charges $18.95, plus 16 cents for each mile driven. If Riley only has $50 to spend on the car rental, what is the maximum number of miles she can drive
Answer:
Step-by-step explanation:
Let x represent the maximum number of miles that she can drive.
Riley needs to rent a car while on vacation. The rental company charges $18.95, plus 16 cents for each mile driven. Converting 16 cents to dollars, it becomes 16/100 = $0.16
Assuming Riley drives the car for x miles, the total charge would be
0.16x + 18.95
If Riley only has $50 to spend on the car rental, it means that
0.16x + 18.95 = 50
0.16x = 50 - 18.95
0.16x = 31.05
x = 31.05/0.16 = 194.0625
The maximum number of miles that
she can drive is 194 miles.
George weighed 160 pounds when he started college. If he gains just 0.25 pounds each month for four years of college, how much will he weigh? Suppose he doesn't change his habits after graduation, and continues that modest sounding waking weight gain for the next 10 years after college. How much will he weigh for his 10 college reunion?
Final answer:
George will weigh 172 pounds after four years of college, gaining 0.25 pounds per month. If he continues this trend for 10 more years, he will weigh 202 pounds at his 10-year college reunion.
Explanation:
To calculate the weight gain of George after college and for the next 10 years, we can use simple arithmetic. George starts at 160 pounds and gains 0.25 pounds each month.
Weight After College
Four years of college is equivalent to 4 years × 12 months/year = 48 months. If he gains 0.25 pounds each month, then over 48 months he will have gained:
0.25 pounds/month × 48 months = 12 pounds.
So, after college, his weight will be:
160 pounds + 12 pounds = 172 pounds.
Weight After Next 10 Years
To calculate his weight after the next 10 years, which is 10 years × 12 months/year = 120 additional months, we do the following calculation:
0.25 pounds/month × 120 months = 30 pounds gain.
Adding this to his weight after college:
172 pounds + 30 pounds = 202 pounds.
Therefore, for his 10-year college reunion, George will weigh 202 pounds.
Function A and Function B are linear functions. Compare the two functions and choose all that are correct.
1. The slope of Function A is greater than the slope of Function B.
2 .The slope of Function A is less than the slope of Function B.
3. The y-intercept of Function A is greater than the y-intercept of Function B.
4 .The y-intercept of Function A is less than the y-intercept of Function B.
Answer:
2 .The slope of Function A is less than the slope of Function B
Step-by-step explanation:
A graph of Function A shows it has a y-intercept of 4, the same as that of Function B. (Statements 3 and 4 are not correct.)
The slope of Function A is 2, which is less than the slope of 3 that Function B has. (Statement 2 is correct; statement 1 is not.)
_____
More detailed working
The slope of Function A can be figured easily between the points with x-values that differ by 1:
m = (y3 -y2)/(x3 -x2) = (24-22)/(10-9) = 2/1 = 2 . . . . . Fun A has slope of 2.
The slope of Function B is the coefficient of x in the equation: 3.
__
The y-intercept of Function A can be found starting with point-slope form:
y -22 = 2(x -9)
y = 2x -18 +22
y = 2x +4 . . . . . . . slope-intercept form
The intercept of +4 is the same as that of Function B.
22 POINTS!!!! The polygons below are similar. Find the value of x.
4.5
7.5
12
16
Answer:
The answer is 16. 8 divided 6 is 1.333. When 1.333 is multipled by 12 you get 15.9.
Answer:
x = 16, y = 4.5, z = 7.5
Step-by-step explanation:
Similar figures have the sides in the same ratio
Ratio = BC/FG = 8/6 = 4/3
AD/EH = 4/3
x/12 = 4/3
x = 16
AB/EF = 4/3
6/y = 4/3
y = 6×3÷4
y = 4.5
DC/HG = 4/3
10/z = 4/3
z = 10×3÷4
z = 7.5
NEED HELP! I ALREADY DID HALF, BUT STILL CONFUSED!
Find CU. If necessary, round answers to 4 decimal places Show all your work for full credit. Hint: Use the Pythagorean Theorem first.
Answer:
Step-by-step explanation:
Triangle BCZ is a right angle triangle. Triangle BCU is also a right angle triangle. Side BU is common to both triangles.
To determine m∠ZBC, we would apply the tangent trigonometric ratio.
Tan θ = opposite side/adjacent side. Therefore,
Tan B = 8/6 = 1.33
m∠ZBC = Tan^-1(1.33) = 53.06
m∠UBC = m∠ZBC/2 = 26.53
To determine CU, we would apply
the tangent trigonometric ratio.
Therefore,
Tan 26.53 = CU/6
CU = 6Tan26.53
CU = 6 × 0.4992
CU = 2.9952
Chris is purchasing a house and needs to finance a $150,000 mortgage from the bank with an annual percentage rate (APR) of 3.8%
He is financing it over 30 years and making monthly payments. What is the total amount Chris will pay back to the bank?
Group of answer choices
$501,796
$299,998
$251,618
$150,001
Answer:
$251,618 is the answer
Step-by-step explanation:
From the previous question, we know he pays $698.94 monthly.
He has to make 360 payments. $698.94 * 360 = $251,618
A machinist produced 22 items during a shift. Three of the 22 items were defective and the rest were not defective. In how many different orders can the 22 items be arranged if all the defective items are considered identical and all the nondefective items are identical of a different class?
Answer: There are 1540 different orders.
Step-by-step explanation:
The number of ways to arrange n things where 'a' things are alike and 'b' things are a like and so on...[tex]\dfrac{n!}{a!\ b!\ ....}[/tex]
Given : Total items = 22
Defective items = 3
Not defective items = 22-3 = 19
Then, the number of different orders can the 22 items be arranged if all the defective items are considered identical and all the non-defective items are identical of a different class :
[tex]\dfrac{22!}{3!\times19!}\\\\=\dfrac{22\times21\times20\times19!}{6\times19!}=1540[/tex]
Hence, there are 1540 different orders.
Miami, Florida has a latitude of 26° N. Where would the North Star (north celestial pole) appear in Miami?
Answer: Polaris would appear at [tex]26\°[/tex] latitude
Step-by-step explanation:
Let's begin by explaining that Latitude is the angular distance between the Earth's equator, and a specific point on the planet. It is measured in degrees and is represented according to the hemisphere in which the point is located, which can be north or south latitude.
In this sense, latitude [tex]0\°[/tex] refers to the equatorial line that divides the Earth in two hemispheres (North and South), and Miami's latitude [tex]26\°[/tex] refers to the Northern hemisphere.
On the other hand, talking about the North Star (also known as Polaris); if we were just in the North Pole (latitude [tex]90\°[/tex]), Polaris would by exactly over our heads or the zenith ([tex]90\°[/tex] over the horizon), but as we go until latitude [tex]26\°[/tex], Polaris altitude will be approximately at that same angle over the horizon.
Hence, from an observer located in Miami, Polaris would appear at [tex]26\°[/tex] N.
In Miami, with a latitude of 26° N, the North Star appears at an altitude of 26° above the horizon. As you move southward, it appears lower; when you travel north, it appears higher. Precise navigation also considers the slight angular difference between Polaris and the true celestial pole.
In Miami, Florida, which has a latitude of 26° N, the North Star, or north celestial pole, would appear at an altitude of 26° above the northern horizon. This is because the altitude of the North Star above the horizon is roughly equivalent to the latitude of the observer's location in the Northern Hemisphere. Therefore, as one drives southward from Miami to a city at a lower latitude, the North Star would appear lower in the sky. Conversely, driving northward would make the North Star appear higher.
It's important to note that due to the Earth's curvature, as you move southward from Miami, both the North Star and the southern sky would appear to sink, while the opposite would occur as you move northward. If you were to reach the equator, the North Star would align with the northern horizon, and it would not be visible from latitudes south of the equator. For precision in navigation or astronomy, one must also account for the small angular distance between Polaris and the true north celestial pole.
chandra and simone have 152 baseball cards together. chandra's collection has 42 more baseball cards in it than simone's collection. how many baseball cards does chandra have
Answer:
Chandra have 97 baseball cards.
Step-by-step explanation:
Given:
Chandra and Simone have 152 baseball cards together. Chandra's collection has 42 more baseball cards in it than Simone's collection.
Now, to find baseball cards Chandra have.
Let the baseball cards Simone's have be [tex]x.[/tex]
As, given Chandra's collection has 42 more baseball cards in it than Simone's collection.
So. Chandra's collection of cards is [tex]x+42.[/tex]
Together Chandra and Simone have baseball cards = 152.
According to question:
[tex]x+(x+42)=152[/tex]
[tex]x+x+42=152[/tex]
[tex]2x+42=152[/tex]
Subtracting both sides by 42 we get:
[tex]2x=110[/tex]
Dividing both sides by 2 we get:
[tex]x=55.[/tex]
Thus, Simone's collection of cards = 55.
Now, to get the baseball cards Chandra have we substitute the value of [tex]x[/tex]:
[tex]x+42\\=55+42\\=97.[/tex]
Therefore, Chandra have 97 baseball cards.
Yo sup??
total number of cards that Chandra and Simone have =152
let number of cards that Simone have be x
then chandra will have 42+x
from the statement given to us we can say that
x+x+42=152
2x=110
x=55
therefore Simone has 55 cards and chandra has 97 cards
Hope this helps
PLEASE HELP I NEEED ANSWER.. ASAP
Answer:
Step-by-step explanation:
Triangle IGH is a right angle triangle.
From the given right angle triangle
GI represents the hypotenuse of the right angle triangle.
With m∠I as the reference angle,
HI represents the adjacent side of the right angle triangle.
GH represents the opposite side of the right angle triangle.
To determine Hl, we would apply the tangent trigonometric ratio
Tan θ = opposite side/adjacent side. Therefore,
Tan 42 = 11/HI
0.9HI = 11
HI = 11/0.9
HI = 12.22
Explain and show how to find the square root of 50 to the nearest tenth
Answer:
[tex]\sqrt{50}=7.1[/tex]
Step-by-step explanation:
We want to find the square root of 50;
We need to first rewrite 50 as a prime factorization.
[tex]\sqrt{50}=\sqrt{25\times 2}[/tex]
We now split the square root to get:
[tex]\sqrt{50}=\sqrt{25}\times \sqrt{2}[/tex]
Take square root to get:
[tex]\sqrt{50}=5 \sqrt{2}[/tex]
[tex]\sqrt{50}=5(1.414)=7.07[/tex]
To the nearest tenth we have [tex]\sqrt{50}=7.1[/tex]
Sisters Helen and Anne live 332 miles apart. For Thanksgiving, they met at their other sister's house partway between their homes. Helen drove 3.2 hours and Anne drove 2.8 hours. Helen's average speed was 10 miles per hour faster than Anne's. Find Helen's average speed and Anne's average speed.
Answer:
Helen: 60mph and Anne: 50mph
Step-by-step explanation:
3.2r+2.8(r-10)=332 is the equation that we use, given the information we have.
We distribute and combine like terms and add 28 to both sides and divide by 6.
3.2r+2.8(r-10)=332
3.2r+2.8r-28=332
6r=360
6r/6=360/6
r=60 So, Helen's speed is 60mph.
Next, we'll solve Anne's speed.
r-10=50
60-10=50 So, Anne's speed is 50mph.
Anne's average speed was approximately 45 mph, and Helen's average speed was approximately 55 mph.
Let's denote Helen's average speed as "H" and Anne's average speed as "A." We are given that Helen drove for 3.2 hours, and Anne drove for 2.8 hours. We also know that Helen's average speed was 10 miles per hour faster than Anne's, so we can write this relationship as:
H = A + 10
Now, using the formula Speed = Distance / Time, we can express the distances traveled by Helen and Anne:
Distance covered by Helen = H * 3.2
Distance covered by Anne = A * 2.8
Given that the sum of their distances equals the distance between their homes (332 miles):
H * 3.2 + A * 2.8 = 332
Substituting the relationship H = A + 10, we get:
(A + 10) * 3.2 + A * 2.8 = 332
Solving this equation will provide us with Anne's average speed (A), and subsequently, we can find Helen's average speed (H) using the relationship H = A + 10.
To know more about average here
https://brainly.com/question/16956746
#SPJ3