Answer:
2, the acid is H₂X.
Explanation:
It is known at equivalence point: the no. of millimoles of base is equal to the no. of millimoles of acid.∴ (nMV) of NaOH = (nMV) for HnX.
where, n is the no. of producible H⁺ or OH⁻ of the acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
For NaOH:n = 1, M = 0.4 M, V = 0.6 L.
For HnX:n = ???, M = 0.3 M, V = 0.4 L.
∴ n for HnX = (nMV) of NaOH / (MV) for HnX = (1)(0.4 M)(0.6 L)/(0.3 M)(0.4 L) = 2.
∴ the acid is H₂X.
The value of n in HnX is 1, making it a monoprotic acid.
Explanation:This question is related to acid-base titration. In this case, 0.400 L of a 0.300 M HnX is being titrated with 0.600 L of 0.400 M sodium hydroxide (NaOH) to the equivalence point.
From the given information, we can use the concept of stoichiometry to determine the value of n in HnX. Since NaOH is a strong base and reacts with HnX in a 1:1 ratio, we can set up the following equation:
0.400 L x 0.300 M HnX = 0.600 L x 0.400 M NaOH
Solving for n, we find that n = 1. Therefore, HnX is a monoprotic acid.
Learn more about Acid-base titration here:https://brainly.com/question/40172894
#SPJ11
The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.
H2(g) + Br2(g) ⇌ 2 HBr(g) Kc = 3.8 × 104
4 HBr(g) ⇌ 2 H2(g) + 2 Br2(g) Kc = ?
The value of the missing equilibrium constant is [tex]6.9\times 10^{-10}[/tex].
Given:
The equilibrium constant of the reaction:
[tex]H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g) ,K_c = 3.8\times 10^4[/tex]...(i)
The other reaction:
[tex]4HBr(g)\rightleftharpoons 2H_2(g) + 2Br_2(g)[/tex]....(ii)
To find:
The equilibrium constant of the other reaction:
[tex]4HBr(g)\rightleftharpoons 2H_2(g) + 2Br_2(g)[/tex]
Solution:
[tex]H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g) ,K_c = 3.8\times 10^4...(i)[/tex]
The expression of the equilibrium constant of the reaction (i):
[tex]K_c=\frac{[HBr]^2}{[H_2][Br_2]}...[1]\\\\3.8\times 10^4=\frac{[HBr]^2}{[H_2][Br_2]}[/tex]
The other chemical reaction :
[tex]4HBr(g)\rightleftharpoons 2H_2(g) + 2Br_2(g)...(ii)[/tex]
The expression of the equilibrium constant of the reaction (ii):
[tex]K_c'=\frac{[H_2]^2[Br_2]^2}{[HBr]^4}\\\\K_c'=(\frac{[H_2]^1[Br_2]^1}{[HBr]^2})^2[/tex]
Using [1]:
[tex]K_c'=(\frac{1}{K_c})^2\\\\K_c'=(\frac{1}{ 3.8\times 10^4})^2\\\\=6.9\times 10^{-10}[/tex]
The value of the missing equilibrium constant is [tex]6.9\times 10^{-10}[/tex].
Learn more equilibrium constant here:
brainly.com/question/5877801?referrer=searchResults
brainly.com/question/7145687?referrer=searchResults
An engineer wants to determine an efficient method for condensing large amounts of steam into liquid water. Which constant should she use?
Hfus
–Hvap
Hvap
–
Answer:
The second choice: - Hvap.Explanation:
Condensing steam into liquid water is the reverse process of vaporizing liquid water into steam.
The heat or enthalpy of vaporization, also called latent heat of vaporization, of liquid water is the amount of heat that the water absorbs when changes from liquid state to steam (vapour) at certain pressure and it is a constant at every pressure.
The symbol of the latent heat of vaporization is Hvap or ΔHvap.
Thus, being being condensing the reverse process of vaporization, the heat of condensing will be the same magnitude but in reverse direction, i.e. the heat will be released instead of absorbed, and the engineer will have to use the negative of the latent heat of vaporization: - Hvap or - ΔHvap.
Answer:
b) -hvap
Explanation:
edge 2021
Where in the lungs does gas exchange occur
Answer: Between the alveoli and a network of tiny blood vessels called capillaries, which are located in the walls of the alveoli.
Gas exchange in the lungs occurs in the alveoli. Oxygen diffuses from the alveoli into the blood, while carbon dioxide diffuses from the blood into the alveoli.
Gas exchange in the lungs, also referred to as pulmonary gas exchange, primarily occurs in the alveoli. The alveoli are tiny, grape-like clusters surrounded by networks of thin-walled pulmonary capillaries.
Here is a step-by-step explanation of the gas exchange process:
When you inhale, air enters the alveoli, which have a higher concentration of oxygen compared to the blood in the surrounding capillaries.Oxygen diffuses from the alveoli into the blood because of this concentration gradient.Conversely, the blood in the capillaries has a higher concentration of carbon dioxide than the alveoli, causing carbon dioxide to diffuse into the alveoli.This exchange of gases allows oxygenated blood to travel through the pulmonary veins to the rest of the body, while carbon dioxide is expelled when you exhale.The vast number of alveoli (around 300 million per lung) provides a large surface area, maximizing the efficiency of gas exchange.
What is the charge on oxygen (O) when it forms an ion?
1+
1−
2+
2−
Answer:
2- (last choice) when it forms an ion.
Saturated hydrocarbons have all of their carbon atoms bonded to four neighbors.
a. True
b. False
I'm thinking the answer is false but I'm not entirely sure.
Answer:
A
Explanation:
The carbon atoms in saturated hydrocarbons are linked with single covalent bonds to their neighbors. The chains of saturated hydrocarbon are therefore well compact with hydrogen bonds between one another. This is why most saturated hydrocarbons are solid at room temperature. Unsaturated hydrocarbons have kinks in their chains that interrupt hydrogen bonds between chains. These kinks are because some carbon atoms in the chains have double or tripple covalent bonds.
Which statement correctly describes the phosphate ion, ? It is composed of one phosphorus atom and four oxygen atoms covalently bonded together, and there is a –3 charge distributed over the entire ion. It is composed of one phosphorus atom and four oxygen atoms covalently bonded together, and there is a –3 charge on the phosphorus atom. It is composed of one phosphorus atom and four oxygen atoms ionically bonded together, and there is a –3 charge distributed over the entire ion. It is composed of one phosphorus atom and four oxygen atoms ionically bonded together, and there is a –3 charge on the phosphorus atom.
Answer:
It is composed of one phosphorus atom and four oxygen atoms covalently bonded together, and there is a –3 charge distributed over the entire ion.
Explanation:
The formula of phosphate ion is PO₄³⁻
The formula shows a phosphorus atom surrounded by 4 oxygen atoms.
For this bond to be established, phosphorus would be covalenty bonded to the oxygen atoms.
A covalent bond arises when two atoms with similar zero or very small electronegativity difference(≤ 0.5 ) combines. The electronegativity difference between phosphorus and oxygen is less than 0.5 and the two atom would bond by sharing of their electrons.
The net charge on the resulting radical is a -3 charge which it uses to form other bond types with other atoms. The charge implies an excess of 3 electrons on the radical formed.
The correct statement describing the phosphate ion is: It is composed of one phosphorus atom and four oxygen atoms covalently bonded together, and there is a –3 charge distributed over the entire ion.
The phosphate ion is composed of phosphorus and oxygen atoms with a distributed charge, breaking the octet rule in chemistry. Phosphorus can break the 'octet rule' due to d orbitals availability, and the charge on phosphate ions is evenly spread over oxygen atoms.
Phosphate group: a molecular group consisting of a central phosphorus atom bound to four oxygen atoms.
Compare and contrast solutions and suspensions
Contrast:
Solutions are clear, transparent, and homogeneous.
Suspensions are cloudy, heterogeneous, and at least two substances are visable
Compare: one similarity is that neither of their particles settle.
If oil spills continue, all of the following should be expected except (2 points)
death of aquatic life.
polluted groundwater.
decreased soil productivity.
increased global temperatures.
Answer:
Polluted ground water.
Explanation:
The rocks through which water flows into the ground sieves most of the contaminants whose molecules are larger than most bacteria. Such molecules include but are not limited oil molecules. Therefore as it descends to the lower levels of the soil profile, water is subjected to continuous filtration by the layers and it is the least susceptible to contamination by oil spills.
Answer: Increased global temperature
Explanation:
There is no direct effect of oil spillage on climate or global unless the spillage does not caught fire.
Only in this case, huge amount of carbon dioxide will be released which affect the climate locally else oil spillage has no effect on the global temperature.
Death of aquatic animals, polluted ground water, decreased soil productivity are some of the consequences that can be seen in case of oil spillage.
Which is/are true?
[mark all correct answers]
a. Li has valence electrons in the n = 1 energy level.
b. Si has valence electrons in the n = 3 energy level.
c. Ga has valence electrons in the n = 3 energy level.
d. Xe has valence electrons in the n = 5 energy level.
e. P has valence electrons in the n = 2 energy level.
Answer:
b. Si has valence electrons in the n= 3 energy level.
d. Xe has valence electrons in the n=5 energy level
Explanation:
A silicon atom has 14 electrons and 14 protons in its structure. Therefore it has a simple electron configuration of 2.8.4
It therefore has 3 energy levels. The outermost 4 electrons are the valence electrons.
A xenon has an electron configuration of 2.8.18.18.8 = 5 energy levels. The outermost 8 electrons are the valence electrons.
Air pressure is lowest in the lungs during whi h of the following points during inspiration or expiration
Answer:
Inspiration
Explanation:
This question is on application of Boyle's law; pressure is inversely proportional to volume.when we inhale air, the diaphragm and the muscles in the ribs contract thus increasing the volume in the lungs.Increased volume of the lungs cause the pressure to decrease.During exhaling, the diaphragm and muscles in the ribs relax, making the lungs to recoil and reduce in volume to force air out.Pressure in the lungs is increased than that in the environment making air to move out.
Answer: end of expiration when lung volume is the lowest
Explanation: Expiration is the opposite of inspiration
At STP, which substance is the best conductor of electricity? a. nitrogen b. neon c. sulfur d. silver
Answer:
Silver
Explanation:
because it is a trasition metal and are good condutors
Among nitrogen, neon, sulfur, and silver, silver is the best conductor of electricity at STP because it's a metal and carries free electrons that allow electrical flow.
Explanation:At Standard Temperature and Pressure (STP), the best conductor of electricity among the options provided (nitrogen, neon, sulfur, and silver) is silver. This is because electrical conductivity is a property of metals and silver is a metal, while nitrogen, neon, and sulfur are non-metals. Metals have 'free electrons' that move around and allow the flow of electricity, and among many metals, silver is known for its high electrical conductivity.
Learn more about Conductivity here:https://brainly.com/question/35882137
#SPJ6
There are 3 different possible isomers of a dibromoethene molecule. what are these isomers?
Answer:
1,1-, (Z)-1,2-, and (E)-1,2-dibromoethene
Explanation:
Their structures are shown below.
The 1,2-dibromoethenes (2 and 3) are positional isomers
of 1,1-dibromoethene (1).
(Z)-1,2-dibromoethene (2) and (E)-1,2-dibromoethene (3) are stereoisomers (geometric isomers) of each other.
What type of reaction is represented by the following example? 2CO2 (g) + 4H2O (l) + 1452 kJ 2CH3OH (l) (g) + 3O2 (g) exothermic endothermic
endothermic
I hope this helped :)
Answer : The given reaction is an example of endothermic reaction.
Explanation :
Endothermic reaction : It is a type of chemical reaction in which the energy is absorbed by the surroundings. In this reaction, the energy of reactants are less than the energy of products. In this reaction, the energy is given to the system.
Exothermic reaction : It is a type of chemical reaction in which the energy is released into the surroundings. In this reaction, the energy of reactants are more than the energy of products. In this reaction, the energy is released from the system.
The given balanced chemical reaction is,
[tex]2CO_2(g)+4H_2O(l)+1452KJ\rightarrow 2CH_3OH(l)+3O_2(g)[/tex]
In this reaction, the 1452 KJ energy is given to the system. So, the given reaction is an example of endothermic reaction.
You are making a solution of calcium chloride dissolved in water. you add solid, stir, and it dissolves. you add just a spatula tip full, stir, and the solid does not dissolve. how could you describe the solutions before and after adding the spatula tip amount
Answer:
Before adding the spatula tip amount: saturated solution.
After adding the spatula tip amount: super saturated solution.
Explanation:
A saturated solution is when the solute can dissolve in the solvent. For example, if you have an amount of water and you put calcium chloride into the water, and it dissolves, the solution is saturated.A supersaturated solution is when you put the calcium chloride into the solvent and the solute doesn't dissolve.So,Before adding the spatula tip amount: the solution is saturated.
After adding the spatula tip amount: the solution is super saturated.
Explanation:
When small amount of solute is added to a solvent and if it readily dissolves then this type of solution is known as an unsaturated solution.
For example, in the given situation when calcium chloride is first dissolved in water then it completely dissolves and this makes the solution unsaturated.
And, a saturated solution is defined as a solution which contains maximum amount of solute.
So, when a spatula tip full of calcium chloride is added into water then it is unable to dissolve the solute. This means the solution has become saturated.
Thus, we can conclude that solution before adding the spatula tip amount is unsaturated and after adding the spatula tip amount the solution becomes saturated.
Two solids are mixed in a flask and stirred. After a few minutes, the flask becomes cold.
Which of the following best describes this reaction?
A. an exothermic reaction
B. a combustion reaction
C. an endothermic reaction
D. a decomposition reaction
Answer:
C. an endothermic reaction
Explanation:
an endothermic reaction absorbs heat energy from its surroundings
Complete these equations for the ionization of an Arrhenius acid or base in water. Include the states of the products.HI (aq) ----------------> __________?LiOH (s) -----------------> ________?
Balance the following reaction. 2Ca3(PO4)2 + C + 6SiO2 → CaSiO3 + P4 + CO
Answer:
2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.
Explanation:
To balance a chemical reaction, we should apply the law of conservation of mass.Law of conversation of mass states that the no. of atoms is equal in both sides of the chemical reaction.So, the balanced chemical reaction is:2Ca₃(PO₄)₂ + 10C + 6SiO₂ → 6CaSiO₃ + P₄ + 10CO.
that 2 mol of Ca₃(PO₄)₂ react with 10 mol of C and 6 mol of SiO₂ to produce 6 mol of CaSiO₃, 1 mol of P₄ and 10 mol of CO.
Answer:
First one is (10) , second one is (6) , and third one is (10).
Explanation: 10 , 6 , 10 is the correct order!
An engineer that designs buildings is a(n) _____.
A) civil engineer
B) mechanical engineer
C) Chemical engineer
D) aerospace engineer
Answer: It's a civil engineer
Explanation:
An engineer that designs buildings is a(n) A) civil engineer
Civil engineering is an engineering discipline that deals with the design and development of infrastructure like buildings, roads, bridges, and railways.
Civil engineers not only design and develop new infrastructure, but they also play an important role in rebuilding projects in instances like natural disaster
What are engineers that build houses called?Civil engineering deals in building houses, buildings, roads, bridges, and dams. So, the civil engineers are trained to handle all sorts of projects; simple to complex houses.
Who designs buildings and bridges?Architect: A person whose profession is designing and drawing plans for buildings, bridges and houses, as well as many other structures.
To learn more about Civil engineers, refer
https://brainly.com/question/12244613
#SPJ2
A sample of cold water was mixed with a sample of hot water inside a calorimeter, and 13,160 joules of heat energy were absorbed by the cold water. Which statement is true about the hot water in the calorimeter?
A. It released 26,320 joules.
B. It released 13,160 joules.
C. It absorbed 26,320 joules.
D. It absorbed 13,160 joules.
Answer:
B. It released 13,160 joules.
Explanation:
It is known that when mixing hot water with cold water at equilibrium:The amount of heat released from hot water = the amount of heat absorbed by cold water.
∵ 13,160 joules of heat energy were absorbed by the cold water.
∴ The hot water release 13,160 joules.
So, the right choice is: B. It released 13,160 joules.
Answer: Option (B) is the correct answer.
Explanation:
Two bodies of different temperature when come in contact with each other then heat is transferred from hot body to cold body until a thermal equilibrium is maintained between them.
So, when a sample of hot and cold water are mixed together then energy will be released by hot water which is actually absorbed by the cold water till temperature of both the liquids become equal.
Hence, when hot water has 13,160 joules of energy then this energy will be absorbed by a sample cold water. This means that hot water has released 13,160 joules of energy.
Hence, we can conclude that the true statement about the hot water in the calorimeter is that it released 13,160 joules.
A baseball player hits a ball. Which is the best description of the energy of the ball as it flies over the pitcher's head? chemical mechanical kinetic thermal
Answer:
The answer is KINETIC energy
Explanation:
The baseball is moving and Kinetic energy correlates to movement.
At an ocean depth of 76.2 m, the pressure is about 8.4 atm. Convert the pressure to mmHg and torr units.
Final answer:
To convert 8.4 atm to mmHg and torr, multiply by 760 resulting in a pressure of 6384 mmHg and 6384 torr, as 1 torr equals 1 mmHg.
Explanation:
To convert the pressure at an ocean depth of 76.2 m, which is about 8.4 atm, into mmHg and torr units, we use the conversion factor 1 atm = 760 mmHg = 760 torr. For the presented example, the calculation would be:
Pressure in mmHg = 8.4 atm × 760 mmHg/atm = 6384 mmHg
Since 1 torr is exactly equivalent to 1 mmHg, this also means that:
Pressure in torr = 6384 torr
Thus, the pressure at an ocean depth of 76.2 m, when expressed in mmHg and torr, is 6384 mmHg and 6384 torr, respectively.
Two liquids are poured into a beaker. After a few seconds, the beaker becomes warm.
Which of the following best describes this reaction?
A. an exothermic reaction
B. a decomposition reaction
C. an endothermic reaction
D. a single-displacement reaction
Answer:
A. an exothermic reaction
Explanation:
an exothermic reaction releases energy in the form of heat, therefore making the beaker warm.
Answer: A. an exothermic reaction
Explanation:
A. Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat. The temperature of the vessel rises.
B. Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Example: [tex]Li_2CO_3\rightarrow Li_2O+CO_2[/tex]
C. Single displacement reaction is a chemical reaction in which more reactive element displaces the less reactive element from its salt solution.
Example: [tex]Zn+2HCl\rightarrow ZnCl_2+H_2[/tex]
D. Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat.The temperature of the vessel drops.
Fluorine has nine protons and nine electrons. It is in column 17 on the periodic table. How many valence electrons does hydrogen have? 2 5 7 9
Answer:
Hydrogen has one electron
Explanation:
Hydrogen is the first element in the Periodic Table, so it has only one valence electron.
For elements in Groups 13 to 18, then number of valence electrons equals the Group number – 10.
Fluorine is in Group 17, so it has seven valence electrons.
Answer:
7 i just did the test and got it right
Explanation:
Both of the sulfur-oxygen double bonds in so2 is polar. in which direction should the polarity arrows point
Answer:
Away from the central sulfur atom.
Explanation:
Answer:
away from central sulfer atom
The balanced equation for the reaction of copper (Cu) and silver nitrate (AgNO3) is shown below Cu+2AgNO3->2Ag+Cu(NO3)2 how many moles of copper must react to form 3.50 mol of Ag?
Answer:
1.75 mol of Cu
Explanation:
all you have to do is divide 3.50 by 2 because you need half moles from Ag
Answer: 1.75 mol of copper
Explanation: in the given balanced equation for the reaction of copper and silver nitrate, we can see that with one mol of copper, we can form two moles of silver (Ag), so we can calculate how many moles of copper we need to form 3.50 moles of Ag as follows:
3.50 moles of Ag *1 mol of copper/2 moles of Ag=
3.50mol of copper/2=
1.75 mol of copper
A reaction in which products can react to re-form reactants is
Help please, 44 to 45, calculate the answers to the following problems. Use the following equation as the basis of your calculations.
44. How many liters of CO2 would be produced if 32 grams of CH4 are combined with oxygen?
45. How many grams of H2O would be produced when the 32 grams of CH4 are burned?
Answer: 44,8 l. of CO2 and 72 g. of water will be produced
Explanation:
Answer:44.8l
Explanation:i hope u find my explanation in the attachment
An unknown substance has been shown to have weak covalent bonds.
Which of the following is most likely a property of this substance?
A. high pH
B. high conductivity
C. low melting point
D. low flammability
Answer:
Low melting point.
Explanation:
We cannot link the pH of a substance from it bonds directly.
Ionic compounds have strong ionic bonds but we cannot say that they will have high or low pH.
High conductivity is a feature of ionic compounds generally (also metals)
low melting point means the bonds are weak so they can be weak covalent bonds.
Low flammability is not related to bonding.
Assume that 8.5 L of iodine gas (I2) are produced at STP according to the following balanced equation:
2KI(aq) + Cl2(g) → 2KCl(aq) + I2(g)
How many moles of I2 are produced?
mol
How many moles of Cl2 are used?
mol
How many grams of Cl2 (g) are used?
grams
Answer:
a) 0.38 mol.
b) 0.38 mol.
c) 26.94 g.
Explanation:
For the balanced equation:2KI(aq) + Cl₂(g) → 2KCl(aq) + I₂(g),
It is clear that 2 mol of KI react with 1 mol of Cl₂ to produce 2 mol of KCl and 1 mol of I₂.
a) How many moles of I₂ are produced?
Firstly, we need to calculate the no. of moles of 8.5 L of produced I₂:It is known that every 1.0 mol of any gas occupies 22.4 L at STP conditions.
Using cross multiplication:
1 mol of I₂ occupies → 22.4 L, at STP.
??? mol of I₂ occupies → 8.5 L, at STP.
∴ The no. of moles of I₂ produced = (1 mol)(8.5 mol)/(22.4 L) = 0.38 mol.
b) How many moles of Cl₂ are used?
Using cross multiplication:
1 mol of Cl₂ produces → 1 mol of I₂, from stichiometry.
∴ 0.38 mol of Cl₂ produces → 0.38 mol of I₂.
So, the no. of moles of Cl₂ are used = 0.38 mol.
c) How many grams of Cl₂(g) are used?
∴ The "no. of grams" of Cl₂(g) are used = (no. of moles of Cl₂)(molar mass of Cl₂) = (0.38 mol)(70.9 g/mol) = 26.94 g.
How do van der waals forces hold molecules together?
Answer:
Electrostatic Van de Waals forces act between molecules to form weak bonds. The types of Van der Waals forces, strongest to weakest, are dipole-dipole forces, dipole-induced dipole forces and the London dispersion forces. The hydrogen bond is based on a type of dipole-dipole force that is especially powerful. These forces help determine the physical characteristics of materials.
Van der Waals forces are weak intermolecular forces caused by temporary dipoles due to electron density fluctuations, playing a crucial role in the structure of proteins and the behavior of non-ideal gases.
Van der Waals forces are residual forces that hold molecules together. Unlike strong covalent or ionic bonds, these intermolecular forces are relatively weak and are caused by slight fluctuations in electron densities within molecules. These fluctuations lead to temporary dipoles, allowing molecules to attract each other when they are in very close proximity. Van der Waals forces include attractions between permanent dipoles, induced dipoles, and instantaneous dipoles.
These weak attractions are essential for the three-dimensional structure of proteins in our cells, contributing to their proper function alongside covalent, ionic, and hydrogen bonds. The van der Waals force is likened to Velcro®, where individual interactions are weak, but collectively they can have a significant effect. This is an important concept when considering the behavior of real gases versus the ideal gas model, where van der Waals forces are not accounted for.
In a gas, as two molecules approach each other, their electron densities interact, causing temporary dipoles and resultant attractions between the molecules. These interactions are termed van der Waals forces and are critical for understanding the properties of gases and many biological molecules.