Let x represent the dollar amount spent on supermarket impulse buying in a 10-minute (unplanned) shopping interval. Based on a certain article, the mean of the x distribution is about $48 and the estimated standard deviation is about $7.

(a) Consider a random sample of n = 60 customers, each of whom has 10 minutes of unplanned shopping time in a supermarket. From the central limit theorem, what can you say about the probability distribution of x, the average amount spent by these customers due to impulse buying? What are the mean and standard deviation of the x distribution?

The sampling distribution of x is approximately normal with mean μx = 48 and standard error σx = $0.12. The sampling distribution of x is approximately normal with mean μx = 48 and standard error σx = $7. The sampling distribution of x is not normal. The sampling distribution of x is approximately normal with mean μx = 48 and standard error σx = $0.90.


Is it necessary to make any assumption about the x distribution? Explain your answer.

It is necessary to assume that x has an approximately normal distribution. It is not necessary to make any assumption about the x distribution because μ is large. It is necessary to assume that x has a large distribution. It is not necessary to make any assumption about the x distribution because n is large.


(b) What is the probability that x is between $46 and $50? (Round your answer to four decimal places.)
3

(c) Let us assume that x has a distribution that is approximately normal. What is the probability that x is between $46 and $50? (Round your answer to four decimal places.)

Answers

Answer 1

Answer:

Step-by-step explanation:

Hello!

X: amount spent in a supermarket impulse buying in a 10 min unplanned shopping interval by one customer.

It is known that the mean of this variable is μ= $48 and its standard deviation is δ=$7

a.

The Central limit theorem states that if there is a population with probability function f(X;μ,δ²) from which a random sample of size n is selected. Then the distribution of the sample mean tends to the normal distribution with mean μ and variance δ²/n when the sample size tends to infinity.

As a rule, a sample of size greater than or equal to 30 is considered sufficient to apply the theorem and use the approximation.

X[bar]≈N(μ;σ²/n)

The mean of the sampling distribution is μ= $48

The standard deviation of the sampling distribution is σ/√n= $7/√60= $0.90

It is not necessary to make any assumption about the distribution of X since n=60 is considered large enough, you can directly approximate the sampling distribution to normal regardless of the distribution of X.

b.

To calculate this probability you have to use the approximation of the sampling distribution:

Z= (X[bar]-μ)/(σ/√n)≈N(0;1)

μ= $48

σ/√n= $0.90

P(46≤X[bar]≤50)= P(X[bar]≤50) - P(X[bar]≤46)

P(Z≤(50-48)/0.90) - P(Z≤(46-48)/0.90)

P(Z≤2.22) - P(Z≤-2.22)= 0.987 - 0.013= 0.974

c.

If we assume that X has an approximately normal distribution, then you will use it's a mean and standard deviation to reach the asked probability.

Z= (X-μ)/δ≈N(0;1)

μ= $48

δ= $7

P(46≤X≤50)= P(X≤50) - P(X≤46)

P(Z≤(50-48)/7) - P(Z≤(46-48)/7)

P(Z≤0.29) - P(Z≤-0.29)= 0.61409 - 0.38591= 0.22818≅ 0.2282

I hope it helps!

Answer 2
Final answer:

The Central Limit Theorem ensures that the average amount spent by a sample of 60 customers due to impulse buying is normally distributed with a mean of $48 and a standard error of approximately $0.90.

Explanation:

Regarding part (a) of the question, by applying the Central Limit Theorem (CLT), we can state that for the sample of n = 60 customers, the sampling distribution of the sample mean x will be approximately normal due to the large sample size, even if the distribution of x is not normal. The mean of the distribution μx remains the same at $48, and the standard deviation (often referred to as the standard error, σx) can be calculated by dividing the population standard deviation by the square root of the sample size (n), which is σx = $7/√60 ≈ $0.90. Thus, the correct statement is: 'The sampling distribution of x is approximately normal with mean μx = $48 and standard error σx = $0.90.'


Related Questions

Suppose that in a population of adults between the ages of 18 and 49, glucose follows a normal distribution with a mean of 93.5 and standard deviation of 19.8. What is the probability that glucose exceeds 120 in this population

Answers

Answer:

0.0904 or 9.04%

Step-by-step explanation:

Mean glucose (μ) = 93.5

Standard deviation (σ) = 19.8

In a normal distribution, the z-score for any glucose value, X, is given by:

[tex]Z= \frac{X-\mu}{\sigma}[/tex]

For X = 120, the z-score is:

[tex]Z= \frac{120-93.5}{19.8}\\ Z=1.3384[/tex]

A z-score of 1.3384 corresponds to the 90.96th percentile of a normal distribution. Therefore, the probability that glucose exceeds 120 in this population is:

[tex]P(X>120) = 1-0.9096=0.0904 = 9.04\%[/tex]

Answer:

Probability that glucose exceeds 120 in this population is 0.09012.

Step-by-step explanation:

We are given that in a population of adults between the ages of 18 and 49, glucose follows a normal distribution with a mean of 93.5 and standard deviation of 19.8, i.e.; [tex]\mu[/tex] = 93.5  and  [tex]\sigma[/tex] = 19.8 .

Let X = amount of glucose i.e. X ~ N([tex]\mu = 93.5 , \sigma^{2} = 19.8^{2}[/tex])

Now, the Z score probability is given by;

           Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

So,Probability that glucose exceeds 120 in this population =P(X>120)

P(X > 120) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{120-93.5}{19.8}[/tex] ) = P(Z > 1.34) = 1 - P(Z <= 1.34)

                                                   = 1 - 0.90988 = 0.09012 .

8. The distribution for the time it takes a student to complete the fall class registration has mean of 94 minutes and standard deviation of 10 minutes. For a random sample of 80 students, determine the mean and standard deviation (standard error) of the sample mean. What can you say about the sampling distribution of the sample mean and why

Answers

Answer:

Mean = 94

Standard deviation = 1.12

The sampling distribution of the sample mean is going to be normally distributed, beause the size of the samples are 80, which is larger than 30.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n of at least 30 can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation, which is also called standard error [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 94, \sigma = 10[/tex]

By the Central Limit Theorem

The sampling distribution of the sample mean is going to be normally distributed, beause the size of the samples are 80, which is larger than 30.

Mean = 94

Standard deviation:

[tex]s = \frac{10}{\sqrt{80}} = 1.12[/tex]

Here, f(x) is measured in kilograms per 4,000 square meters, and x is measured in hundreds of aphids per bean stem. By computing the slopes of the respective tangent lines, estimate the rate of change of the crop yield with respect to the density of aphids when that density is 200 aphids per bean stem and when it is 800 aphids per bean stem. 200 aphids per bean stem 1 kg per 4,000 m2 per aphid per bean stem 800 aphids per bean stem 2 kg per 4,000 m2 per aphid per bean stem

Answers

Answer: The slope of the tangent line at density 200 is -1.67kg/bean stem

Step-by-step explanation: The attached graph file shows the relationship between the yield of a certain crop f(×) as a function of the density of aphid x.

The second attached file shows the solution.

Identify the rule of inference that is used to derive the conclusion "You do not eat tofu" from the statements "For all x, if x is healthy to eat, then x does not taste good," "Tofu is healthy to eat," and "You only eat what tastes good."

Answers

"You do not eat tofu" is derived using the Modus Tollens rule of inference.

The rule of inference that is used to derive the conclusion "You do not eat tofu" from the given statements is Modus Tollens.

Modus Tollens is a valid deductive argument form that follows this structure:

1. If P, then Q.

2. Not Q.

3. Therefore, not P.

The statements correspond to:

1. For all x, if x is healthy to eat, then x does not taste good.

2. Tofu is healthy to eat.

3. You only eat what tastes good.

Using these statements, we can infer:

1. If tofu is healthy to eat, then tofu does not taste good. (From statement 1)

2. Tofu does not taste good. (From statement 2 and the derived inference)

3. Therefore, you do not eat tofu. (Using Modus Tollens with statement 3 and the derived inference)

So, the conclusion "You do not eat tofu" is derived using the Modus Tollens rule of inference.

To learn more on Modus Tollens rule click here:

https://brainly.com/question/33164309

#SPJ12

Final answer:

The rule of inference used to derive the conclusion 'You do not eat tofu' is called Modus Tollens, which allows to deduce that if 'p implies q' is true and 'q' is false, then 'p' must also be false.

Explanation:

The student is asking about a logical inference rule used to derive a conclusion from a set of premises. Considering the provided statements, which can be summarized as:

For all x, if x is healthy to eat, then x does not taste good (All healthy foods taste bad).

Tofu is healthy to eat.

You only eat what tastes good.

We can see that the rule of inference used here is Modus Tollens. This rule of inference suggests that if we have a conditional statement (if p then q) and it is given that the consequent q is false (not q), then the antecedent p must also be false (not p).

To apply Modus Tollens:

Translate the given information into logical statements:
a) If something is healthy (p) then it does not taste good (q).
b) Tofu is healthy (p).
c) You do not eat what does not taste good (¬q).

Since tofu is healthy (p), it does not taste good as per the given rule (therefore, q is true). But the third statement says you do not eat what does not taste good, meaning (¬q). If (¬q) is valid, then by Modus Tollens, you do not eat tofu (¬p).

Thus, the usage of Modus Tollens allows us to infer that 'You do not eat tofu' from the given premises.

If you deposit $8,000 in a bank account that pays 10% interest annually, how much will be in your account after 5 years? Do not round intermediate calculations. Round your answer to the nearest cent.

Answers

Answer:

$12,884.08

Step-by-step explanation:

Assuming that interest is compounded annually, the future value of an invested amount 'P', at an interest rate 'r' for a period of 'n' years is given by the following equation:

[tex]FV = P*(1+r)^n[/tex]

Therefore, an investment of $8,000 at a rate of 10% per year for 5 years has a future value of:

[tex]FV = 8,000*(1+0.1)^5\\FV=\$12,884.08[/tex]

There will be $12,884.08 in the account after 5 years.

Answer:

Step-by-step explanation:

Assuming the interest was compounded annually, we would apply would apply the formula for determining compound interest which is expressed as

A = P(1+r/n)^nt

Where

A = total amount in the account at the end of t years

r represents the interest rate.

n represents the periodic interval at which it was compounded.

P represents the principal or initial amount deposited

From the information given,

P = 8000

r = 10% = 10/100 = 0.1

n = 1 because it was compounded ince in a year.

t = 5 years

Therefore,

A = 8000(1+0.1/1)^1 × 5

A = 8000(1.1)^5

A = $12884.1

g A signal x(????) with Fourier transform ????(???? ) undergoes impulse-train sampling to generate 4 where For each of the following sets of constraints on x(????) or ????(???? ), does the sampling guarantee that x(????) can be recovered from xxpp(????????)? Justify your answer and show your work. Simple yes/no answers are not acceptable. a) ????????(???????????? )=0 for |????????|>5,000???????? b) ????????(???????????? )=0 for |????????|>15,000???????? c) ???????????? {????????(???????????? )}=0 for |????????|>5,000???????? d) xx(????????) is real and ????????(???????????? )=0 for |????????|>15,000???????? [hint: if xx(????????) is real-valued then ????????(???????????? )=????????∗(−???????????? )] e) ????????(???????????? )∗????????(???????????? )=0 for |????????|>15,000???????? f) |????????(???????????? )|=0 for ????????>5,000???????? Problem

Answers

Answer:

(a) The Nyquist rate for the given signal is 2 × 5000π = 10000π. Therefore, in order to be able

to recover x(t) from xp(t), the sampling period must at most be Tmax =

10000π = 2 × 10−4

sec. Since the sampling period used is T = 10−4 < Tmax, x(t) can be recovered from xp(t).

(b) The Nyquist rate for the given signal is 2 × 15000π = 30000π. Therefore, in order to be able

to recover x(t) from xp(t), the sampling period must at most be Tmax =

30000π = 0.66×10−4

sec. Since the sampling period used is T = 10−4 > Tmax, x(t) cannot be recovered from

xp(t).

(c) Here, Im{X(jω)} is not specified. Therefore, the Nyquist rate for the signal x(t) is indeterminate. This implies that one cannot guarantee that x(t) would be recoverable from xp(t).

(d) Since x(t) is real, we may conclude that X(jω) = 0 for |ω| > 5000. Therefore, the answer to

this part is identical to that of part (a).

(e) Since x(t) is real, X(jω) = 0 for |ω| > 15000π. Therefore, the answer to this part is identical

to that of part (b).

(f) If X(jω) = 0 for |ω| > ω1, then X(jω) ∗ X(jω) = 0 for |ω| > 2ω1. Therefore, in this

part, X(jω) = 0 for |ω| > 7500π. The Nyquist rate for this signal is 2 × 7500π = 15000π.

Therefore, in order to be able to recover x(t) from xp(t), the sampling period must at most

be Tmax =

15000π = 1.33 × 10−4

sec. Since the sampling period used is T = 10−4 < Tmax,

x(t) can be recovered from xp(t).

(g) If |X(jω)| = 0 for |ω| > 5000π, then X(jω) = 0 for |ω| > 5000π. Therefore, the answer to

this part is identical to the answer of part (a).

The paraboloid z = 8 − x − x2 − 2y2 intersects the plane x = 3 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (3, 2, −12). (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)

Answers

When [tex]x=3[/tex], we get the parabola

[tex]z=-4-2y^2[/tex]

We can parameterize this parabola by

[tex]\vec r(t)=(3,t,-4-2t^2)[/tex]

Then the tangent vector to this parabola is

[tex]\vec T(t)=\dfrac{\mathrm d\vec r(t)}{\mathrm dt}=(0,1,-4t)[/tex]

We get the point (3, 2, -12) when [tex]t=2[/tex], for which the tangent vector is

[tex]\vec T(2)=(0,1,-8)[/tex]

Then the line tangent to the parabola at [tex]t=2[/tex] passing through the point (3, 2, -12) has vector equation

[tex]\ell(t)=(3,2,-12)+t(0,1,-8)=(3,2+t,-12-8t)[/tex]

which in parametric form is

[tex]\begin{cases}x(t)=3\\y(t)=2+t\\z(t)=-12-8t\end{cases}[/tex]

for [tex]t\in\Bbb R[/tex].

The parametric equation of the tangent line is [tex]L(t)=(3,2+t,-12-8t)[/tex]

Parabola :

The equation of Paraboloid is,

                 [tex]z =8-x-x^{2} -2y^{2}[/tex]

Equation of parabola when [tex]x = 3[/tex] is,

       [tex]z=8-3-3^{2} -2y^{2} \\\\z=-4-2y^{2}[/tex]

The parametric equation of parabola will be,

     [tex]r(t)=(3,t,-4-2t^{2} )[/tex]

Now, we have to find Tangent vector to this parabola is,

    [tex]T(t)=\frac{dr(t)}{dt}=(0,1,-4t)[/tex]

We get, the point [tex](3, 2, -12)[/tex] when [tex]t=2[/tex]

The tangent vector will be,

 [tex]T(2)=(0,1,-8)[/tex]

So that, the tangent line to this parabola at the point (3, 2, −12) will be,

     [tex]L(t)=(3,2,-12)+t(0,1,-8)\\\\L(t)=(3,2+t,-12-8t)[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/21845570

The company leased two manufacturing facilities. Lease A requires 20 annual lease payments of $200,000 beginning on January 1, 2019. Lease B also is for 20 years, beginning January 1, 2019. Terms of the lease require 17 annual lease payments of $220,000 beginning on January 1, 2022. Generally accepted accounting principles require both leases to be recorded as liabilities for the present value of the scheduled payments. Assume that a 10% interest rate properly reflects the time value of money for the lease obligations

Answers

Answer:

the present value of the lease obligation for lease A will be $1,702,712.74 while the present value of lease B will be $1,764,741.73

Step-by-step explanation:

the present value of annual lease payment will be determined by discounting the total amount to be received from lease payment over years.

for lease A  , Pv =   A [tex]\fracA{1 -(1+r)^{-n} }{r}[/tex]

                         =   $200,000( 1 - (1+0.1)[tex]^{20}[/tex]) / 0.1 =  $1,702,712.74

for lease B , Pv =   $220,000( 1 - (1+0.1)[tex]^-{17}[/tex]) / 0.1  =  $1,764,741.73

the amount to be dicloased in the balance sheet at 31 december, 2018

Final answer:

The present value of lease payments assesses the current value of future lease liabilities, using a specified interest rate. Calculations for Lease A and Lease B would involve discounting their respective future lease payments at the given 10% interest rate to understand the company's financial obligations.

Explanation:

Present Value of Lease Payments

The present value of lease payments is a critical financial measure used by companies to assess the value of lease liabilities on their balance sheets. Generally, it accounts for all lease payments, discounted by a specific interest rate that reflects the time value of money. For Lease A, the company will make 20 annual payments of $200,000 each, starting on January 1, 2019. For Lease B, the company will make 17 annual payments of $220,000 each, starting on January 1, 2022. Using a discount rate of 10%, the present value of these lease payments can be calculated using the formula for the present value of an annuity.

For example, if a firm borrows $10,000 at an annual interest rate of 10%, it will owe $11,000 after one year because the original amount will accumulate interest. This illustrates the principle that a dollar today is worth more than a dollar in the future due to its potential to earn interest. Accordingly, the present value calculations for Lease A and Lease B will provide the amount the company should theoretically be willing to pay today to cover the lease payments over the course of the respective lease terms.

As part of quality control, a pharmaceutical company tests a sample of manufacturer pills to see the amount of active drug they contain is consistent with the labelled amount. That is, they are interested in testing the following hypotheses:

H0:μ=100H0:μ=100 mg (the mean levels are as labelled)

H1:μ≠100H1:μ≠100 mg (the mean levels are not as labelled)

Assume that the population standard deviation of drug levels is 55 mg. For testing, they take a sample of 1010 pills randomly from the manufacturing lines and would like to use a significance level of α=0.05α=0.05.

They find that the sample mean is 104104 mg. Calculate the zz statistic.

−17.89−17.89

−8.00−8.00

−5.66−5.66

−2.53−2.53

−0.80−0.80

0.800.80

2.532.53

5.665.66

8.008.00

17.8917.89

Answers

Answer:

The z statistic is 0.23.

Step-by-step explanation:

Test statistic (z) = (sample mean - population mean) ÷ sd/√n

sample mean = 104 mg

population mean (mu) = 100 mg

sd = 55 mg

n = 10

z = (104 - 100) ÷ 55/√10 = 4 ÷ 17.393 = 0.23

Final answer:

The z-statistic for the given hypothesis test is calculated based on the sample mean, population standard deviation, and sample size.

Explanation:

The z-statistic for this hypothesis test can be calculated using the sample mean, population standard deviation, and sample size.

Given that the sample mean is 104 mg, population standard deviation is 55 mg, and sample size is 10 pills, the z-statistic is calculated as (104 - 100) / (55 / sqrt(10)), which equals 0.8.

Therefore, the correct z-statistic for this scenario is 0.80.

While driving in the car with this family Jeffery likes to look out the window to find Punch Buggies. On average Jeffery sees 3.85 Punch Buggies per hour. Assume seeing Punch Buggies follows a Poisson process. Find the probability Jeffery sees exactly 2 Punch Biggies in an hour. Round your answer to 4 decimal places.

Answers

Answer:

0.1577 or 15.77%

Step-by-step explanation:

The Poisson probability model follows the given relationship:

[tex]P(X=k) =\frac{\lambda^k*e^{-\lambda}}{k!}[/tex]

For a Poisson model with a parameter λ = 3.85 Punch Baggies/hour, the probability of X=2 successes (exactly 2 Punch Baggies in an hour) is given by:

[tex]P(X=2) =\frac{3.85^2*e^{-3.85}}{2!}\\P(X=2) =0.1577=15.77\%[/tex]

The probability is 0.1577 or 15.77%.

- At a play, 211 quests are seated on the
main floor and 142 guests are seated in
the balcony. If tickets for the main floor
cost $7 and tickets for the balcony cost
$5, how much was earned in ticket sales?

Answers

Answer: $2187 was earned in ticket sales

Step-by-step explanation:

At the play, the total number of guests seated on the main floor is 211. If tickets for the main floor

cost $7, it means that the total cost of 211 ticket s is

211 × 7 = $1477

the total number of guests that were seated in the balcony is 142. If tickets for the main floor

cost $5, it means that the total cost of 142 tickets is

5 × 142 = $710

Therefore, the total amount of money earned in ticket sales is

1477 + 710 = $2187

The total amount earned in ticket sales is $2,187.

To determine the total amount earned in ticket sales at the play, we can use the following information:

- Number of guests on the main floor: 211

- Ticket price for the main floor: $7

- Number of guests in the balcony: 142

- Ticket price for the balcony: $5

We can calculate the earnings from each section separately and then sum them up.

Step-by-Step Calculation:

1. Calculate earnings from the main floor:

[tex]\[\text{Earnings from main floor} = \text{Number of main floor guests} \times \text{Ticket price for main floor}\][/tex]

[tex]\[\text{Earnings from main floor} = 211 \times 7 = 1477\][/tex]

2. Calculate earnings from the balcony:

[tex]\[\text{Earnings from balcony} = \text{Number of balcony guests} \times \text{Ticket price for balcony}\][/tex]

[tex]\[\text{Earnings from balcony} = 142 \times 5 = 710\][/tex]

3. Calculate total earnings:

[tex]\[\text{Total earnings} = \text{Earnings from main floor} + \text{Earnings from balcony}\][/tex]

[tex]\[\text{Total earnings} = 1477 + 710 = 2187\][/tex]

The number of defective components produced by a certain process in one day has a Poisson
distribution with mean of 20. Each defective component has probability of 0.60 of being
repairable.

(a) Find the probability that exactly 15 defective components are produced.
(b) Given that exactly 15 defective components are produced, find the probability that
exactly 10 of them are repairable.
(c) Let N be the number of defective components produced, and let X be the number of
them that are repairable. Given the value of N, what is the distribution of X?
(d) Find the probability that exactly 15 defective components are produced, with exactly 10
of them being repairable.

Answers

Final answer:

To find the probability of different scenarios involving defective components produced by a certain process, we can use the Poisson and binomial distributions.

Explanation:

(a) To find the probability that exactly 15 defective components are produced, we can use the formula for the Poisson distribution:

P(X=k) = (e^(-λ) * λ^k) / k!

Here, λ is the mean number of defective components produced in one day, which is 20. So, λ = 20. Substituting this value into the formula, we get:

P(X=15) = (e^(-20) * 20^15) / 15!

Calculating this expression will give us the probability.

(b) To find the probability that exactly 10 of the 15 defective components are repairable, we can use the binomial distribution since each defective component has a fixed probability of being repairable. Here, the number of trials is 15, and the probability of success (being repairable) is 0.60. Substituting these values into the binomial distribution formula, we can calculate the probability.

(c) Given the value of N, the number of defective components produced, X has a binomial distribution since X represents the number of repairable defective components. The probability of each component being repairable is constant, so it follows a binomial distribution.

(d) To find the probability that exactly 15 defective components are produced, with exactly 10 of them being repairable, we can multiply the probabilities obtained from parts (a) and (b) together, since these events are independent. Multiplying the results will give us the desired probability.

Learn more about Poisson and binomial distributions here:

https://brainly.com/question/7283210

#SPJ11

(a) The probability that exactly 15 defective components are produced is 0.0516

(b) Given that exactly 15 defective components are produced, the probability that exactly 10 of them are repairable is 0.1241.

(c) Given the value of N, X follows a binomial distribution

(d) The probability that exactly 15 defective components are produced, with exactly 10 of them being repairable is 0.0064.

(a) Probability of Exactly 15 Defective Components

A Poisson distribution with mean λ = 20 is used. The formula is:

[tex]P(X = k) = (e^{(-\lambda)} * \lambda^k) / k![/tex]

For k = 15 and λ = 20:

[tex]P(X = k) = (e^{(-20)} * 20^15) / 15! \approx 0.0516[/tex]

(b) Probability that Exactly 10 Out of 15 Defective Components are Repairable

This scenario uses a binomial distribution.

Given N = 15 defectives, the probability that exactly 10 are repairable (with p = 0.60) is:

[tex]P(X = 10 | N = 15) = C(15,10) * 0.6^{10} * 0.4^{5} \approx 0.1241[/tex]

(c) Distribution of X Given N

Given N = n

X (number of repairable components) follows a binomial distribution Bin(n, 0.60).

So, X | N = n follows Bin(n, 0.60).

(d) Probability of 15 Defective Components with Exactly 10 being Repairable

The joint probability is the product of the Poisson and binomial probabilities:

[tex]P(X = 15) * P(Y = 10 | X = 15)= 0.0516 * 0.1241 \approx 0.0064[/tex]

Disjoint, Independent, and Complement State whether the two events (A and B) described are disjoint, independent, and/or complements. (It is possible that the two events fall into more than one of the three categories, or none of them.) Australia plays Argentina for the championship in the Rugby World Cup. At the same time, Ukraine plays Russia for the World Team Chess Championship. Let A be the event that Argentina wins their rugby match and B be the event that Ukraine wins their chess match. Disjoint

Answers

Answer:

Independent Events

Step-by-step explanation:

Two events are mutually exclusive or disjoint if they cannot both occur at the same time.

Two events are independent if the probability of occurrence of one does not affect the probability of occurrence of the other.

The complement of any event B is the event [not B], i.e. the event that B does not occur.

Australia plays Argentina for the championship in the Rugby World Cup.

At the same time, Ukraine plays Russia for the World Team Chess Championship.

A = event that Argentina wins their rugby match.

B = the event that Ukraine wins their chess match.

The two events A and B are Independent as the outcome of one does not affect the outcome of the other

The amount of cream sauce on the fettuccine at Al Fred-O's follows a Normal distribution, with a mean of 3.78 ounces and a standard deviation of 0.14 ounce. A random sample of 12 plates of fettuccine is selected every day and the sauce is measured. What is the probability that the mean weight will exceed 3.81 ounces

Answers

Answer:

22.66% probability that the mean weight will exceed 3.81 ounces

Step-by-step explanation:

To solve this question, we have to understand the normal probability distribution and the central limit theorem.

Normal probability distribution:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central limit theorem:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 3.78, \sigma = 0.14, n = 12, s = \frac{0.14}{\sqrt{12}} = 0.04[/tex]

What is the probability that the mean weight will exceed 3.81 ounces

This probability is 1 subtracted by the pvalue of Z when X = 3.81. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{3.81 - 3.78}{0.04}[/tex]

[tex]Z = 0.75[/tex]

[tex]Z = 0.75[/tex] has a pvalue of 0.7734

1 - 0.7734 = 0.2266

22.66% probability that the mean weight will exceed 3.81 ounces

Answer:

Correct answer is 0.2290

Step-by-step explanation:

An appliance store decreases the price of a​ 19-in. television set 29​% to a sale price of $428.84. What was the original​ price?
ROUND TO THE NEAREST CENT

Answers

Answer: $553.20

Step by step explanation: Since they took the price down 29% multiply the price by 1.29 to add the 29 percent back to the total amount. 428.84 * 1.29 = 553.20

Show triangle XMZ is congruent to triangle YMZ. Support each part of your answer. Hint: mark the diagram.

Answers

Step-by-step explanation:

Let x be line xy.

y represents line zm.

z is line zx or line zy

The area of one of the smaller triangles is x/2* y.

same for the other triangle.

The perimeter for either one of the triangles is x/2+y+z.

Listed below are body temperatures from five different subjects measured at 8 AM and again at 12 AM.
Find the values of d and s_d. In​ general, what does μ_d represent?
Temperature (°F)at 8 AM 97.5 99.3 97.8 97.5 97.4
Temperature (°F)at 12 AM 98.0 99.6 98.1 97.1 97.7

Answers

Answer:

The value of [tex]\bar d[/tex] is -0.2.

The value of [tex]s_{\bar d}[/tex] is 0.3464.

[tex]\mu_{d}[/tex] = mean difference in body temperatures.

Step-by-step explanation:

The data for body temperatures from five different subjects measured at 8 AM and again at 12 AM are provided.

The formula of [tex]\bar d[/tex] and [tex]s_{\bar d}[/tex] are:

[tex]\bar d=\frac{1}{n}\sum (x_{1}-x_{2})[/tex]

[tex]s_{\bar d}=\sqrt{\frac{1}{n-1}\sum (d_{i}-\bar d)^{2}}[/tex]

Consider the table below.

Compute the value of [tex]\bar d[/tex] as follows:

[tex]\bar d=\frac{1}{n}\sum (x_{1}-x_{2})=\frac{1}{5}\times-1=-0.2[/tex]

Thus, the value of [tex]\bar d[/tex] is -0.2.

Compute the value of [tex]s_{\bar d}[/tex] as follows:

[tex]s_{\bar d}=\sqrt{\frac{1}{n-1}\sum (d_{i}-\bar d)^{2}}=\sqrt{\frac{0.48}{4}}=0.3464[/tex]

Thus, the value of [tex]s_{\bar d}[/tex] is 0.3464.

The variable [tex]\mu_{d}[/tex] represents the mean difference in body temperatures  measured at 8 AM and again at 12 AM.

Use the binomial theorem to find the coefficient of xayb in the expansion of (5x2 + 2y3)6, where a) a = 6, b = 9. b) a = 2, b = 15. c) a = 3, b = 12. d) a = 12, b = 0. e) a = 8, b = 9.

Answers

Answer:

Step-by-step explanation:

                    1

                1      1

            1      2      1

         1     3      3      1

      1    4     6       4       1

   1   5    10     10       5     1

 1    6   15   20      15    6     1

1    6   15   20      15    6     1

we use these for the expansion of (5x² + 2y³)⁶

1(5x²)⁶(2y³)⁰ + 6(5x²)⁵(2y³)¹ + 15(5x²)⁴(2y³)² + 20(5x²)³(2y³)³+  15(5x²)²(2y³)⁴+ 6(5x²)¹(2y³)⁵ + 1(5x²)⁰(2y³)⁶

78125ₓ¹²+187500ₓ¹⁰ y³ +37500ₓ⁸y⁶+20000ₓ⁶y⁹+6000x⁴y¹²+960x²y¹⁵+2y¹⁸

a.)a = 6, b = 9. the coefficient of xᵃyᵇ ( 20000ₓ⁶y⁹) = 20000

b) a = 2, b = 15. the coefficient of xᵃyᵇ ( 960x²y¹⁵) = 960

c) a = 3, b = 12. the coefficient of xᵃyᵇ is not present

d) a = 12, b = 0 the coefficient of xᵃyᵇ ( 78125ₓ¹²)  = 78125

e) a = 8, b = 9. the coefficient of xᵃyᵇ is not present

The coefficients of xᵃyᵇ for respective given values of a and b have been provided below.

We are given the expression;

(5x² + 2y³)⁶

Using online binomial expansion calculator gives us;

15625x¹² + 37500x¹⁰y³ + 37500x⁸y⁶ + 20000x⁶y⁹ + 6000x⁴y¹² + 960x²y¹⁵ + 64y¹⁸

We want to find the coefficient of xᵃyᵇ in the binomial expansion;

1) When a = 6 and b = 9, the coefficient is 20000

2) When a = 2, b = 15; the coefficient is 960

3) When a = 3 and b = 12; there is no coefficient

4) When a = 12 and b = 0; the coefficient is 15625

5) When a = 8 and b = 9; there is no coefficient.

Read more at; https://brainly.com/question/13672615

.Find the Z-sCore corresponding to the given value and use the z-SCore to determine whether the value is unusual. Consider a score to be unusual if its z-score is less than -2.00 or greater than 2.00. Round the z-score to the nearest tenth if necessary. A test score of 50.0 on a test having a mean of 69 and a standard deviation of 10.


a. 1.9; not unusual

b. -19; unusual

c. -1.9; unusual

d. -1.9; not unusual

Answers

Answer:

d. -1.9; not unusual

Step-by-step explanation:

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that;

[tex]X = 50, \mu = 69, \sigma = 10[/tex].

So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{50 - 69}{10}[/tex]

[tex]Z = -1.9[/tex]

A z-score of -1.9 is higher than -2 and lower than 2, so it is not unusual.

So the correct answer is:

d. -1.9; not unusual

Suppose a new production method will be implemented if a hypothesis test supports the conclusion that the new method reduces the mean operating cost per hour. a. State the appropriate null and alternative hypotheses if the mean cost for the current production method is 215 per hour.

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?

Answers

a. Null hypothesis (H0): Mean cost for the new production method is $215 per hour.

Alternative hypothesis (H1): Mean cost for the new production method is less than $215 per hour.

b. Type I error: Rejecting the null hypothesis when it is true; consequence: Implementing the new method incorrectly and incurring unnecessary costs.

c. Type II error: Failing to reject the null hypothesis when it is false; consequence: Missing the opportunity to adopt a cost-effective production method and continuing with higher operating costs.

We have,

a. The appropriate null and alternative hypotheses would be:

Null Hypothesis (H0): The mean cost for the new production method is equal to or greater than $215 per hour.

Alternative Hypothesis (H1): The mean cost for the new production method is less than $215 per hour.

b. The Type I error in this situation would be rejecting the null hypothesis when it is actually true.

In other words, it would mean concluding that the new production method reduces the mean operating cost per hour when it actually doesn't.

The consequence of making this error is that resources, time, and effort might be invested in implementing the new method based on incorrect information, potentially leading to unnecessary costs and inefficiencies.

c. The Type II error in this situation would be failing to reject the null hypothesis when it is actually false.

In other words, it would mean failing to conclude that the new production method reduces the mean operating cost per hour when it actually does.

The consequence of making this error is that the opportunity to adopt a more cost-effective production method would be missed, potentially leading to continued higher operating costs and missed efficiency gains.

Thus,

a. Null hypothesis (H0): Mean cost for the new production method is $215 per hour.

Alternative hypothesis (H1): Mean cost for the new production method is less than $215 per hour.

b. Type I error: Rejecting the null hypothesis when it is true; consequence: Implementing the new method incorrectly and incurring unnecessary costs.

c. Type II error: Failing to reject the null hypothesis when it is false; consequence: Missing the opportunity to adopt a cost-effective production method and continuing with higher operating costs.

Learn more about hypothesis testing here:

https://brainly.com/question/17099835

#SPJ4

Final answer:

The null and alternative hypotheses are set as μ ≥ 215 and μ < 215 respectively. A Type I error, rejecting the null hypothesis when it's true, could lead to unnecessary changes. A Type II error, failing to reject the null hypothesis when it's false, could result in missed cost savings.

Explanation:

a. In this situation, the null hypothesis (H0) would state that the mean cost of the new production method is equal to or greater than 215. We can denote this as: H0: μ ≥ 215. The alternative hypothesis (Ha) posits that the mean cost of the new production method is less than 215, denoted as: Ha: μ < 215.

b. A Type I error would occur if we incorrectly reject the null hypothesis, concluding that the new method reduces the cost when, in fact, it does not. The consequence could be implementing a production method that doesn't actually provide the desired savings, which could lead to unnecessary changes and associated costs.

c. A Type II error would happen if we fail to reject the null hypothesis when it's actually false, meaning the new method does reduce the cost but we fail to recognize it. The consequence of this error could be missing out on an opportunity to reduce operating costs, potentially leading to higher than necessary expenses.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

The rate at which a body cools also depends on its exposed surface area S. If S is a constant, then a modification of (2), given in Section 3.1, is dT dt = kS(T − Tm), where k < 0 and Tm is a constant. Suppose that two cups A and B are filled with coffee at the same time. Initially, the temperature of the coffee is 145° F. The exposed surface area of the coffee in cup B is twice the surface area of the coffee in cup A. After 30 min the temperature of the coffee in cup A is 95° F. If Tm = 65° F, then what is the temperature of the coffee in cup B after 30 min? (Round your answer to two decimal places.)

Answers

Answer:

  76.25°

Step-by-step explanation:

The solution to the differential equation is an exponential curve with a horizontal asymptote at Tm. It passes through (0, 145) and (30, 95), so the equation can be written as ...

  T = 80 +65((95-65)/(145-65))^(t/30)

  T = 80 +65(3/8)^(t/30)

That is, the temperature difference is reduced to 3/8 of its original value in 30 minutes.

Since the coffee in cup B cools twice as fast, it will cool to the same temperature (95°) in 15 minutes. In the next 15 minutes, the temperature difference will be reduced to (3/8)^2 of the original 80°, so will be 11.25°. That is, the temperature of cup B will be ...

  11.25° +65° = 76.25°

after 30 minutes.

Final answer:

The temperature of coffee in cup B after 30 minutes would be 45° F, as the rate of cooling is faster due to a larger exposed surface area.

Explanation:

According to the given condition, the rate of cooling (dT/dt) is proportional to the exposed surface area (S). It suggests that, with the surface area doubled for cup B, the rate of cooling (change in temperature) would also be double. Therefore, in the first 30 minutes, the temperature of coffee would decrease twice as fast as it did in cup A. In cup A, the temperature decreases from 145° F to 95° F in 30 minutes hence a decrease of 50° F. If the temperature of cup B decreases twice as fast, it decreases 100° F in 30 minutes. So, the temperature of the coffee in cup B after 30 minutes would be 145° F - 100° F = 45° F.

Learn more about Rate of Cooling here:

https://brainly.com/question/31710525

#SPJ3

. Suppose that f is a continuous function and that −24 ≤ f 00(x) ≤ 3 for 0 ≤ x ≤ 1. If the Midpoint Rule of order n, namely Mn, is used to approximate R 1 0 f(x) dx, how large must n be to guarantee that the absolute error in using Mn ≈ R 1 0 f(x) dx is less than 1/100?

Answers

Answer:

Sew attachment for xomplete solution and answer

Step-by-step explanation:

Given that;

Suppose that f is a continuous function and that −24 ≤ f 00(x) ≤ 3 for 0 ≤ x ≤ 1. If the Midpoint Rule of order n, namely Mn, is used to approximate R 1 0 f(x) dx, how large must n be to guarantee that the absolute error in using Mn ≈ R 1 0 f(x) dx is less than 1/100

See attachment

3x^2+kx=-3 What is the value of K will result in exactly one solution to the equation?

Answers

Answer:

For k = 6 or k = -6, the equation will have exactly one solution.

Step-by-step explanation:

Given a second order polynomial expressed by the following equation:

[tex]ax^{2} + bx + c, a\neq0[/tex].

This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = (x - x_{1})*(x - x_{2})[/tex], given by the following formulas:

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

If [tex]\bigtriangleup = 0[/tex], the equation has only one solution.

In this problem, we have that:

[tex]3x^{2} + kx + 3 = 0[/tex]

So

[tex]a = 3, b = k, c = 3[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

[tex]\bigtriangleup = k^{2} - 4*3*3[/tex]

[tex]\bigtriangleup = k^{2} - 36[/tex]

We will only have one solution if [tex]\bigtriangleup = 0[/tex]. So

[tex]\bigtriangleup = 0[/tex]

[tex]k^{2} - 36 = 0[/tex]

[tex]k^{2} = 36[/tex]

[tex]k = \pm \sqrt{36}[/tex]

[tex]k = \pm 6[/tex]

For k = 6 or k = -6, the equation will have exactly one solution.

To overcome an infection an anti-biotic is injected into David’s bloodstream. After the injection the anti-biotic in his body decreases at a rate proportional to the amount, Q(t), present at time t. If the initial injection was 8 ccs and 5 ccs remain after 4 hours, estimate how many ccs will remain after 5 hours?

Answers

Answer:

4.45 ccs will remain after 5 hours.

Step-by-step explanation:

The anti-biotic in his body decreases at a rate proportional to the amount, Q(t), present at time t.

(dQ/dt) = - kQ ((Minus sign because it's a rate of reduction)

(dQ/dt) = -kQ

(dQ/Q) = -kdt

 ∫ (dQ/Q) = -k ∫ dt 

Solving the two sides as definite integrals by integrating the left hand side from Q₀ to Q and the Right hand side from 0 to t.

We obtain

In (Q/Q₀) = -kt

(Q/Q₀) = e⁻ᵏᵗ

Q(t) = Q₀ e⁻ᵏᵗ

the initial injection was 8 ccs and 5 ccs remain after 4 hours

Q₀ = 8 ccs,

At t = 4 hours, Q = 5 ccs

5 = 8 e⁻ᵏᵗ

e⁻ᵏᵗ = 0.625

-kt = In (0.625) = -0.47

-4k = 0.47

k = 0.1175 /hour

Q(t) = Q₀ e⁻⁰•¹¹⁷⁵ᵗ

At t = 5 hours, Q = ?

Q = 8 e⁻⁰•¹¹⁷⁵ᵗ

0.1175 × 5 = 0.5875

Q = 8 e(^-0.5875)

Q = 4.45 ccs

Hope this Helps!!!

What happens to the value of the expression \dfrac5x+5 x 5 ​ +5start fraction, 5, divided by, x, end fraction, plus, 5 as xxx decreases from a large positive number to a small positive number?

Answers

Answer:

It increases

Step-by-step explanation:

(5/x) + 5

As x decreases, 5/x increases.  So the expression increases.

Events A1, A2 and A3 form a partiton of the sample space S with probabilities P(A1) = 0.3, P(A2) = 0.5, P(A3) = 0.2.
If E is an event in S with P(E|A1) = 0.1, P(E|A2) = 0.6, P(E|A3) = 0.8, compute

a. P(E) =
b. P(A1|E) =
c. P(A2|E) =
d. P(A3|E) =

Answers

a. By the law of total probability,

[tex]P(E)=P(A_1\cap E)+P(A_2\cap E)+P(A_3\cap E)[/tex]

and using the definition of conditional probability we can expand the probabilities of intersection as

[tex]P(E)=P(E\mid A_1)P(A_1)+P(E\mid A_2)P(A_2)+P(E\mid A_3)P(A_3)[/tex]

[tex]P(E)=0.1\cdot0.3+0.6\cdot0.5+0.8\cdot0.2=0.49[/tex]

b. Using Bayes' theorem (or just the definition of conditional probability), we have

[tex]P(A_1\mid E)=\dfrac{P(A_1\cap E)}{P(E)}=\dfrac{P(E\mid A_1)P(A_1)}{P(E)}[/tex]

[tex]P(A_1\mid E)=\dfrac{0.1\cdot0.3}{0.49}\approx0.0612[/tex]

c. Same reasoning as in (b):

[tex]P(A_2\mid E)=\dfrac{P(E\mid A_2)P(A_2)}{P(E)}\approx0.612[/tex]

d. Same as before:

[tex]P(A_3\mid E)=\dfrac{P(E\mid A_3)P(A_3)}{P(E)}\approx0.327[/tex]

(Notice how the probabilities conditioned on [tex]E[/tex] add up to 1)

In a completely randomized experimental design involving five treatments, a total of 65 observations were recorded for each of the five treatments. The following information is provided. SSTR = 200 (Sum Square Between Treatments) SST = 800 (Total Sum Square) 9. Refer to Exhibit 1. The sum of squares within treatments (SSE) is a. 1,000 b. 600 c. 200 d. 1,600 10. Refer to Exhibit 1. The number of degrees of freedom corresponding to between treatments is

a. 60
b. 59
c. 5
d. 4

Answers

Answer:

5

Step-by-step explanation:

numerator degrees of freedom=[tex]Treatments-1[/tex]

[tex]N_d_f=5-1=4[/tex]

Total degrees of freedom=[tex]Treatments\times \ Observations Recorded-1[/tex]

[tex]T_d_f=5\times13-1=64[/tex]

Denominator Degrees of freedom=[tex]T_d_f-N_d_f=64-4=60[/tex]

Therefore, to calculate the degrees of freedom corressponding to treatments:

[tex]F=\frac{MSR}{MSE}\\MSR=200\div4=50\\MSE=(800-200)\div 60=10\\F=50\div10=5[/tex]

A sprint duathlon consists of a 5 km run, a 20 km bike ride, followed by another 5 km run. The mean finish time of all participants in a recent large duathlon was 1.67 hours with a standard deviation of 0.25 hours. Suppose a random sample of 30 participants was taken and the mean finishing time was found to be 1.59 hours with a standard deviation of 0.30 hours. What is the standard error for the mean finish time of 30 randomly selected participants

Answers

Answer:

The standard error for the mean finish time of 30 randomly selected participants is 0.055 hours

Step-by-step explanation:

Standard error = sample standard deviation ÷ sqrt (sample size)

sample standard deviation = 0.30 hours

sample size = 30

standard error = 0.30 ÷ sqrt(30) = 0.30 ÷ 5.477 = 0.055 hours

MULTIPLE LINEAR REGRESSION What is the model for the multiple linear regression when weight gain is a dependent variable and the explanatory variables are hemoglobin change, tap water consumption, and age. Be sure to define all symbols and model assumptions.

Answers

Multiple linear regression can be said to be a statistical technique that uses several explanatory variables to predict the outcome of a response variable.

The Formula for Multiple Linear Regression Is

yi= β0+β1xi1+β2xi2+...+βpxip+ϵ

where, for i=n observations

yi​= Dependent variable

xi​= Expanatory variable

β0​= y - intercept (constant term)

βp​= Slope coefficients for each explanatory variable

ϵ= The model’s error term (also known as the residuals)​

From the question written above,

yi= weight gain which is dependent on the explanatory variables which are hemoglobin change, tap water consumption, and age. i.e. xi

Model assumptions

1. There is a linear relationship between the dependent variables and the independent variables.

2. The independent variables are not too highly correlated with each other.

3. yi observations are selected independently and randomly from the population.

4. Residuals should be normally distributed with a mean of 0 and variance σ.

(Investopedia, 2019)

A telephone survey conducted by the Maritz Marketing Research company found that 43% of Americans expect to save more money next year than they saved last year. Forty-five percent of those surveyed plan to reduce debt next year. Of those who expect to save more money next year, 81% plan to reduce debt next year. An American is selected randomly. a. What is the probability that this person expects to save more money next year and plans to reduce debt next year? b. What is the probability that this person expects to save more money next year or plans to reduce debt next year? c. What is the probability that this person expects to save more money next year and does not plan to reduce debt next year? d. What is the probability that this person does not expect to save more money given that he/she does plan to reduce debt next year?

Answers

Answer:

A) P(A⋂B) = 0.35

B) P(A⋃B)= 0.53

C) P(A⋂B′) = 0.08

D) P(A|B) = 0.778

Step-by-step explanation:

We know the following from the question:

- Let Proportion of Americans who expect to save more money next year than they saved last year be

P(A) and its = 0.43

-Let proportion who plan to reduce debt next year be P(B) and it's =0.81

A) probability that this person expects to save more money next year and plans to reduce debt next year which is; P(A⋂B) = 0.43 x 0.81 = 0.348 approximately 0.35

B) probability that this person expects to save more money next year or plans to reduce debt next year which is;

P(A⋃B)= P(A) + P(B) − P(A⋂B)

So, P(A⋃B)= 0.43 + 0.45 − 0.35 = 0.53

C). Probability that this person expects to save more money next year and does not plan to reduce debt next year which is;

P(A⋂B′) = P(A) − P(A⋂B)

P(A⋂B′) =0.43 − 0.35 = 0.08

D) Probability that this person does not expect to save more money given that he/she does plan to reduce debt next year which is;

P(A|B) = [P(A⋂B)] / P(B)

So P(A|B) =0.35/0.45 = 0.778

Final answer:

The probabilities for the given scenarios are as follows: a. 34.93%, b. 53.07%, c. 8.07%, and d. 126.67%.

Explanation:

a. To find the probability that a person expects to save more money next year and plans to reduce debt next year, we need to multiply the probabilities of both events occurring. The probability that a person expects to save more money next year is 43%, and of those who expect to save more money next year, 81% plan to reduce debt. Therefore, the probability is 0.43  imes 0.81 = 0.3493, or 34.93%.

b. To find the probability that a person expects to save more money next year or plans to reduce debt next year, we can add the probabilities of both events occurring and subtract the probability of both events occurring at the same time (found in part a). The probability of expecting to save more money next year is 43%, and the probability of planning to reduce debt next year is 45%. Therefore, the probability is 0.43 + 0.45 - 0.3493 = 0.5307, or 53.07%.

c. To find the probability that a person expects to save more money next year and does not plan to reduce debt next year, we subtract the probability from part a from the probability of expecting to save more money next year. The probability of expecting to save more money next year is 43%, and the probability of both expecting to save more money and planning to reduce debt is 34.93%. Therefore, the probability is 0.43 - 0.3493 = 0.0807, or 8.07%.

d. To find the probability that a person does not expect to save more money given that he/she does plan to reduce debt next year, we need to divide the probability of not expecting to save more money by the probability of planning to reduce debt next year. The probability of not expecting to save more money is 1 - 0.43 = 0.57, and the probability of planning to reduce debt next year is 45%. Therefore, the probability is 0.57 / 0.45 = 1.2667, or 126.67%.

Learn more about Probability and Statistics here:

https://brainly.com/question/35203949

#SPJ3

Other Questions
KINDERGARTENER ASSIGNMENT Can anyone describe me the OVERALL of this house in super SIMPLE sentenceS (without including whats inside the rooms)..???? Ill translate it to Spanish after. You notice that your mother, who is 61 years old, begins to complain about her difficulty seeing while night driving, with the size of the print on her PC screen, with blurry street signs, and with the dimness of her kitchen lights. She may be experiencing loss of visual acuity due to ______________. Venus Electronics Inc. wants to ensure that its products best suit the needs of its customers, so the head of the marketing department holds a meeting with the managers of the production department. This illustrates _____ communication. What is the perimeter of the figure Is parallelogram HIJK a square? In order to complete the service line information on claims when units of measure are involved insurance math is required. For example this is the HCPCS description for an injection of the drug Eloxatin: J9263 oxaliplatain, 0.5 mg if the physician provided 50 mg infusion of the drug instead of an injection the service line is j9263 x 100 to report a unit of 50(100x 0.5 mg=50). What is the unit reported for service line information if a 150 mg infusion is provided? (Two-Step Equations - Integers)Sheet 31The bartender of a poolside bar prepares 96 fluid Ounces of mocktail by blendingthe juice of cranberries and oranges. He uses three times the amount of cranberryjuice than orange juice to prepare the mocktail. He also adds 24 ounces of lemonextract. How many fluid Ounces of orange juice was used in all?Cloubt 1tbe ofroncorn The U.S. Constitution separates the powers of the three branches of government: executive, legislative, and judicial. This is known as ___________. WILL MARK BRAINLIESTMemories of a MemoryHave you ever witnessed something amazing, shocking or surprising and found when describing the event that your story seems to change the more you tell it? Have you ever experienced a time when you couldn't really describe something you saw in a way that others could understand? If so, you may understand why some experts think eyewitness testimony is unreliable as evidence in scientific inquiries and trials. New insights into human memory suggest human memories are really a mixture of many non-factual things.First, memory is vague. Imagine your room at home or a classroom you see every day. Most likely, you could describe the room very generally. You could name the color of the walls, the floors, the decorations. But the image you describe will never be as specific or detailed as if you were looking at the actual room. Memory tends to save a blurry image of what we have seen rather than specific details. So when a witness tries to identify someone, her brain may recall that the person was tall, but not be able to say how tall when faced with several tall people. There are lots of different kinds of "tall."Second, memory uses general knowledge to fill in gaps. Our brains reconstruct events and scenes when we remember something. To do this, our brains use other memories and other stories when there are gaps. For example, one day at a library you go to quite frequently, you witness an argument between a library patron and one of the librarians. Later, when telling a friend about the event, your brain may remember a familiar librarian behind the desk rather than the actual participant simply because it is recreating a familiar scene. In effect, your brain is combining memories to help you tell the story.Third, your memory changes over time. It also changes the more you retell the story. Documented cases have shown eyewitnesses adding detail to testimony that could not have been known at the time of the event. Research has also shown that the more a witness's account is told, the less accurate it is. You may have noticed this yourself. The next time you are retelling a story, notice what you add, or what your brain wants to add, to the account. You may also notice that you drop certain details from previous tellings of the story.With individual memories all jumbled up with each other, it is hard to believe we ever know anything to be true. Did you really break your mother's favorite vase when you were three? Was that really your father throwing rocks into the river with you when you were seven? The human brain may be quite remarkable indeed. When it comes to memory, however, we may want to start carrying video cameras if we want to record the true picture.Which line from the text best explains why the author suggests we start carrying video cameras?A: You may understand why some experts think eyewitness testimony is unreliable B: The next time you are retelling a story, notice what you addC: With individual memories all jumbled up with each otherD:The human brain may be quite remarkable indeed marvin has a standard deck of cards, what is the probability of 5? 1220000 scientific notation ll in the blank.Wegener's original name for the supercontinent was _______.When two tectonic plates converge and one slips under the other, a/an _______ zone is formed.The process of heating the mantle from the core of the earth causes expansion and movement of material in a/an _______ cell, which is partly responsible for the movement of continents.Gravity is responsible for the movement of continents in two ways: through _______ at subduction zones as gravity drags a plate downward, and through _______ as gravity pushes plates downslope, away from the center.When two opposing plates meet and scrape against one another at a fault, stress is created when the two moving plates catch or stick together. As this stress is released, a/an _______ occurs.The Ring of Fire is a region of intense volcanic and seismic activity that borders the _______ Plate. Joan is building a sandbox in the shape of a regular pentagon. The perimeter of the pentagon is 35y4 65x3 inches. What is the length of one side of the sandbox? 5y 9 inches 5y4 9x3 inches 7y 13 inches 7y4 13x3 inches PLS HELP ASAP!!! WILL MARK BRAINLEST!!! Which statement best describes the relation (3, 4), (4, 3), (6, 3), (7, 8), (5, 4)? Question 2 options: The relation does not represent y as a function of x, because each value of x is associated with a single value of y. The relation does not represent y as a function of x, because each value of y is associated with two values of x. The relation represents y as a function of x, because one value of y is associated with two values of x. The relation represents y as a function of x, because each value of x is associated with a single value of y. In Laurie's psychology laboratory, Laurie and her lab partner conditioned a rat to press a lever for food when a red light was on, but discovered that the rat would also press the lever when a white light was on. Laurie and her partner reported that the rat had exhibited _____ through _____ conditioning. Mary got 85% correct on her math test. Mary missed 6 questions. How many total questions were on her math final? Italy would switch sides in 1915.whom did this hurt Machine 1 can complete a task in x hours while an upgraded machine (machine 2) needs 9 fewer hours. The plant manaknows the two machines will take at least 6 hours, as represented by the inequalityWhich answer choice includes all solutions to the inequality and identifies which interval(s) contain viable completion timemachine 12(0.31 U 9.18] both contain viable times for machine 1(0 3] U9,18]; only (9.18) contains viable times for machine 1(-00U13,9 UL18,co), no interval contains viable times for machine 1(-0,0) U(39) U (18,co), but only [18,00) contains viable times for machine 1 3.) Jada takes out a loan for $6000 to start a business after hig8% interest for the loan. After 5 years how much interest will be added? MIT economist Jerry Housman has estimated the price elasticity of demand for Post Raisin Bran cereal to be -2.5 and the price elasticity of demand for all types of breakfast cereals to be -0.9. The demand for Post Raisin Brand cereal is:__________ 1. elastic 2. inelastic the demand for all types of breakfast cereals is:_____ 1. inelastic2. elastic Steam Workshop Downloader