300,000 kilo
your welcome
What is the difference between a transverse and a longitudinal wave?
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave.
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
Electromagnetic radiation
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave.
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
Sound waves
An aircraft engine takes in 9000 j of heat and discards 6400 j each cycle. (a) what is the mechanical work output of the engine during one cycle? (b) what is the thermal efficiency of the engine?
a. The mechanical work output of the engine during one cycle is 2600 Joules.
b. The thermal efficiency of the engine is equal to 28.89%.
Given the following data:
Heat input = 9000 JoulesHeat output = 6400 Joulesa. To determine the mechanical work output of the engine during one cycle:
Mathematically, the mechanical work output of an engine during one cycle is given by the formula:
[tex]Work = H_{in}- H_{out}\\\\Work = 9000-6400[/tex]
Work output = 2600 Joules
b. To determine the thermal efficiency of the engine:
[tex]Th_{E} =\frac{Work}{H_{in}} \times 100\\\\Th_{E} =\frac{2600}{9000} \times 100\\\\Th_{E} =0.2889 \times 100[/tex]
Thermal efficiency = 28.89%
Read more: https://brainly.com/question/22599382
What diameter is the sun by the scale used? a0 mm
Some enterprising physics students working on a catapult decide to have a water balloon fight in the school hallway. the ceiling is of height 3.6 m, and the balloons are launched at a velocity of 11 m/s. the acceleration of gravity is 9.8 m/s 2 . at what angle must they be launched to just graze the ceiling?
[tex]50^\circ[/tex] angle above the horizontal.
Step by Step Solution :
Given :
Launch speed = 11 m/sec
Height of the ceiling = 3.6 m
[tex]\rm g = 9.8\;m/sec^2[/tex]
Calculation :
Let [tex]\theta[/tex] be the launch angle, measured above the horizontal.
Vertical component of initial speed is
[tex]\rm v = 11sin\theta[/tex]
We know that
[tex]\rm v^2 - u^2=2as[/tex]
[tex]\rm 11^2 sin^2\theta - 2\times9.8\times 3.6 =0[/tex]
[tex]\rm sin\theta = 0.7636[/tex]
[tex]\rm \theta = sin^-^10.7636[/tex]
[tex]\theta = 49.8^\circ \approx 50^\circ[/tex]
[tex]50^\circ[/tex] angle above the horizontal they launched to just graze the ceiling.
For more information, refer the link given below
https://brainly.com/question/11298125?referrer=searchResults
) the best rebounders in basketball have a vertical leap (that is, the vertical movement of a fixed point on their body) of about 120 cm. (a) what is their initial "launch" speed off the ground? (b) how long are they in the air?
The initial 'launch' speed of a basketball rebounder with a vertical leap of 120 cm is approximately 4.9 m/s. They are in the air for about 1 second, given the symmetry of the jump's ascent and descent.
Explanation:The best rebounders in basketball who have a vertical leap of 120 cm possess a certain initial launch speed and time in the air. These can be determined using the equations of motion in physics. The equation for the height h in terms of initial speed v, time t, and acceleration due to gravity g (about 9.8 m/s²) is: h = vt - 0.5gt².
(a) Setting h to 1.2 meters (or 120 cm) and t to the time of the peak of the jump (which is when the velocity v becomes 0), we get h = 0.5gt, or v = gt. Plugging in g, we get an initial launch speed off the ground of roughly 4.9 m/s.
(b) To find out how long they are in the air, we recognise that the time to reach the peak and the time to fall back down should be the same, given symmetry. Therefore the total time in air would be 2t, which is also equal to 2v/g. Plugging in the values, we get the athlete is in the air for roughly 1 second.
Learn more about Vertical Leap in Basketball here:https://brainly.com/question/11701949
#SPJ11
Pls help!!! Quick question!!!
Which of the following is a difference between rotation and translation?
A. Rotation has a reference point, while translation does not.
B. Translation has a reference point, while translation does not.
C. A rotation body moves around an internal or external axis, but a translating body does not.
D. A translation body moves around an external axis, but a rotating body moves around an internal axis.
obesity refers to gradual weight gain as a person grows older
4. You bought a block of cheddar from the grocery store. If you cut a small piece and a large piece from the same block of cheese, will they have the same density?
Answer: They will have same density
Explanation:
Density is defined as the mass contained per unit volume.
[tex]Density=\frac{mass}{Volume}[/tex]
Density is characteristic of a compound and thus remains constant at fixed temperatures.
A small piece would have lesser amount and will occupy a smaller volume. Similarly a larger piece would have larger amount and will occupy a larger volume.
Thus the ratio of mass and volume will remain fixed or constant and the density will be same for smaller and larger piece.
A 1.28×103 kg car accelerates uniformly from rest to 11.7 m/s in 2.93 s. what is the work done on the car in this time interval?
To solve this we must be knowing each and every concept related to work and its calculation. Therefore, 439,805 Joules is the work done on the car in this time interval.
What is work?Work in physics is the energy delivered to or out of an item by applying force across a displacement. It is frequently expressed in its most basic form as the combination of displacement and force.
When a force is applied, it is said to produce positive work if it has a proportion in the orientation of the movement of a site of application. Work done is positive when the direction of force acting on the object and displacement of the object both are in the same direction.
Mathematically,
acceleration=(V-Vo)/t
= (12.4-0)/3.77
= 3.29 m/s^2
d = 0.5×3.29×(3.77)² = 23.37 m
Work = F×d
= (m×g) ×d
=(1920*9.8)23.37
= 439,805 Joules.
Therefore, 439,805 Joules is the work done on the car in this time interval.
To learn more about work, here:
brainly.com/question/18094932
#SPJ5
What is vigorous activity?
A any activity or exercise performed most days of the week, preferably daily
B any activity or exercise that ranges in intensity from heavy-to-maximum exertion
C any activity that ranges in intensity from light-to-borderline-exertion
Any activity or exercise that ranges in intensity from heavy-to-maximum exertion is vigorous activity.
What is vigorous activity?Vigorous activities require the highest amount of oxygen consumption to complete the activity.
Exercise that is performed with a lot of effort, also known as vigorous exercise or high-intensity exercise, causes a markedly elevated heart rate and fast breathing. Exertion is regarded severe to extremely hard with this activity, making it challenging to speak in complete sentences. Activities like singles tennis, cycling, and running are typically categorized as vigorous.
Hence vigorous activity is any activity or exercise that ranges in intensity from heavy-to-maximum exertion. So, option (B) is correct.
Learn more about vigorous activity here:
https://brainly.com/question/2426221
There are 206 _____ in the human body that work together to form the _______ system.
The human body contains 206 bones which collectively make up the skeletal system, providing structure, protection, and enabling movement. Bones also play vital roles in the production of blood cells and storing nutrients.
Explanation:There are 206 bones in the human body that work together to form the skeletal system. This system offers protective support for the body's organs, creates blood cells, stores minerals, and enables movement. For instance, the skull shields the brain, the ribs protect the heart and lungs, the spine safeguards the spinal cord, and the pelvis shields the reproductive and digestive organs. The skeletal system and muscular system are the reasons we can move.
Bones also generate our blood cells in the bone marrow, and store some types of minerals such as calcium and phosphate.
Learn more about bones and the skeletal system here:https://brainly.com/question/2329702
#SPJ6
Which is not an assumption about particles in a gas according to the kinetic theory?
The motion of one particle is unaffected by other particles unless the particles collide.
The forces of attraction among particles keep the particles close together.
Under ordinary conditions, forces of attraction between particles can be ignored.
What did William Herschel discover that Isaac newton didn't
William Herschel discovered the planet Uranus, mapped the structure of the Milky Way, and was the first to detect infrared radiation, all of which were discoveries not made by Isaac Newton.
William Herschel made several significant discoveries that Isaac Newton did not, owing to the advancement of scientific knowledge and technology in Herschel's time. One of Herschel's most noteworthy achievements was the discovery of the planet Uranus in 1781. This discovery was the first identification of a new planet in the modern era and extended the known boundaries of our solar system at the time.
Furthermore, Herschel's contributions to astronomy also include the recognition of the Milky Way's structure. In 1785, using his custom-built large reflecting telescope, he conducted an extensive star count along with his sister Caroline. Through this, he mapped the shape of the Milky Way Galaxy, deducing that it has a disk-like structure with the sun near its central region. Prior to Herschel's observations, the full extent and shape of the galaxy were not understood.
Mechanical (sound) waves are unable to travel through a vacuum, such as through space, but radio waves are transmitted to earth from satellites. how is this possible?
a.radio waves are electromagnetic waves.
b.satellites are located within our atmosphere.
c.radio waves are very high energy mechanical waves.
d.radio waves are changed to gamma rays for transmission.
"what is the important measure from weather radar that gives the intensity of the precipitation?"
The measure that gives the intensity of precipitation from the weather radar is the rate of dispersion of the microwave energy pulses returning back to the radar .
There are three main ways of measuring intensity of precipitation and they are
Precipitation/rain gauge Ground based weather radar Earth-observing satellitesFor the purpose of your question the weather radar been discussed is the ground based weather radar.
A weather radar is an equipment used for the predetermination of precipitation in a region. it performs this function by sending out microwave energy pulses via tube transmitter into the atmosphere( air ) to detect the possibility of precipitation.
Hence The important measure of the weather radar that helps determine the intensity of the precipitation is; rate of dispersion of the microwave energy pulses sent out to the atmosphere.
learn more : https://brainly.com/question/17950615
What is energy? differentiate between potential and kinetic energy?
Energy is the capacity to do work or cause motion, existing as either potential energy, which is stored, or kinetic energy, which is the energy of motion. Potential energy can be elastic, gravitational, or chemical, while kinetic energy is directly involved in movement and changes in motion.
Energy is the capacity to do work or cause motion. It exists in various forms which can be generally categorized into potential energy and kinetic energy. The fundamental difference between these two is that potential energy is stored energy based on an object's position, condition, or composition, whereas kinetic energy is the energy of motion, the energy that an object possesses due to its movement.
In kinetic energy, an object is in motion, like a moving car. In potential energy, the energy is stored, like a stretched spring. For example, a ball thrown in the air has kinetic energy when moving upward and potential energy at the highest point of its trajectory.
Potential energy can be further differentiated into various types, such as elastic potential energy found in stretched or compressed springs and rubber bands, gravitational potential energy which is due to an object's position relative to Earth or another celestial body, and chemical potential energy which is stored in chemical bonds and released during chemical reactions.
Kinetic energy is expressed as [tex]KE = \frac{1}{2} mv^2[/tex], where 'm' stands for mass and 'v' for velocity. Examples of kinetic energy include the movement of machinery, electricity flow, wind, and water currents. It's the active form of energy, that is directly involved in causing changes and creating motion.
When an object's potential energy is converted into kinetic energy, it begins to move and work is done. This occurs without the creation or destruction of energy, adhering to the law of conservation of energy or the first law of thermodynamics.
Use the table below to identify four substances that undergo a physical change if the temperature is reduced from 50oc to -50oc. what is the physical change that takes place in each case.
Which of the following is defined as displacement over change in time?
A. Speed
B. Acceleration
C. Velocity
D. Displacement
A volcano erupted on an island. The entire plant community was destroyed and the island was covered with grey ash. Slowly, lichens and mosses started growing on the island. They helped in the process of soil formation and later other plants started growing too.
Final answer:
Primary succession occurs when new land is formed, and pioneer species like lichens and mosses help break down the rock and create soil.
Explanation:
Primary succession occurs when new land is formed, such as after a volcanic eruption. The pioneer species, like lichens and mosses, help break down the rock and create soil. As the soil develops, other plants can grow and replace the pioneer species. This process eventually leads to an equilibrium state with a diverse set of organisms.
1) Which of the following alternative energy sources is NOT inexhaustible?
tidal energy
solar energy
geothermal energy
wind energy
2) Which of the following is a problem associated with the increased use of nuclear energy?
cost of building sage nuclear facilities
major hazards involved in nuclear waste disposal
concern over the possibility of a serious nuclear accident
all of the above
3) One problem with wind energy as a major source of electricity is ________.
it is nonrenewable
it causes major air polution
it does not work at night
the expense of large tracts of the land in populated areas
Your most reliable answer my friend would be 1. Wind 2. All of the above 3. The expense of large tracts of land in populated areas
A force does +190 j of work when it acts on a moving object and its direction is in the same direction as the object's displacement. how much work does this force do when the angle between it and the object's displacement is 56°? (assume the displacement is the same.)
A person struggles very hard to lift a large boulder. He puts in so much effort, he starts to sweat, his heart rate increases, and he gets really tired. All of his effort is for nothing, the boulder does not move at all. In this situation, has work been done? Explain!
*Use the scientific definition of "work" to answer this question.
The record of an earthquake obtained from a seismic instrument is a(n) ________.
Answer:
Explanation:
It’s a SESMOGRAPH
You are a scientist trying to develop a technology that can be used to power wrist watches. Which type of electromagnetic wave would be most useful to investigate?
Select the statement that correctly describes how light travels. (2 points) Select one:
a. Light cannot travel in a vacuum because it travels slower when the light source is moving.
b. Light cannot travel in a vacuum because the light source is stationary.
c. The speed of light, traveling in a vacuum, will not change if the light source is moving.
d. Light traveling in a vacuum changes speeds when the light source moves.
The correct answer is c
please help!!!
Which of the following is an example of chemical weathering?
1. Frost wedging
2. Animal activity
3.Oxidation
4. Abrasion
Out of
Frost wedging Animal activity Oxidation; and Abrasion,I'd say 3. Oxidation.
What is the direction of the net force acting on the object at position a? hints what is the direction of the net force acting on the object at position a? upward downward to the left to the right the net force is zero?
Looking at the position A, we can actually see that velocity vectors connecting position A and its adjacent positions appear to have similar magnitude and in similar direction. Hence the acceleration is zero and similarly, the net force is also zero.
Answer:
Net force is zero
The net force acting on the object at position A is zero, option 5 is correct.
In physics, an object's motion is determined by the net force acting upon it. When multiple forces act on an object, they can either cancel each other out or add together to create a resultant force. At position A, if the forces acting on the object are balanced in such a way that the magnitudes and directions of all forces cancel each other out, the net force is zero.
This means that there is no overall acceleration or change in motion, and the object remains in a state of equilibrium. In other words, the forces pushing or pulling in various directions at position A are perfectly balanced, resulting in a net force of zero, option 5 is correct.
To learn more about force follow the link:
https://brainly.com/question/13191643
#SPJ12
The complete question is:
What is the direction of the net force acting on the object at position A?
1. upward
2. downward
3. to the left
4. to the right
5. The net force is zero.
A(n) __________ is a fast-flowing river of air at the boundary between the troposphere and stratosphere.
When the voltage across a steady resistance is doubled, the current?
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know V and I use formula P = IV: P = IV = (100mA)(10V) = 1 W.The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W
According to Ohm's law, if the voltage across a constant resistance is doubled, the current will also double. This relationship holds true as long as the resistance remains unchanged. The key concept here is the direct proportionality of voltage and current, as described by I = V/R.
According to Ohm's law, the current (I) through a conductor between two points is directly proportional to the voltage (V) across the two points and inversely proportional to the resistance (R) of the conductor. The mathematical equation that describes this relationship is I = V/R.
When the voltage across a fixed resistance is doubled, Ohm's law dictates the relationship between voltage and current. If the voltage is increased two-fold while the resistance remains constant, the current will also double. This is because, in the equation I = V/R, if V is multiplied by two, and R remains the same, then I must also be multiplied by two.
Therefore, if a student is faced with the decision to either double the voltage or the resistance with the voltage remaining constant, the best choice to maintain the current flow would be to option (b) double the current, which aligns with Ohm's law. Doubling the resistance would actually halve the current based on the formula.
If the voltage across a circuit is increased four times, the current would also increase four times, assuming the resistance stays the same. Additionally, if the resistance of a circuit is halved, for a fixed amount of voltage such as the 110 V provided by an electric company, this means the current would double, leading to twice as much power dissipation.
n order to climb a steep hill on a bicycle, a rider shifts to the lowest gear. The lowest gear has the greatest mechanical advantage because it